
Data Oblivious Algorithms for Multicores∗

Vijaya Ramachandran
UT Austin

vlr@cs.utexas.edu

Elaine Shi
Cornell

runting@gmail.com

Abstract

As secure processors such as Intel SGX (with hyperthreading) become widely adopted,
there is a growing appetite for private analytics on big data. Most prior works on data-oblivious
algorithms adopt the classical PRAM model to capture parallelism. However, it is widely un-
derstood that PRAM does not best capture realistic multicore processors, nor does it reflect
parallel programming models adopted in practice.

In this paper, we initiate the study of parallel data oblivious algorithms on realistic mul-
ticores, best captured by the binary fork-join model of computation. We first show that data-
oblivious sorting can be accomplished by a binary fork-join algorithm with optimal total work
and optimal (cache-oblivious) cache complexity, and in O(log n log log n) span (i.e., parallel
time) that matches the best-known insecure algorithm. Using our sorting algorithm as a core
primitive, we show how to data-obliviously simulate general PRAM algorithms in the binary
fork-join model with non-trivial efficiency. We also present results for several applications
including list ranking, Euler tour, tree contraction, connected components, and minimum span-
ning forest. For a subset of these applications, our data-oblivious algorithms asymptotically
outperform the best known insecure algorithms. For other applications, we show data oblivious
algorithms whose performance bounds match the best known insecure algorithms.

Complementing these asymptotically efficient results, we present a practical variant of our
sorting algorithm that is self-contained and potentially implementable. It has optimal caching
cost, and it is only a log log n factor off from optimal work and about a log n factor off in terms
of span; moreover, it achieves small constant factors in its bounds.

∗This work was supported in part by NSF grant CCF-2008241.

1

ar
X

iv
:2

00
8.

00
33

2v
1

 [
cs

.D
C

]
 1

 A
ug

 2
02

0

1 Introduction

We initiate the study of data-oblivious algorithms for a multicore architecture where parallelism
and synchronization are expressed with binary fork and join operations. Imagine that a client out-
sources encrypted data to an untrusted cloud server which is equipped with a secure, multicore
processor architecture (e.g., Intel SGX with hyperthreading). All data contents are encrypted to
the secure processor’s secret key either at rest or in transit. Data is decrypted only inside the se-
cure cores’ hardware sandboxes where computation takes place. As is well-understood, encryption
alone does not guarantee privacy, since access patterns to (even encrypted) data leak a lot of sen-
sitive information [IKK12, XCP15]. To defend against access pattern leakage, an active line of
work [GO96, Gol87, LWN+15, CS17, BCP15, SCSL11] has focused on how to design algorithms
whose access pattern distributions do not depend on the secret inputs — such algorithms are called
data-oblivious algorithms.

There has been some prior work exploring the design of parallel data-oblivious algorithms. To the
best of our knowledge almost all prior parallel data-oblivious algorithms [NWI+15, BCP15, CS17]
adopted PRAM as the model of computation. However, it is widely understood that the vanilla
PRAM model may not best capture modern multicore architectures. Specifically, on a PRAM,
every parallel step of computation is a synchronization point among all cores, which is expensive
on multicore architectures where the cores typically proceed asynchronously.

To better account for synchronization cost, a long line of work [ABB00, BGS10, BCG+08, BL93,
BL99,CR10a,CR08,FS09,CR12a,CR12b,CR13,CRSB13,CR17b,CR17a,BG04,BFGS11,BGM99,
ABP98] adopted a multithreaded computation model in which parallelism is expressed through
paired fork and join operations. A binary fork spawns two tasks that can execute in parallel. Its
corresponding join is a synchronization point: both of the spawned tasks must complete before the
computation can proceed beyond this join. Such a binary fork-join model is also adopted in practice,
and supported by programming systems such as Cilk [FLR98], the Java fork-join framework [jfo],
X10 [CGS+05], Habanero [BCR+11], Intel Threading Building Blocks [tbb], and the Microsoft
Task Parallel Library [tpl]. We also refer the reader to Chapter 27 in the textbook by Cormen et
al [CLRS09] for an introduction to multithreaded algorithms.

