1. In this problem, \(A = \{1, 2, \ldots, 10\} \), \(B = \{10, 11, \ldots, 20\} \), \(C = \{2, 4, 6, \ldots 20\} \). Find the cardinalities of the sets
 (a) \(A \cup C \),
 (b) \(A \cap C \),
 (c) \((A \cup B) \setminus C \),
 (d) \((A \cap B) \setminus C \),
 (e) \((A \cap B) \times C \).

 Solution:
 (a) \(|A \cup C| = |\{1, 2, \ldots, 9, 10, 12, 14, 16, 18, 20\}| = 15 \).
 (b) \(|A \cap C| = |\{2, 4, 6, 8, 10\}| = 5 \).
 (c) \(|(A \cup B) \setminus C| = |\{1, 3, 5, \ldots, 19\}| = 10 \).
 (d) \(|(A \cap B) \setminus C| = |\emptyset| = 0 \).
 (e) \(|(A \cap B) \times C| = |A \cap B| \cdot |C| = 1 \cdot 10 = 10 \).

2. Find the cardinality of the set
 \((\{1, 2, \ldots, 100\} \times \{1, 2, \ldots, 101\}) \setminus (\{1, 2, \ldots, 101\} \times \{1, 2, \ldots, 100\}) \).

 Solution: Denote
 the set \(\{1, 2, \ldots, 100\} \times \{1, 2, \ldots, 101\} \) by \(X \),
 the set \(\{1, 2, \ldots, 101\} \times \{1, 2, \ldots, 100\} \) by \(Y \).

 Set \(X \) consists of the pairs \(\langle m, n \rangle \) such that \(m \) is between 1 and 100, and \(n \) is between 1 and 101; there are 10,100 such pairs. Such a pair \(\langle m, n \rangle \) belongs to \(Y \) if \(n \) is between 1 and 100; there are 10,000 such pairs. Consequently the cardinality of \(X \setminus Y \) is 10, 100—10,000, which equals 100.

3. Find sets \(A \) and \(B \) such that
 \[
 A \setminus B = \{1, 5, 7, 8\}, \\
 B \setminus A = \{2, 10\}, \\
 A \cap B = \{3, 6, 9\}.
 \]

 Answer: \(A = \{1, 3, 5, 6, 7, 8, 9\} \), \(B = \{2, 3, 6, 9, 10\} \).
4. Can you conclude that $A = B$ if A, B, C are sets such that

(a) $A \cup C = B \cup C$?

Answer: No. Counterexample: $A = \{1, 2, 3\}, B = \{1, 2\}, C = \{3\}$.

(b) $A \cap C = B \cap C$?

Answer: No. Counterexample: $A = \{1, 2, 3\}, B = \{3, 4, 5\}, C = \{3\}$.

5. For any sets A and B, if $|A \times B| = 91$ then at least one of the sets A, B is a singleton. True or false?

Answer: False. Example: $A = \{1, 2, \ldots, 7\}$; $B = \{1, 2, \ldots, 13\}$.

6. Consider the relation $x = 2y + 1$ between real numbers x, y. Is it reflexive? Is it symmetric? Is it transitive?

Solution: Denote the given relation by R, so that

$$xRy \leftrightarrow x = 2y + 1.$$

This relation is not reflexive, because the condition $1R1$ does not hold.

This relation is not symmetric, because the condition $1R3$ holds, but the condition $3R1$ doesn’t.

This relation is not transitive, because the conditions $1R3$ and $3R7$ hold, but the condition $1R7$ doesn’t.

7. What is the total number of binary relations on the set $\{1, \ldots, 10\}$? How many of them are reflexive?

Solution: A binary relation is an arbitrary subset of the set $\{1, \ldots, 10\} \times \{1, \ldots, 10\}$. So the total number of binary relations is 2^{100}. Such a subset is a reflexive relation if it contains 10 pairs of the form (n, n). So the number of reflexive relations is 2^{90}.