CS313K: Logic, Sets and Functions Fall 2010

Problem Set 6: Functions

In Problem Set 3 we defined a function as a rule that applies to a number and produces a number. From now on, we will use the term "function" in a more general sense. For any sets A and B, a function from A to B is a rule f that can be applied to any element x of A and produces an element f(x) of B. The set A is called the domain of f. The subset of B consisting of the values f(x) for all $x \in A$ is called the range of f. If the range of f is the whole set B then we say that f is a function onto B.

This definition of a function is more general because it does not assume that the domain and the range consist of numbers. In the following examples, the domain of each function is the set S of all bit strings:

$$\mathbf{S} = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}.$$

- 1. Function l from **S** to **N**: l(x) is the length of x. For instance, l(00110) = 5.
- 2. Function z from **S** to **N**: z(x) is the number zeroes in x. For instance, z(00110) = 3.
- 3. Function n from \mathbf{S} to \mathbf{N} : n(x) is the number represented by x in binary notation. For instance, n(00110) = 6.
- 4. Function e from **S** to **S**: e(x) is the string 1x. For instance, t(00110) = 100110.
- 5. Function r from **S** to **S**: r(x) is the string x reversed. For instance, r(00110) = 01100.
- 6. Function p from \mathbf{S} to $\mathcal{P}(\mathbf{S})$: p(x) is the set of prefixes of x. For instance, $p(00110) = \{\epsilon, 0, 00, 001, 0011, 00110\}$.

6.1. Which of the functions l, z, n, e, r, p defined above are onto?

A function f can be characterized by the set of the ordered pairs $\langle x, f(x) \rangle$ for all x in the domain of f. It is customary to talk about a function as if it were the same thing as the corresponding set of ordered pairs. For instance,

if the function f from \mathbf{N} to \mathbf{N} is defined by the formula f(n) = 2n + 1 then we can write

$$f = \{\langle 0, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 5 \rangle, \ldots \}.$$

We can say that a function from A to B is a subset f of $A \times B$ satisfying the following condition: for every element x of A there exists a unique element y of B such that $\langle x, y \rangle \in f$.

6.2. Let $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4, 5\}$. What is the number of subsets of $A \times B$? How many of them are functions from A to B?

A function f from A to B is called *one-to-one* if, for any pair of different elements x, y of A, f(x) is different from f(y). If a function f is both onto and one-to-one then we say that f is a bijection. A permutation of a set A is a bijection from A to A.

6.3. (a) Which of the functions l, z, n, e, r, p defined above are one-to-one? Which of them are bijections? (b) Find all permutations of the set $\{1, 2, 3\}$.

If f is a function from A to B, and g is a function from B to C, then the *composition* of these functions is the function h from A to C defined by the formula h(x) = g(f(x)). This function is denoted by $g \circ f$.

- **6.4.** For the functions l, z, n, e and r defined above, which of the following formulas are true?
 - $l \circ r = l$,
 - $z \circ r = z$,
 - \bullet $n \circ r = n$,
 - $\bullet \ e \circ r = r \circ e.$

If f is a bijection from A to B then the inverse of f is the function g from B to A such that, for every $x \in A$, g(f(x)) = x. This function is denoted by f^{-1} .

6.5. Find all permutations f of $\{1,2,3\}$ such that $f^{-1} \neq f$.