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Programmers usually solve computational problems by designing algorithms
and encoding them in an implemented programming language. Research in arti-
ficial intelligence and computational logic has led to an alternative, “declarative”
approach to programming, which does not involve encoding algorithms. A pro-
gram in a declarative language only describes what is counted as a solution. Given
such a description, a declarative programming system finds a solution by the pro-
cess of automated reasoning.

This document explains how to use the declarative programming tool clingo,
based on the programming method called answer set programming (ASP). This
method is oriented towards combinatorial search problems, where the goal is to
find a solution among a large, but finite, number of possibilities. The companion
document, Stable Models, provides an introduction to the mathematical theory of
answer set programming.

There are many exercises here, and you’ll find answers to them at the end.

1 Introduction

Assume that we are given information on today’s temperatures in several cities,
for instance:

City Austin Dallas Houston San Antonio

Temperature 88◦ 95◦ 90◦ 85◦

Table 1: Cities and temperatures.

We’ll use ASP to find all cities where the temperature is higher than in Austin.
Let’s call such cities “warm.”

ASP programs consist of rules. To find the warm cities, we need the rule

warm(C) :- t(C,T1), t(austin,T2), T1>T2. (1)

It has two parts—the head
warm(C)

and the body
t(C,T1), t(austin,T2), T1>T2
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—separated by the symbol :- that looks like the arrow← and reads “if.” The end
of a rule is indicated by a period. Capitalized identifiers in a rule (in this case, C,
T1, and T2) are variables. Since austin is here the name of a specific object and
not a variable, it is not capitalized. Both variables and names of specific objects
can be collectively referred to as terms. (There are also other kinds of terms, as
we will see in Section 2.) The symbol warm at the beginning of the head denotes
the property of being a warm city; symbols like warm, which denote properties and
relations, are called predicate symbols. The symbol t in the body is a predicate
symbol also; it expresses a relation between a city and a temperature. Expressions
consisting of a predicate symbol followed by a list of terms in parentheses, such as
warm(C), t(C,T1), and t(austin,T2), are called atoms. The expression T1>T2

at the end of the body is a comparison. The relation symbols that can be used in
comparisons are

= != < > <= >= (2)

The head of a rule is usually an atom, and the body of a rule is often a list of
atoms and comparisons, as in the example above.

The last four among the relation symbols (2) are usually applied to numbers,
but clingo allows us to apply them to symbolic constants as well. It so happens
that according to the total order used by clingo for such comparisons, the symbol
houston is greater than the symbol dallas, and dallas is greater than 3.

Rule (1) can be read as follows:

C is warm if
the temperature in C is T1,
the temperature in Austin is T2,
and T1 > T2.

Note that this sentence is declarative—it does not describe an algorithm. It merely
explains how we understand “warm.”

Table 1 can be represented by the rules

t(austin,88). t(dallas,95). t(houston,90). t(san_antonio,85). (3)

These rules don’t have bodies, and accordingly there is no “if” symbol in them.
They are also ground, that is, don’t contain variables. Ground rules without
bodies are called facts.

To instruct clingo to find all warm cities, we create a text file, say warm.lp,
containing lines (1) and (3). (The names of files that consist of rules are often
given the extension .lp, for “logic program.”) If we execute the command

% clingo warm.lp

2



then clingo will produce a collection of ground atoms:

t(austin,88) t(dallas,95) t(houston,90) t(san_antonio,85)

warm(dallas) warm(houston)

and some additional information.
About this set of ground atoms we say that it is the stable model of the pro-

gram warm.lp. The precise meaning of this concept is discussed in the companion
document Stable Models, and in Section 5 of that document you will find a justi-
fication of the claim that the answer produced in this case by clingo is correct.
But informally we can say that the stable model consists of the ground atoms
that can be “derived” using the rules of the program. To see, for instance, why
the atom warm(dallas) is included in the stable model of warm.lp, consider the
instance

warm(dallas) :- t(dallas,95), t(austin,88), 95>88.

of rule (1), which is obtained from it by substituting the values dallas, 95, and
88 for the variables C, T1, and T2. Both atoms in the body of that instance are
among the given facts (3), and the comparison 95>88 is true. Consequently this
instance justifies including its head warm(dallas) in the stable model of warm.lp.

Exercise P.1.1. What instance of rule (1) justifies including warm(houston) in
the stable model?

The last two atoms in the stable model generated by clingo answer our ques-
tion: the warm cities are Dallas and Houston. We may wish to suppress the rest
of the output, which merely reproduces the given facts. This can be accomplished
by including the directive

#show warm/1.

in the file warm.lp. (When we refer to a predicate symbol used in an ASP program,
it is customary to append its arity—the number of arguments—after a slash; in
this case, the arity is 1.) This directive instructs clingo to show the atoms formed
from the predicate symbol warm and one argument, instead of the whole stable
model.

Exercise P.1.2. Instead of comparing with the temperature is Austin, let’s define
“warm” by the condition “the temperature is over 90◦.” Modify the file warm.lp

accordingly.

In case of a syntax error, clingo usually produces a message specifying the
place in the file where parsing stopped. Some error messages say that the program
has “unsafe variables.” Such a message usually indicates that the head of one of
the rules includes a variable that does not occur in its body; stable models of such
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programs may be infinite. This is discussed in Section 8 of Stable Models in more
detail.

Exercise P.1.3. Consider the rule

child(X,Y) :- parent(Y,X). (4)

(a) How would you read this rule? (b) If we run clingo on the program consisting
of rule (4) and the facts

parent(ann,bob). parent(bob,carol). parent(bob,dan). (5)

then what stable model do you think it will produce?

A group of facts that contain the same predicate symbol can be “pooled to-
gether” using semicolons. For instance, line (3) can be abbreviated as

t(austin,88; dallas,95; houston,90; san_antonio,85).

Exercise P.1.4. Use pooling to abbreviate line (5).

Exercise P.1.5. If you run clingo on the one-rule program

p(1,2; 2,4; 4,8; 8,16).

then what stable model do you think it will produce?

2 Arithmetic

The rule
p(N,N*N+N+41) :- N=0..10. (6)

reads:
N and N2 + N + 41 are in the relation p/2 if

N is one of the numbers 0, . . . , 10.

The stable model of this one-rule program shows the values of the polynomial
N2 + N + 41 for all N from 0 to 10:

p(0,41) p(1,43) p(2,47) p(3,53) p(4,61) p(5,71) p(6,83) p(7,97)

p(8,113) p(9,131) p(10,151)

Rule (6) contains terms that are more complex than variables and constants:
the polynomial N*N+N+41 and the interval 0..10.

