

Introduction to Mathematical Logic, Handout 9

Logical Validity and Entailment

In predicate logic, we say about a sentence that it is *logically valid* if it is satisfied by all interpretations.

Problem 9.1 Determine whether the sentences

$$\begin{aligned}\exists x(P(x) \wedge Q(x)) &\rightarrow (\exists xP(x) \wedge \exists xQ(x)), \\ (\exists xP(x) \wedge \exists xQ(x)) &\rightarrow \exists x(P(x) \wedge Q(x))\end{aligned}$$

are logically valid.

The *universal closure* of a formula F is the sentence $\forall v_1 \dots v_n F$, where v_1, \dots, v_n are all free variables of F . About a formula with free variables we say that it is *logically valid* if its universal closure is logically valid.

Problem 9.2 For each of the formulas

$$\begin{aligned}P(x) &\rightarrow \exists xP(x), \\ P(x) &\rightarrow \forall xP(x)\end{aligned}$$

determine whether it is logically valid.

A formula F is *equivalent* to a formula G if the formula $F \leftrightarrow G$ is logically valid.

Problem 9.3 Determine whether the formula

$$\forall x \exists y P(x, y)$$

is equivalent to

$$\exists y \forall x P(x, y).$$

We say that a set Γ of sentences *entails* a sentence F , or that F is a *logical consequence* of Γ , if every interpretation that satisfies all sentences in Γ satisfies F .

Problem 9.4 Determine whether

$$\exists x P(x, x)$$

is a logical consequence of the sentences

$$\forall x \exists y P(x, y), \forall x y z ((P(x, y) \wedge P(y, z)) \rightarrow P(x, z)).$$