CS313K: Logic, Sets and Functions Fall 2010

Problem Set 4: Sets

A set is a collection of objects. We write $x \in A$ if object x is an element of set A, and $x \notin A$ otherwise.

The set whose elements are x_1, \ldots, x_n is denoted by $\{x_1, \ldots, x_n\}$. The set $\{\}$ is called *empty* and denoted also by \emptyset . The set of nonnegative integers is denoted by \mathbb{N} :

$$\mathbf{N} = \{0, 1, 2, \ldots\}.$$

When we specify which objects belong to a set, this defines the set completely; there is no such thing as the order of elements in a set or the number of repetitions of an element in a set. For instance,

$${2,3} = {3,2} = {2,2,3}.$$

If C is a condition, then by $\{x : C\}$ we denote the set of all objects x satisfying this condition. For instance,

$$\{x : x = 2 \text{ or } x = 3\}$$

is the same set as $\{2,3\}$.

If A is a set and C is a condition, then by $\{x \in A : C\}$ we denote the set of all elements of A satisfying condition C. For instance, $\{2,3\}$ can be also written as

$$\{x \in \mathbf{N} \ : \ 1 < x < 4\}.$$

If a set A is finite then the number of elements of A is also called the cardinality of A and denoted by |A|. For instance,

$$|\emptyset| = 0, |\{2,3\}| = 2.$$

We say that a set A is a subset of a set B, and write $A \subseteq B$, if every element of A is an element of B. For instance,

$$\emptyset \subset \mathbf{N}, \{2,3\} \subset \mathbf{N}.$$

4.1. (a) Find all subsets of $\{2, 3, 5\}$. (b) If the cardinality of A is n then how many subsets does A have? (c) Consider the set $\{x \in \mathbb{N} : 10 \le x \le 20\}$. How many subsets does it have?

For any sets A and B, by $A \cup B$ we denote the set

$$\{x : x \in A \text{ or } x \in B\},\$$

called the union of A and B. By $A \cap B$ we denote the set

$$\{x : x \in A \text{ and } x \in B\},\$$

called the intersection of A and B. For instance,

$${2,3} \cup {3,5} = {2,3,5},$$

 ${2,3} \cap {3,5} = {3}.$

- **4.2.** Let |A|=3, |B|=4. What can you say about the cardinalities of $A\cup B$ and $A\cap B$?
- **4.3.** Simplify the expressions $(A \cap B) \cup A$ and $(A \cup B) \cap A$.
- **4.4.** For any sets A, B, C,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

True or false? Answer the same question about the formula

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

4.5. For any sets A, B, C, if

$$A \cap B \neq \emptyset$$
, $A \cap C \neq \emptyset$, $B \cap C \neq \emptyset$

then $A \cap B \cap C \neq \emptyset$. True or false?

By $A \setminus B$ we denote the set

$$\{x : x \in A \text{ and } x \notin B\},\$$

called the difference of A and B. For instance,

$$\{2,3\} \setminus \{3,5\} = \{2\}.$$

4.6. Let |A|=3, |B|=4. What can you say about the cardinalities of $A\setminus B$ and $B\setminus A$?

4.7. Simplify the expressions

$$(A \cup B) \setminus A,$$
$$(A \cap B) \setminus A,$$
$$(A \cap B) \cup (A \setminus B).$$

The Cartesian product of sets A and B is the set of ordered pairs $\langle x, y \rangle$ such that $x \in A$ and $y \in B$:

$$A \times B = \{ \langle x, y \rangle \mid x \in A \text{ and } y \in B \}.$$

For instance,

$$\begin{array}{lcl} \{1,2\}\times\{2,3,4,5,6\} & = & \{\langle 1,2\rangle,\ \langle 1,3\rangle,\ \langle 1,4\rangle,\ \langle 1,5\rangle,\ \langle 1,6\rangle,\\ & & \langle 2,2\rangle,\ \langle 2,3\rangle,\ \langle 2,4\rangle,\ \langle 2,5\rangle,\ \langle 2,6\rangle\}. \end{array}$$

- **4.8.** Determine whether the following assertions are true. (a) For any sets A and B, $A \times B = B \times A$. (b) For any sets A and B, if A is infinite then $A \times B$ is infinite too. (c) For any sets A and B, if $|A \times B| = 91$ then one of the sets A, B is a singleton.
- **4.9.** For any sets A, B, C,

$$A \times (B \cap C) = (A \times B) \cap (A \times C).$$

True or false?

An element of a set can itself be a set. For instance, $\{\emptyset, \{2,3\}\}$ is a set whose elements are \emptyset and $\{2,3\}$.

By $\mathcal{P}(A)$ we denote the *power set* of a set A, that is, the set of all subsets of A:

$$\mathcal{P}(A) = \{B : B \subseteq A\}.$$

For instance,

$$\mathcal{P}(\{2,3\}) = \{\emptyset, \{2\}, \{3\}, \{2,3\}\}.$$

4.10. For any sets A and B,

$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B).$$

True or false? Answer the same question about the formula

$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B).$$