Exercise P.2.1. For each of the given one-rule programs, predict what stable
model clingo is going to produce.
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(a) p(N,N*N+N+41) :- N+1=1..11.

(b) p(N,N*N+N+41) :- N=-10..10, N>=0.

The only numbers that clingo knows about are integers. The stable model
of the one-rule program

p(M,N) :- N=1..4, N=2*M.

consists of only two atoms

p(1,2) p(2,4)

because 1 and 3 cannot be represented in the form 2*M, where M is an integer.
In addition to the symbols + and *, terms in a clingo program can include

the symbols

** / \ | |

for exponentiation, integer division, remainder, and absolute value.

Exercise P.2.2. Write a one-rule program that does not contain pools and has
the same stable model as the program from Exercise P.1.5.

Exercise P.2.3. For each of the given sets of ground atoms, write a one-rule
program that does not contain pools and has that set as its stable model.

(a)
p(0,1) p(1,-1) p(2,1) p(3,-1) p(4,1)

(b)
p(1,1)

p(2,1) p(2,2)

p(3,1) p(3,2) p(3,3)

p(4,1) p(4,2) p(4,3) p(4,4)

Intervals may be used not only in the bodies of rules, as in the examples above,
but in the heads as well. For instance, a program may include the fact

p(1..3).

which has the same meaning as

p(1;2;3).

that is to say, as the set of 3 facts:

p(1). p(2). p(3).
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The stable model of the one-rule program

square(1..8,1..8).

consists of the 64 atoms corresponding to the squares of the 8× 8 chessboard:

square(1,1) · · · square(1,8)

. . . . . . . . . . . . . .
square(8,1) · · · square(8,8)

Exercise P.2.4. Consider the program consisting of two facts:

p(1..2,1..4). p(1..4,1..2).

How many atoms do you expect to see in its stable model?

Rule (6), which describes the table of values of the polynomial N2 + N + 41
for all N from 0 to 10, can be made more general:

p(N,a*N*N+b*N+c) :- N=0..n. (7)

Rule (7) uses placeholders a, b, c, n to describe the table of values of an arbitrary
quadratic polynomial aN2 + bN + c with integer coefficients for the values of N
from 0 to an arbitrary upper bound n. The values of the placeholders can be
specified on the command line:

% clingo -c a=1 -c b=1 -c c=41 -c n=10 quadratic.lp

where quadratic.lp is the name of the file containing rule (7). Alternatively,
their values can be represented by including the directives

#const a=1. #const b=1. #const c=41. #const n=10.

in the file quadratic.lp.
To give another example, we can make rule (1) more general using a place-

holder:

warm(C) :- t(C,T1), t(c,T2), T1>T2.

Exercise P.2.5. Write a directive specifying that c stands for austin.
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3 Definitions

Many ASP rules can be thought of as definitions. We can say, for instance, that
rule (1) defines the predicate warm/1 in terms of the predicate t/2, rule (4) defines
child/2 in terms of parent/2, and rule (6) defines p/2.

Exercise P.3.1. (a) How would you define the predicate grandparent/2 in terms
of parent/2? (b) If you run clingo on your definition, combined with facts (5),
what stable model do you think it will produce?

Exercise P.3.2. (a) How would you define the predicate sibling/2 in terms of
parent/2? (b) If you run clingo on your definition, combined with facts (5),
what stable model do you think it will produce?

Sometimes the definition of a predicate consists of several rules. For instance,
the pair of rules

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

defines parent/2 in terms of father/2 and mother/2.
A predicate can be defined recusively. In a recursive definition, the defined

predicate occurs not only in the heads of the rules but also in some of the bodies.
The definition of ancestor/2 in terms of parent/2 is an example:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Z) :- ancestor(X,Y), ancestor(Y,Z).
(8)

Exercise P.3.3. If we run clingo on the program consisting of rules (8) and (5),
what stable model do you expect it to produce?

Sometimes a predicate can’t be defined in one step, and some auxiliary predi-
cates have to be introduced first. Consider, for instance, the property of being a
prime number from the set {1, . . . , n}. It’s easier to define the opposite property
of being a composite number from that set:

composite(N) :- N=1..n, I=2..N-1, N\I=0. (9)

(N is composite if it is a multiple of a number I from the set {2, . . . , N−1}.) Then
prime/1 can be defined in terms of composite/1 by the rule

prime(N) :- N=2..n, not composite(N). (10)

(N is prime if it is different from 1 and not composite.)
Rule (10) is our first example of the use of negation in a clingo program. In

what sense can this rule be used to “derive” the atom prime(7) (assuming, for
example, that n = 10)? About the instance
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Listing 1: Prime numbers

1 % Prime numbers from 1 to n

2
3 % input: positive integers n, k.

4
5 composite(N) :- N=1..n, I=2..N-1, N\I=0.

6 % achieved: composite(N) iff N is a composite number

7 % from {1,...,n}.

8
9 prime(N) :- N=2..n, not composite(N).

10 % achieved: prime(N) iff N is a prime number

11 % from {1,...,n}.

12
13 #show prime /1.

prime(7) :- 7=2..10, not composite(7).

of that rule we can say that the expression not composite(7) in its body is jus-
tified in the sense that any attempt to use rule (9) to “derive” composite(7) will
fail. The idea of negation as failure plays an important part in answer set pro-
gramming, and it is discussed in Sections 6 and 7 of Stable Models. To emphasize
this understanding of negation, we can read rule (10) as follows:

N is prime if
it is one of the numbers 2, . . . , n
and there is no evidence that it is composite.

Listing 1 shows a program consisting of rules (9) and (10), a #show directive,
and a few comments. The comment in Line 3 tells us that n is a placeholder for
a positive integer; the value of n must be specified when the program is executed.
The comment in Lines 6 and 7 tells us which instances of the atom composite(N)

we expect to see in the stable model of the one-line program (9). (These instances
are the same, of course, as in the stable model of the program that includes both
rules.) Comments explaining what has been “achieved” by a group of rules at the
beginning of a program allow us to start debugging at an early stage, when only a
part of the program has been written. For example, after writing Lines 1–7 of the
program in Listing 1 we may wish to check whether the stable model produced by
clingo for the first rule with n = 10 is indeed

composite(4) composite(6) composite(8) composite(9) composite(10)

Listing 2 gives another example of a pair of definitions, one on top of the
other. Before defining the property fac/1 of being a factorial, we give a recursive
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Listing 2: Factorials

1 % Beginning of the sequence of factorials

2
3 % input: nonnegative integer n.

