
CS313K: Logic, Sets and Functions

Fall 2010

Problem Set 3: Recursive Definitions

A function is a rule that applies to a number and produces a number. If a
function f is applicable to a number x then we say that f is defined on x.
The result of applying f to x is called the value of f at x and denoted
by f(x).

If the numbers that f is defined on are arbitrary positive integers then
we can think of f as an infinite sequence of values f(1), f(2), . . ..

A recursive definition of a function f shows how to compute f(x) if we
know the values of f at some points other than x. For example, a function f

defined on all positive integers can be characterized by two equations: one
for f(1), and the other defining f(n + 1) in terms of f(n).

Here is a recursive definition of the sequence B from Problem Set 1:

B1 = 1,

Bn+1 = Bn + n + 1.

There are two ways to find B5 using this definition. One is to find first B2,
B3 and B4:

B2 = B1 + 2 = 1 + 2 = 3,
B3 = B2 + 3 = 3 + 3 = 6,
B4 = B3 + 4 = 6 + 4 = 10,
B5 = B4 + 5 = 10 + 5 = 15.

The other possibility is to form a chain of equalities that begins with B5

and ends with a number:

B5 = B4 + 5
= B3 + 4 + 5 = B3 + 9
= B2 + 3 + 9 = B2 + 12
= B1 + 2 + 12 = B1 + 14
= 1 + 14 = 15.

3.1. Here is a recursive definition of the factorial function:

0! = 1,
(n + 1)! = n! · (n + 1).

Show how to calculate 5! using each of the two methods above.

1



3.2. Consider the function defined by the formulas

f(0) = 0,
f(n + 1) = f(n) + 1

2n+3
.

Find f(1) and f(2). Define f using sigma-notation, instead of recursion.

3.3. For any nonnegative integer n, let f(n) be the product of all odd
numbers from 1 to 2n + 1:

f(n) = 1 · 3 · 5 · . . . · (2n + 1).

Give a recursive definition of this function, and check that your definition
gives the correct value for f(3).

3.4. Express the function from the previous problem in terms of factorials.
Check that your formula gives the correct value for f(3).

3.5. Consider the function defined by the formulas

f(0) = 0,
f(n + 1) = 2f(n) + 1.

Find f(n) for n = 1, . . . , 4. Guess what a formula for f(n) might be. Prove
that this formula is correct.

3.6. Consider the function defined by the formulas

f(0) = 1,
f(n + 1) = 2f(n) + n.

Find f(n) for n = 1, . . . , 4. Guess which values of n satisfy the condition
f(n) > 2n. Prove your conjecture.

Recursive definitions can be written in a different format, as a set of
cases instead of a set of equations. For instance, the recursive definition of
factorial can be rewritten as

n! =

{

1, if n = 0,
(n − 1)! · n, otherwise.

Recursive definitions in the case format can be easily translated into
Java, for instance:

public static int fact(int n){

if (n==0)

{return 1;}

else return fact(n-1)*n;

}

2



3.7. Rewrite the recursive definitions of sequence B and of the function
from Problem 5 in the case format.

The Fibonacci numbers are defined by the recursive equations

f(0) = 0,
f(1) = 1,
f(n + 2) = f(n) + f(n + 1).

3.8. Find the first 10 Fibonacci numbers. Rewrite the definition of
Fibonacci numbers in the case format.

3.9. A function f , defined on nonnegative integers, satisfies the Fibonacci
equation

f(n + 2) = f(n) + f(n + 1).

If f(1) = 1 and f(4) = 2 then what is the value of f(0)?

3.10. The function f is defined by the condition

f(n) =

{

n − 10, if n > 100,
f(f(n + 11)), otherwise

for any nonnegative integer n. Find f(98).

3