In such a multi-threaded computation model with binary fork-joins, we want to design efficient
parallel algorithms where efficiency is measured through the following metrics: the algorithm’s
total work (i.e., the sequential execution time), its cache complexity (i.e., the number of cache
misses), and its span (i.e., the length of the longest path in the computation DAG). The span is also
the number of parallel steps in the computation assuming that unlimited number of processors are
available and they all execute at the same rate.

1.1 Our Results

Since we are the first to consider data-oblivious algorithms for a binary fork-join model, we start
with a suite of fundamental computation tasks, and show how to construct data-oblivious parallel
algorithms whose asymptotical performance matches or even beats the best-known insecure algo-
rithm in the binary fork-join model. Conceptually, we show how to get privacy for free for a range
of tasks in this important parallel computation model. Not only so, all of our algorithms are cache-

1

agnostic1 (or cache-oblivious [FLPR99]), i.e., the algorithm need not know the cache’s parameters
including the cache-line (i.e., block) size and cache size. Besides devising new algorithms, our
work also makes a conceptual contribution by creating a bridge between two lines of work from the
cryptography and algorithms literature, respectively.

We now state our results.

Sorting. To attain our results, the most important building block is data-oblivious sorting. We
present a randomized data-oblivious, cache-agnostic sorting algorithm with optimal work and cache
complexity and high parallelism that matches the current best span known for multithreaded algo-
rithms. On an input of size n, our randomized sorting algorithm runs with optimal O(n log n)
work and optimal cache complexity of O((n/B) · logM n). Here B is the block size and M is
the cache size. As is needed for optimal cache-agnostic sorting, we assume M = Ω(B1+ε), for
any given arbitrarily small constant ε > 0, and our caching bound holds when M = Ω(log1+ε n).
Our algorithm has span O(log n · log logn), matching the current best span for algorithms with
optimal cache-agnostic cache complexity, which is the SPMS sorting algorithm given by Cole
and Ramachandran [CR17b]. In comparison with known cache-agnostic and data-oblivious sort-
ing algorithms [CGLS18], we improve the span by an (almost) exponential factor — the prior
work [CGLS18] requires nε parallel runtime for some constant ε ∈ (0, 1) even without the binary
fork-join constraint.

Further, it has been shown in [CGLS18, ACN+20] that if a random permutation of the input is
obtained data-obliviously then this permuted input can be sorted by any (insecure) comparison-
based sorting algorithm and the computation remains data oblivous. We will adopt the state-of-the-
art SPMS algorithm [CR17b] for this last step; this achieves the stated performance bounds.

Data-oblivious simulation of PRAMs in the binary fork-join model. Using our sorting algorithm
as a building block, we show how to compile any CRCW PRAM algorithm to a data-oblivious,
cache-agnostic binary-fork algorithm with non-trivial efficiency. We present two results along these
lines. The first is a compiler that works efficiently for space-bounded PRAM programs, e.g., when
the space s used is close to the number of processors p.

Our second compiler is efficient even for the general case when the space s consumed by the PRAM
can be much greater than (e.g., a polynomial function in) the number of processors p. For this set-
ting, we show a result that strictly generalizes the best known Oblivious Parallel RAM (OPRAM)
construction [CS17, CCS17]. Specifically, we can compile any CRCW PRAM to a data oblivious,
cache-agnostic, binary fork-join program where each parallel step in the original PRAM can be
simulated with p log2 s total work and O(log s · log log s) span (i.e., parallel runtime with the bi-
nary fork-join constraint). Our result matches the best known OPRAM result [CS17, CCS17] even
with the binary fork-join constraint (whereas previous OPRAM results essentially need unbounded
forking to get the same result). Moreover, we show that each parallel step of the PRAM can be
simulated with O((p/B) · logM p log s + p · log s · logB s) cache misses (c.f. previous results did
not consider cache efficiency [CS17, CCS17]).