4
5 fac(0,1).

6 fac(N+1,F*(N+1)) :- fac(N,F), N<n.

7 % achieved: fac/2 = {(0 ,0!) ,... ,(n,n!)}

8
9 fac(F) :- fac(_,F).

10 % achieved: fac/1 = {0!,...,n!}

11
12 #show fac/1.

definition of the binary relation fac/2, “the factorial of N is F .” The underscore
in Line 9 is an “anonymous variable”; underscores can be used instead of identifiers
for the variables that occur in the rule only once. (In an atom preceded by not,
the meaning of an underscore is a little different.)

The comment in Line 7 of Listing 2 says, “fac/2 is {(0, 0!), . . . , (n, n!)}” instead
of “the set of pairs of numbers that are in the relation fac/2 is {(0, 0!), . . . , (n, n!)}.”
In mathematics, it is customary to identify a binary relation with the correspond-
ing set of ordered pairs. The meaning of Line 10 is similar.

There is no “achieved” comment after Line 5. Nothing of interest is achieved
in the middle of a definition.

Exercise P.3.4. Consider the part of the program shown in Listing 2 that pre-
cedes the comment in Line 7. What atoms do you expect to see in its stable model
if n = 4?

4 Choice Rules and Constraints

Each of the ASP programs discussed above has a single stable model, but in answer
set programming we more often deal with programs that have many stable models.
Some programs have no stable models. This is as usual as equations with many
roots, or no roots, in algebra.

In clingo programs with several stable models we often see choice rules, which
describe several alternative ways to form a stable model. The head of a choice
rule includes an expression in braces, for instance:

{p(a);q(b)}. (11)
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This choice rule says: choose which of the atoms p(a), q(b) to include in the
model. There are 4 possible combinations, so that one-rule program (11) has 4
stable models. The number of stable models that we would like clingo to display
can be specified on the command line; 1 is the default, and 0 means “find all.”
For instance, if rule (11) is saved in the file choice.lp then the command

% clingo choice.lp 0

will produce a list of 4 stable models:

Answer: 1

Answer: 2

q(b)

Answer: 3

p(a)

Answer: 4

p(a) q(b)

Choice rules may include intervals and pools. For instance, the rule

{p(1..3)}.

has the same meaning as

{p(1);p(2);p(3)}.

The rule

{p(a;b;c)}.

has the same meaning as

{p(a);p(b);p(c)}.

Each of these one-rule programs has 8 stable models.

Exercise P.4.1. For each of the given programs, what do you think is the number
of its stable models?

(a) {p(1..3)}. {q(1..3)}.

(b) {p(1..3,1..3)}.

Before and after an expression in braces we can put integers, which express
bounds on the cardinality (number of elements) of the stable models described by
the rule. The number on the left is the lower bound, and the number on the right
is the upper bound. For instance, the one rule program

1 {p(1..3)} 2. (12)

describes the subsets of {1, 2, 3} that consist of 1 or 2 elements:
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Answer: 1

p(2)

Answer: 2

p(3)

Answer: 3

p(2) p(3)

Answer: 4

p(1)

Answer: 5

p(1) p(3)

Answer: 6

p(1) p(2)

Exercise P.4.2. For each of the given programs, what do you think is the number
of its stable models?

(a) 1 {p(1..6)}.

(b) 3 {p(1..6)} 3.

Exercise P.4.3. For each of the given rules, find a simpler rule that has the same
meaning.

(a) 0 {p(a)}.

(b) 1 {p(a)}.

(c) {p(a)} 1.

Choice rules may also include variables. Consider, for instance, the one-rule
program

1 {p(X);q(X)} 1 :- X=1..n.

where n is a placeholder for a nonnegative integer. Each of its stable models
includes one of the atoms p(1), q(1), one of the atoms p(2), q(2), and so on.
The program has 2n stable models; each of them describes a partition of the set
{1, ..., n} into subsets p/1, q/1 (possibly empty). For n = 2 clingo produces 4
stable models:

Answer: 1

q(1) p(2)

Answer: 2

q(1) q(2)

Answer: 3
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p(1) p(2)

Answer: 4

p(1) q(2)

The rule

1 {p(X,1..2)} 1 :- X=1..n.

is similar: each of its 2n stable models includes one of the atoms p(1,1), p(1,2),
one of the atoms p(2,1), p(2,2), and so on.

ASP programs containing choice rules often contain also constraints—rules
that weed out “undesirable” stable models, for which the constraint is “violated.”
A constraint is a rule that has no head, for instance

:- p(1). (13)

By adding this constraint to a program, we eliminate its stable models that contain
p(1). We have seen, for example, that program (12) has 6 stable models. Adding
rule (13) to it eliminates the last three of them—those that contain p(1). Adding
the “opposite” constraint

:- not p(1).

to (12) eliminates the first three solutions—those that don’t contain p(1). Adding
both constraints to (12) will give a program that has no stable models. Combining
choice rule (12) with the constraint

:- p(1), p(2).

will eliminate the only stable model among the 6 that includes both p(1) and
p(2)—the last one.

Exercise P.4.4. Consider the program consisting of choice rule (12) and the
constraint

:- p(1), not p(2).

How many stable models do you think it has?

Cardinality bounds in a choice rule can be sometimes replaced by constraints.
For instance, the rule

{p(a);q(b)} 1.

has the same meaning as the pair of rules

{p(a);q(b)}.

:- p(a), q(b).

Exercise P.4.5. Find a similar transformation for the rule

1 {p(a);q(b)}.
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5 Combinatorial Search

In a combinatorial search problem, the goal is to find a solution among a finite
number of candidates. The ASP approach is to represent such a problem by a
program whose stable models correspond to solutions, and then use a solver, such
as clingo, to find a stable model. ASP encodings of search problems usually
combine rules of two types discussed above—choice rules and constraints, and
sometimes they also include definitions.

In this section, we give a few examples illustrating this approach to search.

5.1 Schur Numbers

A set X of numbers is called sum-free if the sum of two elements of X never
belongs to X. For instance, the set {5, . . . , 9} is sum-free; the set {4, . . . , 9} is not
(4 + 4 = 8, 4 + 5 = 9).

Can we partition the set {1, . . . , n} into 2 sum-free subsets? This is possible
if n = 4: both {1, 4} and {2, 3} are sum-free. But if n = 5 then such a partition
doesn’t exist.

Exercise P.5.1. Prove this claim.

