CS313K: Logic, Sets and Functions Fall 2010

Problem Set 7: Propositional Formulas

Truth values are the symbols f ("false") and t ("true"). Propositional connectives are functions that are applied to truth values and return truth values. We will use these propositional connectives:

¬ "not" (negation)
 ∧ "and" (conjunction)
 ∨ "or" (disjunction)
 → "implies" (implication)
 ↔ "is equivalent to" (equivalence)

Negation is a unary connective (takes one argument); the others are binary (take two arguments). Here are the tables of values for these connectives:

p	$\neg p$)			
f	$\overline{\mathbf{t}}$				
\mathbf{t}	f				
p	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$
f	f	f	f	t	t
\mathbf{f}	t	f	\mathbf{t}	t	\mathbf{f}
\mathbf{t}	f	f	\mathbf{t}	\mathbf{f}	\mathbf{f}
\mathbf{t}	ایا		↓	_ ا	_ ا

Propositional variables are variables for truth values, such as p and q in the tables above. Propositional formulas are built from truth values and propositional variables using propositional connectives. For instance,

$$\neg (p \lor q) \to (r \leftrightarrow \mathbf{f})$$

is a propositional formula.

7.1. (a) Find the value of this formula for $p = \mathbf{f}$, $q = \mathbf{t}$, $r = \mathbf{t}$. (b) Find all combinations of values of p, q, r that make this formula false. (c) Complete the table showing all values of this formula:

p	q	r	$ \mid \neg(p \lor q) \to (r \leftrightarrow \mathbf{f}) $
f	f	f	
\mathbf{f}	f	t	
\mathbf{f}	t	f	
\mathbf{f}	t	t	
\mathbf{t}	f	f	
\mathbf{t}	f	t	
\mathbf{t}	t	f	
\mathbf{t}	t	$\mid \mathbf{t} \mid$	

The table showing the values of a propositional formula for all combinations of values of its variables is called the *truth table* of that formula. A propositional formula is called a *tautology* if each of its truth values is **t**. For instance, $p \to p$ and $p \lor \neg p$ are tautologies.

7.2. Make truth tables for these formulas:

- (a) $p \rightarrow \mathbf{f}$
- (b) $\neg p \lor q$
- (c) $\neg p \rightarrow q$

7.3. Make truth tables for these formulas:

- (a) $\neg(\neg p \lor \neg q)$
- (b) $\neg(\neg p \land \neg q)$
- (c) $(p \land q) \lor (\neg p \land \neg q)$

7.4. Determine which of these formulas are tautologies:

- (a) $(p \rightarrow q) \lor (q \rightarrow p)$
- (b) $((p \rightarrow q) \rightarrow p) \rightarrow p$
- (c) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$

Propositional formulas F and G are said to be *equivalent* to each other if, for every combination of values of their variables, the value of F is the same as the value of G. For instance, every tautology is equivalent to \mathbf{t} . The formula $p \land \neg p$ is equivalent to \mathbf{f} . Other examples:

$$p \wedge (q \vee r)$$
 is equivalent to $(p \wedge q) \vee (p \wedge r)$

and

$$p \vee (q \wedge r)$$
 is equivalent to $(p \vee q) \wedge (p \vee r)$

(distributive laws for conjunction and disjunction);

$$\neg(p \land q)$$
 is equivalent to $\neg p \lor \neg q$

and

$$\neg (p \lor q)$$
 is equivalent to $\neg p \land \neg q$

(De Morgan's laws).

Propositional variables are also called *atoms*. Atoms and negated atoms, such as p and $\neg p$, are also called *literals*. A propositional formula is said to be in negation normal form if it is formed from literals using conjunctions (\land) and disjunctions (\lor). Any propositional formula can be equivalently rewritten in negation normal form by

- eliminating all connectives other than \neg , \wedge , \vee , and
- using De Morgan's laws to push negations inside.

For instance, to convert the formula

$$\neg((p \land \neg q) \to (r \land s))$$

to negation normal form, we rewrite it as follows:

$$\neg(\neg(p \land \neg q) \lor (r \land s)),$$

$$p \land \neg q \land \neg(r \land s),$$

$$p \land \neg q \land (\neg r \lor \neg s).$$

7.5. Convert the formulas

$$(p \to q) \to r$$

and

$$p \leftrightarrow (q \wedge r)$$

to negation normal form.

A propositional formula is said to be in *conjunctive normal form* (CNF) if it is a conjunction of disjunctions of literals. A propositional formula is said to be in *disjunctive normal form* (DNF) if it is a disjunction of conjunctions of literals. A formula in negation normal form can be turned into CNF or DNF using distributive laws. For instance, the formula

$$p \land \neg q \land (\neg r \lor \neg s)$$

is in CNF; we can turn it into DNF by rewriting it as

$$(p \land \neg q \land \neg r) \lor (p \land \neg q \land \neg s).$$

7.6. Convert the formulas from Problem 7.5 to CNF and DNF.