There is a very large collection of efficient PRAM algorithms in the literature for a variety of im-
portant problems. Our PRAM simulation results in conjunction with our new sorting algorithm

1In order to avoid confusion with data obliviousness, we will reserve the term ‘oblivious’ for data-oblivious, and we
will use cache-agnostic in place of cache-oblivious.

2

give a generic way of translating these algorithms into efficient data-oblivous algorithms in binary
fork-join. In particular, our space-bounded PRAM simulation result will translate space-efficient
PRAM algorithms into data-oblivious binary fork-join algorithms that have good cache-efficiency
and with only a logarithmic increase in the work and parallel time (span). We will apply this PRAM
simulation to obtain new data oblivious results that outperform previous insecure algorithms.

To obtain the aforementioned PRAM simulation results, we need a few intermediate building blocks
that are core to the oblivious algorithms literature, called aggregation propagation, and send-receive [NWI+15,
BCP15, CS17]. Table 2 shows the performance bounds of our approach (for these building blocks
and general PRAM simulation) vs. the best known data-oblivious algorithm, where the latter is
obtained by taking the best known oblivious PRAM algorithm and naı̈vely forking n threads in a
binary-tree fashion for every PRAM step. The table shows that we achieve asymptotical improve-
ments over the prior best results for all tasks.

Applications. Using our new sorting algorithm as a building block, we show how to accomplish a
suite of computational tasks that are core to modern parallel algorithms. We list our results in Table 1
and compare with prior work. Our results for tree contraction (TC), connected components (CC),
and minimum spanning forest (MSF) are obtained through our space-bounded PRAM simulation,
and in all three cases our data-oblivious binary fork-join algorithms improve the span by a log n
factor while matching the total work and cache complexity of the best known insecure algorithms.
For other computational tasks such as list ranking and rooted tree computations with Euler tour, our
data-oblivious algorithms match the best known insecure algorithms in the binary fork-join model
(these have better performance than what we would achieve with the PRAM simulation).

Practical variant. We also present a practical variant of our data-oblivious sorting algorithm with
Õ(log2 n) span. While the span is slightly larger than SPMS, this algorithm is conceptually much
simpler, implementable, and it is still highly parallel. In our practical variant, we do not rely on
SPMS as a blackbox to sort the randomly permuted array. Instead, we devise a conceptually simple
algorithm to sort an input array that has been randomly permuted. The algorithm uses randomly
chosen pivots, and is similar in structure to our REC-ORBA algorithm.

We use bitonic sort as a primitive within the practical variant of our algorithm, and for this we
present a binary fork-join algorithm for bitonic sort that improves on the naı̈ve parallelization by
achieving spanO(log2 n·log log n) and cache-agnostic caching costO((n/B)·logM n·log(n/M)).

Throughout, we allow our algorithms to have an extremely small failure probability (either in cor-
rectness or in security) that is o(1/nk), for any constant k. We refer to such a probability as being
negligible in n. Such strong bounds are typical desired for cryptographic and security applications.

Road-map. The rest of the paper is organized as follows. Section 2 has short backgrounds on
multithreaded, cache-efficient and data-oblivious algorithms. Section 3 is on sorting. Section 4 has
PRAM simulations, and Section 5 has some applications. Many details are in the appendix.

3

Table 1: Comparison with prior insecure algorithms. Õ(·) hides a single log logn factor. LR
= “list ranking”, ET-Tree = “Tree computations with Euler tour”, TC = “Tree contraction”, CC =
“connected components”, MSF = ”minimum spanning forest”. For graph problems, n is the number
of vertices, and m = Ω(n) is the number of edges. The prior bounds, except for tree contraction,
are from [CR12a], and implicit in other work [BGS10, CRSB13]. The prior result for sort is SPMS
sort [CR10b, CR17b]. The prior bound for tree contraction (TC) is from [BGS10]. A ‘†’ next to a
result indicates that we improve the performance even relative to the insecure case.