What about partitioning {1, . . . , n} into 3 sum-free subsets? This can be done
for values of n that are much larger than 4. For instance, if n = 9 then we can
take the subsets {1, 4}, {2, 3}, and {5, . . . , 9}.

Exercise P.5.2. Partition {1, . . . , 10} into 3 sum-free subsets.

The clingo program shown in Listing 3 solves the general problem of parti-
tioning {1, . . . , n} into r sum-free subsets whenever this is possible. The largest
value of n for which such a partition exists is denoted by S(r). For instance,
S(2) = 4, and the assertion of Exercise P.5.2 shows that S(3) ≥ 10. The num-
bers S(r) are called Schur numbers. So we can say that by running this program
we estimate the Schur numbers.

The program represents partitions using the predicate in/2: in(I,1) means
that I belongs to the first subset, in(I,2) means that I belongs to the second
subset, and so on. For example, the stable model

in(1,1) in(2,2) in(3,2) in(4,1)

for r = 2 and n = 4 represents the partition of {1, . . . , 4} into {1, 4} and {2, 3}.

Exercise P.5.3. How many models do you think this program has for r = 2 and
n = 4?

The program consists of two rules: the choice rule in Line 5 and the constraint
in Line 9. Stable models of the choice rule correspond to arbitrary partitions of
{1, . . . , n} into r subsets, possibly empty. The constraint eliminates the partitions
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Listing 3: Schur numbers

1 % Partition {1,..,n} into r sum -free sets

2
3 % input: positive integers n, r.

4
5 1 {in(I,1..r)} 1 :- I=1..n.

6 % achieved: set {1,...,n} is partitioned into

7 % subsets {I:in(I,1)} ,... ,{I:in(I,r)}.

8
9 :- in(I,X), in(J,X), in(I+J,X).

10 % achieved: these subsets are sum -free.

in which some subsets are not sum-free. This division of labor between choice rules
and constraints is typical for ASP solutions to search problems: the collection of
stable models of the choice rule includes not only solutions to the problem but
also some “bad” candidates, which are eliminated by the constraints.

Exercise P.5.4. What is the number of stable models of the rule in Line 5?

Exercise P.5.5. About a set X of numbers we say that it is almost sum-free if
the sum of two different elements of X never belongs to X. For instance, the set
{1, 2, 4} is almost sum-free. If we want to describe partitions of {1, . . . , n} into r
almost sum-free sets, how will you change the program in Listing 3?

If we run the program in Listing 3 for r = 3 and various values of n then we
will see that the largest n for which stable models exist is 13. In other words,
S(3) = 13. In a similar way we can determine that S(4) = 44. The runtime
of clingo for r = 4 and n = 45 may be large, and there is a useful trick that
will speed up the process. clingo can use several search strategies, and we can
instruct it to try several strategies in parallel. For example, if we save the program
in the file schur.lp and issue the command

clingo -c r=4 -c n=45 schur.lp -t4

then clingo will try solving the problem with 4 “threads,” and the output may
look like this:

clingo version 5.1.0

Reading from schur.lp

Solving...

UNSATISFIABLE
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Models : 0

Calls : 1

Time : 35.813s

CPU Time : 143.070s

Threads : 4 (Winner: 2)

Information on the “winner” tells us which of the threads 0, 1, 2, 3 reached the
goal first.

Exercise P.5.6. Use clingo to verify that S(5) ≥ 130.

The exact value of S(5) is not known.

5.2 Seating Arrangements

There are n chairs around the table. We want to choose a chair for each of n
guests, numbered from 1 to n, so that two conditions are satisfied. First, some
guests like each other and want to sit together; accordingly, we are given a set A
of two-element subsets of {1, . . . , n}, and, for every {i, j} in A, guests i and j
should sit next to each other. Second, some guests dislike each other and don’t
want to sit together; accordingly, we are given a set B of two-element subsets of
{1, . . . , n}, and, for every {i, j} in B, guests i and j should be separated by at
least one chair.

Listing 4 shows a clingo program that finds an assignment of chairs to guests
satisfiying these conditions, if it exists. The input expected by this program
includes not only the values of placeholders but also two predicates, and an input
of this kind can’t be specified on a command line; a separate file is required, such
as the one shown in Listing 5.

The command line will include the names of two files (in any order)—one
containing the program, the other containing the input.

The rule in Line 14 of Listing 4 is syntactically different from the rules that
we have seen before: its head is not an atom, as in definitions, and not an atom
in braces, as in choice rules; it is a comparison. Rules with a comparison in the
head are constraints in disguise. In particular, the rule in Line 14 has the same
meaning as the constraint

:- at(G,C1), at(G,C2), C1!=C2.

The rules in Lines 17, 18 define the auxiliary predicate adj/2, which is used
in the constraints in Lines 22 and 26.

Exercise P.5.7. What is the number of stable models (a) of the first rule of the
seating arrangements program? (b) of the first 2 rules? (b) of the first 3 rules?
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Listing 4: Seating arrangements

1 % There are n chairs around a table. Choose a chair

2 % for each of n guests so that guests who like each

3 % other sit next to each other and guests who don ’t

4 % like each other sit at least one chair away.

5
6 % input: positive integer n; set like/2 of pairs

7 % of guests who like each other; set dislike /2

8 % of pairs of guests who dislike each other.

9
10 1 {at(1..n,C)} 1 :- C=1..n.

11 % achieved: for each chair C, there is exactly one

12 % guest G such that at(G,C).

13
14 C1=C2 :- at(G,C1), at(G,C2).

15 % achieved: no guest is assigned to two chairs.

16
17 adj(X,Y) :- X=1..n, Y=1..n, |X-Y|=1.

18 adj(1,n; n,1).

19 % achieved: adj(X,Y) iff chairs X and Y are next to

20 % each other.

21
22 :- like(G1,G2), at(G1,C1), at(G2,C2), not adj(C1,C2).

23 % achieved: guests who like each other sit next to

24 % each other.

25
26 :- dislike(G1,G2), at(G1,C1), at(G2,C2), adj(C1,C2).

27 % achieved: guests who don ’t like each other don ’t

28 % sit next to each other.

29
30 #show at/2.

Listing 5: Sample input for the seating arrangements program

1 #const n=6.

2
3 like (1,2; 3,4).

4 dislike (2,3; 1,3).
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Listing 6: Graph with 8 vertices and 13 edges

1 % A -----B

2 % |\ /|

3 % | E--F |

4 % | | /| |

5 % | |/ | |

6 % | H--G |

7 % |/ \|

8 % D------C

9
10 vertex(a;b;c;d;e;f;g;h).

