CS313K: Logic, Sets and Functions Fall 2010

Problem Set 3: Recursive Definitions

A function is a rule that applies to a number and produces a number. If a function f is applicable to a number x then we say that f is defined on x. The result of applying f to x is called the value of f at x and denoted by f(x).

If the numbers that f is defined on are arbitrary positive integers then we can think of f as an infinite sequence of values $f(1), f(2), \ldots$

A recursive definition of a function f shows how to compute f(x) if we know the values of f at some points other than x. For example, a function f defined on all positive integers can be characterized by two equations: one for f(1), and the other defining f(n+1) in terms of f(n).

Here is a recursive definition of the sequence B from Problem Set 1:

$$B_1 = 1,$$

 $B_{n+1} = B_n + n + 1.$

There are two ways to find B_5 using this definition. One is to find first B_2 , B_3 and B_4 :

$$B_2 = B_1 + 2 = 1 + 2 = 3,$$

 $B_3 = B_2 + 3 = 3 + 3 = 6,$
 $B_4 = B_3 + 4 = 6 + 4 = 10,$
 $B_5 = B_4 + 5 = 10 + 5 = 15.$

The other possibility is to form a chain of equalities that begins with B_5 and ends with a number:

$$B_5 = B_4 + 5$$

$$= B_3 + 4 + 5 = B_3 + 9$$

$$= B_2 + 3 + 9 = B_2 + 12$$

$$= B_1 + 2 + 12 = B_1 + 14$$

$$= 1 + 14 = 15.$$

3.1. Here is a recursive definition of the factorial function:

$$0! = 1,$$

 $(n+1)! = n! \cdot (n+1).$

Show how to calculate 5! using each of the two methods above.

3.2. Consider the function defined by the formulas

$$f(0) = 0,$$

$$f(n+1) = f(n) + \frac{1}{2n+3}.$$

Find f(1) and f(2). Define f using sigma-notation, instead of recursion.

3.3. For any nonnegative integer n, let f(n) be the product of all odd numbers from 1 to 2n + 1:

$$f(n) = 1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n+1).$$

Give a recursive definition of this function, and check that your definition gives the correct value for f(3).

- **3.4.** Express the function from the previous problem in terms of factorials. Check that your formula gives the correct value for f(3).
- **3.5.** Consider the function defined by the formulas

$$f(0) = 0,f(n+1) = 2f(n) + 1.$$

Find f(n) for n = 1, ..., 4. Guess what a formula for f(n) might be. Prove that this formula is correct.

3.6. Consider the function defined by the formulas

$$f(0) = 1,$$

 $f(n+1) = 2f(n) + n.$

Find f(n) for n = 1, ..., 4. Guess which values of n satisfy the condition $f(n) > 2^n$. Prove your conjecture.

Recursive definitions can be written in a different format, as a set of cases instead of a set of equations. For instance, the recursive definition of factorial can be rewritten as

$$n! = \begin{cases} 1, & \text{if } n = 0, \\ (n-1)! \cdot n, & \text{otherwise.} \end{cases}$$

Recursive definitions in the case format can be easily translated into Java, for instance:

```
public static int fact(int n){
  if (n==0)
     {return 1;}
  else return fact(n-1)*n;
}
```

3.7. Rewrite the recursive definitions of sequence B and of the function from Problem 5 in the case format.

The Fibonacci numbers are defined by the recursive equations

$$f(0) = 0,$$

 $f(1) = 1,$
 $f(n+2) = f(n) + f(n+1).$

- **3.8.** Find the first 10 Fibonacci numbers. Rewrite the definition of Fibonacci numbers in the case format.
- **3.9.** A function f, defined on nonnegative integers, satisfies the Fibonacci equation

$$f(n+2) = f(n) + f(n+1).$$

If f(1) = 1 and f(4) = 2 then what is the value of f(0)?

3.10. The function f is defined by the condition

$$f(n) = \begin{cases} n - 10, & \text{if } n > 100, \\ f(f(n+11)), & \text{otherwise} \end{cases}$$

for any nonnegative integer n. Find f(98).