Task Our data-oblivious algorithm Previous best insecure algorithm
work span cache work span cache

Sort O(n log n) Õ(log n) O(nB logM n) O(n log n) Õ(log n) O(nB logM n)

LR O(n log n) Õ(log2 n) O(nB logM n) O(n log n) Õ(log2 n) O(nB logM n)

ET-Tree O(n log n) Õ(log2 n) O(nB logM n) O(n log n) Õ(log2 n) O(nB logM n)

TC† O(n log n) Õ(log2 n) O(nB logM n) O(n log n) Õ(log3 n) O(nB logM n)

CC† O(m log2 n) Õ(log2 n) O(mB logM n log n) O(m log2 n) Õ(log3 n) O(mB logM n log n)

MSF† O(m log2 n) Õ(log2 n) O(mB logM n log n) O(m log2 n) Õ(log3 n) O(mB logM n log n)

2 Preliminaries

2.1 Cache-efficient Multithreaded Computations

We will use the cache-oblivious model in Frigo et al. [FLPR99]. As noted earlier, in this paper
we will use the term cache-agnostic in place of cache-oblivious, and reserve the term ‘oblivious’
for data-obliviousness (see Section B). We assume a cache of size M partitioned into blocks (or
cache-lines) of size B. We will use Qsort(n) = Θ((n/B) · logM n)) to denote the optimal caching
bound for sorting n elements, and for a cache-agnostic algorithm to achieve this bound we need
M = Ω(B2) (or M = Ω(B1+δ) for some given arbitrarily small constant δ > 0). Several sorting
algorithms with optimal work (i.e., sequential time) and cache-agnostic caching cost are known,
including two in [FLPR99].

For parallelism we will use a multithreaded model with paired fork-join operations. Parallelism
is expressed by a binary fork, and synchronization occurs only at joins. Any pair of fork-join
computations are either disjoint or one is nested within the other. We will refer to such a computation
as a binary fork-join algorithm, or simply a multithreaded algorithm. All of the multithreaded
algorithms we present are in this binary fork-join model.

The work of a multithreaded algorithm Alg is the total number of operations it executes; equiva-
lently, it is the sequential time when it is executed on one processor. The span of Alg, often called
its critical path length or parallel time T∞, is the number of parallel steps in the algorithm. The cache
complexity of a binary fork-join algorithm is the total number of cache misses incurred across all
processors during the execution.

We would like to design binary fork-join algorithms with small work, small sequential caching cost,
preferably cache-agnostic, and small span. As explained in Section A in the appendix this will lead
to good parallelism and cache-efficiency in an execution under randomized work stealing [BL99].

Let Tsort(n) be the smallest span for a binary fork-join algorithm that sorts n elements with a
comparison-based sort. It is readily seen that Tsort(n) = Ω(log n). The current best binary fork-

4

Table 2: Comparison with prior oblivious algorithms. The prior best is obtained by taking
the best known oblivious PRAM algorithm and naı̈vely fork and join n threads at every PRAM
step. Õ hides a single log log n or log log s factor. Aggr = aggregation, Prop = propagation, S-R =
send-receive, PRAM = oblivious simulation of a p-processor, s-space PRAM (cost of simulating a
single step, assuming s ≥ p), and F = O(log s · ((p/B) · logM p + p · logB s)). The best known
algorithm for aggregation and propagation are due to [NWI+15,CS17], send-receive is obtained by
combining [NWI+15, CS17], [AKS83], and [CGLS18], oblivious simulation of PRAM is due to or
implied by [BCP15, CCS17].

Obliv. Our algorithm Prior best
Alg. work span cache work span cache

Aggr O(n) O(log n) O(n/B) O(n) O(log2 n) O(n/B)

Prop O(n) O(log n) O(n/B) O(n) O(log2 n) O(n/B)

S-R O(n log n) Õ(log n) O(nB logM n)
O(n log n) O(log2 n) O(n log n)

O(n log n log2 log n) O(nε) O(nB logM n)

PRAM O(s log s) Õ(log s) O(sB logM s) O(s log2 s) O(log2 s) O(s log s)

O(p log2 s) Õ(log s) F in caption O(p log2 s) Õ(log2 s) O(p log2 s)

join algorithm for sorting is SPMS (Sample Partition Merge Sort) [CR17b]. This algorithm has
span O(log n · log logn) with optimal work Wsort = O(n log n) and optimal cache complexity
Qsort(n). But the SPMS algorithm is not data-oblivious. No non-trivial data oblivious parallel
sorting algorithm with optimal cache complexity was known prior to the results we present in this
paper.