11
12 edge(a,b; b,c; c,d; d,a;

13 e,f; f,g; g,h; h,e;

14 a,e; b,f; c,g; d,h; f,h).

5.3 Independent Sets

In ASP, graphs are often described by two predicates, vertex/1 and edge/2, as
in Listing 6.

A set S of vertices in a graph is independent if no two vertices from S are
adjacent. For instance, {B,D,E,G} is an independent set in the graph from
Listing 6.

The program shown in Listing 7 describes independent sets of vertices of a
given size. The choice rule in Line 6 says: include exactly n vertices in the set
in/1. The atoms that can be chosen for a stable model are characterized in this
rule indirectly, in terms of the condition vertex(X). If, for example, the predicate
vertex/1 is defined as in Listing 6 then the expression in(X) : vertex(X) is
understood as

in(a);in(b);in(c);in(d);in(e);in(f);in(g);in(h)

The use of the variable X in this choice rule is different from the uses of variables
that we saw earlier, in the sense that substituting new values for X does not produce
new instances of the rule. In fact, this choice rule is its only instance. Variables
like this are said to be local. All occurrences of a local variable in a rule are in
a part of the rule that is restricted by braces: { . . . }. Variables that are not
local are called global.

Exercise P.5.8. A set S of vertices in a graph is called a clique if every two
distinct vertices in it are adjacent. How will you modify the program in Listing 7
if your goal is to describe cliques of size n, instead of independent sets?
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Listing 7: Independent sets of a given size

1 % Find independent sets of vertices of size n

2
3 % input: set vertex /1 of vertices of a graph G;

4 % set edge/2 of edges of G; positive integer n.

5
6 n {in(X) : vertex(X)} n.

7 % achieved: in/1 is a set consisting of n vertices of G.

8
9 :- in(X), in(Y), edge(X,Y).

10 % achieved: in/1 has no pairs of adjacent vertices.

11
12 #show in/1.

Exercise P.5.9. We would like to write a clingo program that finds a way to
color the vertices of a given graph so that no two adjacent vertices share the same
color. What rule would you place in Line 11 of the listing below?

1 % Color the vertices of a graph so that no two adjacent

2 % vertices share the same color.

3
4 % input: set vertex /1 of vertices of a graph G; set

5 % edge/2 of edges of G; set color /1 of colors.

6
7 1 {color(X,C) : color(C)} 1 :- vertex(X).

8 % achieved: for every vertex X there is a unique

9 % color C such that color(X,C).

10
11 _________________________________________________________

12 % achieved: no two adjacent vertices share the same

13 % color.

14
15 #show color /2.

5.4 Number Snake

In the logic puzzle known as Hidato, or Number Snake, you are given a grid
partially filled with numbers, for instance:
The goal is to fill the grid so that consecutive numbers connect horizontally, ver-
tically, or diagonally.
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2 8

1

Table 2: A Number Snake puzzle

Exercise P.5.10. Solve the puzzle in Table 2.

The program shown in Listing 8 solves the Number Snake puzzles in which
the grid is a square of size n, and the numbers go from 1 to n2. The inequality
in Line 16 expresses that the distance between the points (R1,C1) and (R2,C2)

is less than or equal to
√

2; this is equivalent to saying that the square in row R1,
column C1 and the square in row R2, column C2 connect horizontally, vertically,
or diagonally.

Exercise P.5.11. We would like to write a clingo program describing all possible
ways to put n chess queens on an n×n chessboard so that no two queens threaten
each other. What rules would you place in Lines 9 and 13 of the listing below?

1 % N queens puzzle

2
3 % input: positive integer n.

4
5 1 {queen(R,1..n)} 1 :- R=1..n.

6 % achieved: set queen /2 contains one square in each

7 % row of the n-by-n chessboard.

8
9 ____________________________________________________

10 % achieved: this set contains at most one square in

11 % each column.

12
13 ____________________________________________________

14 % achieved: this set contains at most one square in

15 % each diagonal.

6 Aggregates

An aggregate is a function that can be applied to sets. The language of clingo
has symbols for several aggregates, including #count for the number of elements
of a set, and #sum for the sum of a set of numbers.
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Listing 8: Number Snake

1 % Number Snake puzzle

2
3 % input: positive integer n; set given /3 of triples

4 % R,C,X such that the given n-by-n grid has

5 % number X in row R, column C.

6
7 1 {filled(R,C,1..n*n)} 1 :- R=1..n, C=1..n.

8 % achieved: every square of the grid is filled with

9 % a number between 1 and n^2.

10
11 R1=R2 :- filled(R1 ,_,X), filled(R2 ,_,X).

12 C1=C2 :- filled(_,C1 ,X), filled(_,C2 ,X).

13 % achieved: different squares are filled with different

14 % numbers.

15
16 (R1-R2 )**2+(C1-C2)**2 <=2 :- filled(R1,C1,X),

17 filled(R2 ,C2 ,X+1).

18 % achieved: consecutive numbers connect horizontally ,

19 % vertically , or diagonally.

20
21 :- given(R,C,X), not filled(R,C,X).

22 % achieved: given /3 is a subset of filled /3.

23
24 #show filled /3.
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Listing 9 shows how #count can be used to calculate the number of edges in
a graph, and also the degree of every vertex (the number of adjacent vertices).
Given this program and the input from Listing 6, clingo will respond:

number_of_edges(13) degree(a,3) degree(b,3) degree(c,3)

degree(d,3) degree(e,3) degree(f,4) degree(g,3) degree(h,4)

In Line 11, variable N is global, and X, Y are local (see Section 5.3). Division
by 2 is needed because the number of pairs X,Y of adjacent vertices is greater than
the number of edges by a factor of 2: either endpoint can be chosen as X. Including
number_of_edges(13) in the stable model is justified by the instance

number_of_edges(26/2) :- 26 = #count{X,Y : adjacent(X,Y)}.

of that rule. In Line 15, on the other hand, Y is the only local variable: X occurs
not only between the braces, but also outside. Including degree(a,3) in the
stable model is justified by the instance

degree(a,3) :- vertex(a), 3 = #count{Y: adjacent(a,Y)}.

of that rule.
Aggregates can be used in inequalities. For instance, the set of vertices of

degree greater than 3 can be defined by the rule

many_neighbors(X) :- vertex(X), #count{Y: adjacent(X,Y)} > 3.

Exercise P.6.1. Consider the program

p(a,1). p(b,1). p(c,2).

q(N) :- N = #count{A,X : p(A,X)}.

r(N) :- N = #count{A : p(A,X)}.

s(N) :- N = #count{X : p(A,X)}.

What is its stable model, in your opinion?

The aggregate symbol #count can be used to rewrite the constraint in Line 15
of Listing 4 as follows:

:- #count{T : at(G,T)} > 1, G=1..m*n.

(The comparison at the end is needed to make the variable G global.)
To give another example of the use of #count, consider the rule

n {in(X) : vertex(X)} n.

from Listing 7. It can be equivalently replaced by a choice rule that has neither
cardinality bounds nor local variables, combined with a constraint:
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Listing 9: Degrees of vertices and the number of edges

1 % Number of edges and degrees of vertices

2
3 % input: set vertex /1 of vertices of a graph G; set

4 % edge/2 of edges of G.

5
6 adjacent(X,Y) :- edge(X,Y).

7 adjacent(X,Y) :- edge(Y,X).

8 % achieved: adjacent(X,Y) iff X, Y are adjacent vertices

9 % of G.

10
11 number_of_edges(N/2) :- N = #count{X,Y : adjacent(X,Y)}.

12 % achieved: number_of_edges(N) iff N is the number of

13 % edges of G.

14
15 degree(X,D) :- vertex(X), D = #count{Y: adjacent(X,Y)}.

16 % achieved: degree(X,D) iff D is the degree of the

17 % vertex X of G.

18
19 #show degree /2. #show number_of_edges /1.
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{in(X)} :- vertex(X).

:- #count{X : in(X), vertex(X)} != n.

Exercise P.6.2. Find a similar transformation for the rule

5 {p(X) : q(X)} 7.

The program in Listing 10 describes magic squares of size n. (A magic square
is an n×n square grid filled with distinct integers in the range 1, . . . , n2 so that the
sum of numbers in each row, each column, and each of the two diagonals equals
the same “magic constant.”) The first 3 rules are similar to the rules that we saw
in Listing 8, and the constraints that follow use the aggregate symbol #sum.

Exercise P.6.3. (a) In Line 17 of Listing 10, which variables are local, and which
are global? Which instance of that rule expresses that Row 1 sums up to the
magic constant?

If the expression between #sum{ and the colon is a tuple, rather than a single
variable, then summation is applied to the values of the first member of the tuple.
For instance, the stable model of the program

p(1,10; 2,20).

q(S) :- S = #sum{X,Y : p(X,Y)}.

r(S) :- S = #sum{Y,X : p(X,Y)}.

includes q(3), because 1 + 2 = 3, and r(30), because 10 + 20 = 30.

Exercise P.6.4. What is the stable model of the program

p(S) :- S = #sum{N*N, N : N=-2..2}.

q(S) :- S = #sum{N*N : N=-2..2}.

in your opinion?

Exercise P.6.5. What is the stable model of the program

a(X) :- X = #count{M,N : M=1..3, N=1..3}.

b(X) :- X = #count{M+N : M=1..3, N=1..3}.

c(X) :- X = #count{M*N : M=1..3, N=1..3}.

d(X) :- X = #sum{M*N : M=1..3, N=1..3}.

e(X) :- X = #sum{M*N,M,N : M=1..3, N=1..3}.

in your opinion?

Exercise P.6.6. You wrote a test that includes several questions, and the atom
score(Q,P) expresses that you received P points for your answer to question Q.
Define total(S) (“S is the total score”) in terms of score/2.
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Listing 10: Magic squares

1 % Magic squares of size n

2
3 % input: positive integer n.

4
5 1 {num(R,C,1..n*n)} 1 :- R=1..n, C=1..n.

6 % achieved: every square of the grid is filled with

7 % a number between 1 and n^2.

8
9 R1=R2 :- num(R1 ,_,X), num(R2 ,_,X).

10 C1=C2 :- num(_,C1 ,X), num(_,C2 ,X).

11 % achieved: different squares are filled with different

12 % numbers.

13
14 % Magic constant: (1+2+...+n^2)/n.

15 #const magic =(n**3+n)/2.

16
17 :- #sum{X : num(R,_,X)} != magic , R=1..n.

18 % achieved: every row sums up to magic.

19
20 :- #sum{X : num(_,C,X)} != magic , C=1..n.

21 % achieved: every column sums up to magic.

22
23 :- #sum{X : num(R,R,X)} != magic.

24 :- #sum{X : num(R,n+1-R,X)} != magic.

25 % achieved: both diagonals sum up to magic.
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Exercise P.6.7. Find an expression that is equivalent to #sum{1,X : p(X)} but
is simpler.

Exercise P.6.8. We would like to write a clingo program that calculates the
number of classes taught today on each of the five floors of the computer science
building. What rule would you place in Line 7 of the listing below?

1 % Calculate the number of classes taught on each of

2 % the seven floors.

3
4 % input: set where /2 of all pairs (C,I) such that

5 % class C is taught on the I-th floor.

6
7 ___________________________________________________

8 % achieved: howmany(I,N) iff the number of classes

9 % taught on the I-th floor is N.

10
11 #show howmany /2.

Exercise P.6.9. We would like to write a clingo program that finds the smallest
positive element of a given set of integers. What rule would you place in Line 5
of the listing below?

1 % Find the smallest positive element of a set.

2
3 % input: set p/1 of integers.

4
5 _______________________________________________________

6 % achieved: q(X) iff X is the smallest positive element

7 % of p/1.

7 Optimization

The directives #maximize and #minimize instruct clingo to look for the “best”
stable model of the given program. The numeric parameter that is maximized or
minimized is the value of the corresponding #sum aggregate.

Consider, for instance, the modification of the independent set program (List-
ing 7) shown in Listing 11. It uses #maximize to find the largest independent
set of vertices in a graph. The parameter that is maximized in this example,
#sum{1,X : in(X)}, is the cardinality of in/1 (see Exercise P.6.6). The output
produced by clingo for this program and the graph from Listing 6 shows the
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Listing 11: Maximal independent sets

1 % Find largest independent sets of vertices

2
3 % input: set vertex /1 of vertices of a graph G;

4 % set edge/2 of edges of G

5
6 {in(X)} :- vertex(X).

7 % achieved: in/1 is a set consisting of n vertices of G.

8
9 :- in(X), in(Y), edge(X,Y).

10 % achieved: in/1 has no pairs of adjacent vertices.

11
12 #maximize{1,X : in(X)}.