More background on caching and multithreaded computations is given in Section A.

2.2 Data Oblivious Binary Fork-Join Algorithms

Unlike the terminology “cache obliviousness”, data obliviousness captures the privacy requirement
of a program. As mentioned in the introduction, we consider a multicore secure processor like
Intel’s SGX (with hyperthreading), and all data is encrypted to the secure processor’s secret key at
rest or in transit. Therefore, the adversary, e.g., a compromised operating system or a malicious
system administrator with physical access to the machine, cannot observe the contents of memory.
However, the adversary may control the scheduler that schedules threads onto cores. Moreover, it
can observe the 1) the computation DAG that captures the pattern of forks and joins, and 2) the
memory addresses accessed by all threads of the binary fork-join program. The above observations
jointly form the “access patterns” of the binary fork-join program.

We adapt the standard definition of data obliviousness [GO96, Gol87, CS17] to the binary fork-
join setting. We say that a binary fork-join algorithm Alg data-obliviously realizes (or obliviously
realizes) a possibly randomized functionality F , iff there exists a simulator Sim such that for any
input I, the following two distributions have negligible statistical distance: 1) the joint distribution
of Alg’s output on input I and the access patterns; and 2) (F(I), Sim(|I|)).

We stress that our notion of data obliviousness continues to holds if the adversary can observe the
exact address a processor accesses, even if that data is in cache. In this way, our security notion can

5

rule out attacks that try to glean secret information through many types of cache-timing attacks. Our
notion secures even against computationally unbounded adversaries, often referred to as statistical
security in the cryptography literature.

One sometimes inefficient way to design binary-fork-join algorithms is to take an Concurrent-Read-
Exclusive-Write (CREW) PRAM algorithm, and simply fork n threads in a binary-tree fashion to
simulate every step of the PRAM. If the original PRAM has T (n) parallel runtime and W (n) work,
then the same program has T (n)·log n span andW (n) work in a binary-fork-join model. Moreover,
if the algorithm obliviously realizes some functionality F on an CREW PRAM, the same algorithm
obliviously realizes F in a binary-fork-join model too.

We defer a more detailed exposition of data obliviousness to Section B.

3 Summary of Our Sorting Algorithm

We give an informal overview of our sorting algorithm, deferring the details to Sections C and D.
As mentioned in the introduction, we first apply an oblivious random permutation to the input ele-
ments, and then apply any (insecure) comparison-based sorting algorithm such as SPMS [CR17b]
to the permuted array. To attain an oblivious random permutation, a key step is to randomly assign
elements to bins of Z = ω(log n) capacity but without leaking the bin choices — we call this primi-
tive oblivious random bin assignment (ORBA). For simplicity, we shall assume Z = Θ(log2 n). We
now give an overview of our algorithm for ORBA, and then our overall oblivious sorting algorithm.

3.1 Meta-Algorithm for Random Bin Assignment: META-ORBA

Our meta-algorithm for ORBA (henceforth called META-ORBA) builds on an ORBA algorithm
by Asharov et al. [AKL+20b] and Chan et al. [CGLS18] that runs in O(log n · log log n) parallel
time on an EREW PRAM with O(n log n) work. In this ORBA algorithm, the n input elements are
divided into β = 2n/Z bins and each bin is then padded with Z/2 filler elements to a capacity of
Z. We assume that β is a power of 2. Each real element in the input chooses a random label from
the range [0, β − 1] which expresses the desired bin. The elements are then routed over a 2-way
butterfly network of Θ(log n) depth, and in each layer of the butterfly network there are β bins, each
of capacity Z. In every layer i of the network, input bins from the previous layer are paired up in an
appropriate manner, and the real elements contained in the two input bins are obliviously distributed
to two output bins in the next layer, based on the i-th bit of their random labels. For obliviousness,
the output bins are also padded with filler elements to a capacity of Z.