13 % achieved: the number of elements of in/1 is maximal

14
15 #show in/1.

sequence of larger and larger independent sets found by clingo until the largest
is found:

Answer: 1

Optimization: 0

Answer: 2

in(d)

Optimization: -1

Answer: 3

in(b) in(d)

Optimization: -2

Answer: 4

in(b) in(d) in(e)

Optimization: -3

Answer: 5

in(b) in(d) in(e) in(g)

Optimization: -4

OPTIMUM FOUND

In the second example of the use of #maximize (Listing 12), clingo is used
to encode the problem of finding, for a given set of positive integers, a subset for
which the sum of its elements doesn’t exceed a given upper bound but is as large
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Listing 12: Subset sum

1 % Among the subsets of a given set of numbers for which

2 % the sum doesn ’t exceed the given upper bound find the

3 % one for which this sum is maximal.

4
5 % input: a set number /1 of positive integers; a positive

6 % integer m.

7
8 {in(X)} :- number(X).

9 % achieved: in/1 is a subset of number /1.

10
11 :- #sum{X : in(X)} > m.

12 % achieved: the sum of the elements of in/1 doesn ’t

13 % exceed m.

14
15 #maximize{X : in(X)}.

16 % achieved: the sum is maximal.

17
18 #show in/1.

as possible, given that restriction. For instance, if the given set of numbers is

{1, 3, 5, 10, 20}

and the upper bound is 22, the solution is given by the subset {1, 20}.

Exercise P.7.1. If we replace Line 15 in this program by

#maximize{1,X : in(X)}.

then how do you think the optimum found by clingo will change?

Exercise P.7.2. Given the input file

{p(-7;-3;3;7)}.

#minimize{X : p(X)}.

what optimum do you think clingo will produce?

Exercise P.7.3. We would like to write a clingo program that finds a way to
color the vertices of a given graph so that no two adjacent vertices share the same
color using the smallest possible number of colors. What rule would you place in
Line 20 of the listing below?
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1 % Color the vertices of a graph so that no two adjacent

2 % vertices share the same color using as few colors as

3 % possible.

4
5 % input: set vertex /1 of vertices of a graph G; set

6 % edge/2 of edges of G.

7
8 size(N) :- N = #count{X : vertex(X)}.

9 % achieved: size(N) iff N is the number of vertices of

10 % the graph.

11
12 1 {color(X,C) : C=1..N} 1 :- vertex(X), size(N).

13 % achieved: for every vertex X there is a unique

14 % C from {1,...,n} such that color(X,C).

15 %

16 :- edge(X,Y), color(X,C), color(Y,C).

17 % achieved: no two adjacent vertices share the same

18 % color.

19
20 _____________________________________________________

21 % achieved: the number of colors assigned to vertices

22 % is minimal.

23
24 #show color /2.

8 Further Examples of CLINGO Programs

8.1 A Tiling Puzzle

Can you cover the 8× 8 chessboard by twenty-one 3× 1 tiles and one 1× 1 tile?
This puzzle is solved by the program in Listing 13.

8.2 Assigning Papers to Referees

Research papers submitted to a technical conference are usually reviewed by the
conference program committee. Every submission is read and discussed by a
group of committee members chosen by the chair of the committee, and this
group decides if the paper can be accepted for presentation.

To help the chair find a good match between submissions and referees, every
committee member submits a bid that classifies all submissions into three cate-
gories: “yes” (I want to review this submission), “maybe” (I don’t mind reviewing
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Listing 13: Tiling puzzle

1 % Cover the 8-by -8 chessboard by twenty -one 3-by -1

2 % tiles and one 1-by -1 tile.

3
4 % h(X,Y) represents a tile at (X,Y),...,(X+2,Y).

5 % v(X,Y) represents a tile at (X,Y),...,(X,Y+2).

6
7 21 {h(1..6 ,1..8); v(1..8 ,1..6)} 21.

8 % achieved: positions of 21 tiles are chosen.

9
10 :- h(X,Y), h(X+(1..2) ,Y).

11 % achieved: no overlaps between horizontal tiles.

12
13 :- v(X,Y), v(X,Y+(1..2)).

14 % achieved: no overlaps between vertical tiles.

15
16 :- h(X,Y), v(X+(0..2) ,Y -(0..2)).

17 % achieved: no overlaps between a horizontal tile

18 % and a vertical tile.

it), and “no”: (don’t assign it to me). The chair tries to assign each submission
for review to a specific number k of committee members so that

• the workloads are approximately equal;

• no committee member is asked to review a submission that he placed in the
“no” group;

• the total number of cases when a submission is assigned to a reviewer who
placed it in the “yes” group is as large as possible.

The program in Listing 14 can be used to find such an assignment.

8.3 Elections with Several Candidates

This example is based on the paper by Charwat and Pfandler posted at http://www.
cs.cmu.edu/∼arielpro/comsoc-14/papers/CharwatPfandler2014.pdf. When
candidates running for an office are evaluated by voters, there are several reason-
able ways to choose the winner. One of them is to ask each voter to rank candidates
in order of preference. The candidate ranked last gets zero points; next to last
gets one point, and so on. Once all votes have been counted, the candidate with
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Listing 14: Assigning papers to referees

1 % Assign papers to referees

2
3 % input: number k of referees per submission; set

4 % referee /1 of committee members; set

5 % submission /1 of submissions; set bid/3 of

6 % triples (R,S,B) such that B is the R’s bid

7 % for submission S.

8
9 k {review(R,S) : referee(R), not bid(R,S,no)} k :-

10 submission(S).

11 % achieved: every submission is assigned to k referees

12 % who don ’t mind reviewing it.

13
14 workload(R,N) :- referee(R),

15 N = #count{S : review(R,S)}.

16 % achieved: workload(R,N) iff N is the number of

17 % submissions assigned to referee R.

18
19 :- workload(R1,N1), workload(R2,N2), |N1-N2| > 1.

20 % achieved: the difference between the workloads of

21 % committee members is at most 1.

22
23 #maximize{1,R,S : bid(R,S,yes), review(R,S)}.

24 % achieved: the number of "yes" cases is maximal.

25
26 #show review /2.
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Listing 15: Choosing winners in an election with multiple candidates

1 % Choose the winner according to the Borda rule

2
3 % input: the number m of candidates 1,...,m; the set

4 % votecount /2 of pairs (R,N) such that ranking

5 % R was selected by N voters; the set p/3 of

6 % triples (R,Pos ,C) such that Pos is the

7 % position of candidate C in ranking R.

8
9 posScore(R,C,X*N) :- p(R,Pos ,C), X=m-Pos ,

10 votecount(R,N).

11 % achieved: posScore(R,C,S) iff the voters who chose

12 % ranking R contributed S points to

13 % candidate C.

14
15 score(C,N) :- C=1..m, N=#sum{S,R : posScore(R,C,S)}.

16 % achieved: score(C,N) iff candidate C earned N points.

17
18 loser(C) :- score(C,N), score(C1,N1), N1>N.

19 % achieved: loser(C) iff C earned fewer points than

20 % another candidate.

21
22 winner(C) :- C=1..m, not loser(C).

23 % achieved: winner(C) iff C is a winner.

24
25 #show winner /1.

the most points is the winner. (There are several winners in case of a tie.) This
is called the Borda rule.

The program in Listing 15 calculates the winner in accordance with this rule.

8.4 Sequence Covering Arrays

This example is based on the paper by Brain et al. posted at http://www.kr.

tuwien.ac.at/research/projects/mmdasp/iaria.pdf. Some faults in the de-
sign of a system are triggered by events that occur in a particular order. Sequence
covering arrays, defined below, are used to design tests that can detect faults of
this kind.

Let S be a finite set of symbols. About a permutation x of S and a permu-
tation y of a subset of S we say that x covers y if y can be obtained from x by
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deleting some of its members. For instance, the permutation 52314 of {1 . . . , 5}
covers the permutation 531 of {1, 3, 5}: it can be obtained by deleting 2 and 4. A
set M of permutations of S is a sequence covering array of strength t if every per-
mutation of every t-element subset of S is covered by a permutation from M . The
size of an array is the number of permutations in it. For instance, if S = {1, . . . , 5}
then the set

{52314,

32541,

15432,

34512,

42513,

24315,

12345}

is a sequence covering array of strength 3; its size is 7.
The program in Listing 16 constructs a sequence covering array of strength 3

and size n for the symbols 1, . . . , s. The array is described by the “happens before”
predicate hb/3: an atom hb(N,X,Y) expresses that symbol X occurs to the left of
symbol Y in the N-th permutation.

Answers to Exercises

In some exercises, you are asked about the output that you expect clingo to
produce for a given program. Answers to these exercises are not shown here;
check your answer by running clingo.

P.1.1. warm(houston) :- t(houston,90), t(austin,88), 90>88.

P.1.2. Replace rule (1) in warm.lp by warm(C) :- t(C,T), T>90.

P.1.3. (a) X is a child of Y if Y is a parent of X.

P.1.4. parent(ann,bob; bob,carol; bob,dan).

P.2.2. p(2**N,2**(N+1)) :- N=0..3.

P.2.3. (a) p(N,(-1)**N) :- N=0..4. (b) p(M,N) :- M=1..4, N=1..4, M>=N.

P.2.5. #const c=austin.

P.3.1. (a) grandparent(X,Z) :- parent(X,Y), parent(Y,Z).

P.3.2. (a) sibling(X,Y) :- parent(Z,X), parent(Z,Y), X!=Y.

P.3.4. fac(0,1) fac(1,1) fac(2,2) fac(3,6) fac(4,24)
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Listing 16: Sequence covering arrays

1 % Construct a sequence covering array of strength 3

2 % and size n for symbols 1,...s.

3
4 % input: positive integers n, s.

5
6 1 {hb(N,X,Y); hb(N,Y,X)} 1 :- N=1..n, X=1..s, Y=1..s,

7 X!=Y.

8 % For every row N, let hb_N be the binary relation on

9 % the set of symbols defined by the condition: X hb_N Y

10 % iff hb(N,X,Y).

11 % achieved: each relation hb_N is irreflexive; each

12 % pair of distinct symbols satisfies either

13 % X hb_N Y or Y hb_N X.

14
15 :- hb(N,X,Y), hb(N,Y,Z), not hb(N,X,Z).

16 % achieved: each relation hb_N is transitive.

17
18 covered(X,Y,Z) :- hb(N,X,Y), hb(N,Y,Z).

19 % For every row N and every symbol X, let M_{N,X} be

20 % the symbol that is the X-th smallest w.r.t. hb_N.

21 % achieved: for any symbols X, Y, Z, covered(X,Y,Z) iff

22 % for some row N, (X,Y,Z) is a subsequence of

23 % (M_{N,1},...,M_{N,s}).

24
25 :- not covered(X,Y,Z), X=1..s, Y=1..s, Z=1..s,

26 X!=Y, Y!=Z, X!=Z.

27 % achieved: covered(X,Y,Z) for any pairwise distinct

28 % symbols X, Y, Z.

29
30 #show hb/3.
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P.4.3. (a) {p(a)}. (b) p(a). (c) {p(a)}.

P.4.5.

{p(a);q(b)}.

:- not p(a), not q(b).

P.5.1. Numbers 1 and 2 can’t be included in the same set, because 1 + 1 = 2.
Denote the set containing 1 by A, and the set containing 2 by B. Number 4 can’t
belong to B, because 2 + 2 = 4. It follows that 4 belongs to A. Then 3 can’t
belong to A, because 1 + 3 = 4. It follows that 3 belongs to B. But then 5 can
belong neither to A (1 + 4 = 5) nor to B (2 + 3 = 5); contradiction.

P.5.2. {1, 3, 8}, {2, 9, 10}, {4, 5, 6, 7}.

P.5.4. There are r ways to decide which subset will include 1, r ways to decide
which subset will include 2, and so on. The total number of possibilities is rn.

P.5.5. Replace Line 9 by

:- in(I,X), in(J,X), in(I+J,X), I!=J.

P.5.7. (a) nn. (b) n!. (c) n!.

P.5.8. Replace Line 9 by

:- in(X), in(Y), X!=Y, not edge(X,Y), not edge(Y,X).

P.5.9.

:- edge(X,Y), color(X,C), color(Y,C).

P.5.10.

6 7 9

5 2 8

1 4 3

P.5.11.

:- queen(R1,C), queen(R2,C), R1!=R2.

:- queen(R1,C1), queen(R2,C2), R1!=R2, |R1-R2|=|C1-C2|.
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P.6.2.

{p(X)} :- q(X).

:- #count{X : p(X), q(X)} < 5.

:- #count{X : p(X), q(X)} > 7.

P.6.3. (a) X and the anonymous variable are local; R is global.
(b) :- #sum{X : num(1,_,X)} != magic, 1=1..n.

P.6.6. total(S) :- S = #sum{P,Q : score(Q,P)}.

P.6.7. #count{X : p(X)}.

P.6.8.

howmany(I,N) :- N = #count{C : where(C,I)}, I=1..5.

P.6.9.

q(X) :- p(X), X>0, #count{Y : p(Y), Y>0, Y<X} = 0.

P.7.3.

#minimize{1,C : color(X,C)}.
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