We propose an improvement of the algorithm in [AKL+20b] that allows us to save a log log n factor
in parallel runtime on a PRAM, while retaining work O(n log n) — this is our meta-algorithm
META-ORBA. For this we use a Θ(log n)-way butterfly network rather than 2-way. Therefore,
in each layer of the butterfly network, groups of Θ(log n) input bins2 from the previous layer are
appropriately chosen, and the real elements in the log n input bins are obliviously distributed to
Θ(log n) output bins in the next layer, based on the next unconsumed Θ(log log n) bits in their
random labels. Again, all bins are padded with filler elements to a capacity of Z so the adversary
cannot tell the bin’s actual load. To perform this Θ(log n)-way distribution obliviously, it suffices

2We assume that the branching factor Θ(logn) is chosen to be a power of 2.

6

to invoke the AKS construction [AKS83] O(1) number of times (we defer the technical details to
Section C.1). Here is a brief analysis of the performance:

• For O(1) invocations of AKS on Θ(log n) bins each of size Z = Θ(log2 n):

Total work is O(log3 n · log log n) and the parallel time on an EREW PRAM is O(log log n).

• For computing a single layer, there are β/Θ(log n) = 2n/Θ(log3 n) subproblems:

Total work for a single layer isO(n · log logn) and EREW PRAM time remainsO(log log n).

• The Θ(log n)-way butterfly network has Θ(log n/ log log n) layers, hence META-ORBA
performs O(n log n) total work, and runs in O(log n) parallel time on an EREW PRAM.

Note that we have improved the parallel runtime by a log logn factor relative to Asharov et al. [ACN+20]
(even when compared against an improved version of their algorithm that uses new primitives such
as parallel compaction [AKL+20b]). Although improving the parallel runtime on a PRAM is not
our final goal, the same improvement will translate to an O(log log n) factor saving in span, when
we describe our cache-agnostic, binary fork-join implementation in Section 3.2. Without this im-
provement in the meta-algorithm, we will not be able to match the best known (insecure) sorting
bound in the same computation model.

3.2 Efficient Cache Agnostic, Binary Fork-Join Implementation

We now describe REC-ORBA, a recursive cache-agnostic, binary fork-join implementation of our
META-ORBA algorithm. We will assume a tall cache, i.e., M = Ω(B2), and we will also assume
M = Ω(n1+ε) for any given arbitrarily small constant ε > 0. In the following we will use ε = 2 for
simplicity, i.e., M = Ω(log3 n).

In REC-ORBA, we implement META-ORBA by recursively solving
√
β subproblems, each with√

β bins: in each subproblem, we shall obliviously distribute the real elements in the
√
β input

bins into
√
β output bins, using the (1/2) log β most significant bits (MSBs) in the labels. After this

phase, we use a matrix transposition to bring the
√
β bins with the same (1/2) · log β MSBs together

— these
√
β bins now belong to the same subproblem for the next phase. where we recursively solve

each subproblem defined above: for each subproblem, we distribute the
√
β bins into

√
β output

bins based on the (1/2) · log β least significant bits in the elements’ random labels. Since the matrix
transposition for Y bins each of capacity Z = Θ(log2 n) can be performed with O(Y ·Z/B) cache
misses, and O(log(Y · Z)) = O(log n) span, we have the following recurrences that characterize
the cost of REC-ORBA where Y denotes the current number of bins, and Q(Y) and T (Y) denote
the cache complexity and span, respectively, to solve a subproblem containing Y bins:

Q(Y) = 2
√
Y ·Q(

√
Y) +O((Y · log2 n)/B)

T (Y) = 2 · T (
√
Y) +O(log(Y · log2 n))

The base conditions are as follows. Since M = Ω(log3 n) each individual Θ(log n)-way distribu-
tion instance fits in cache and incurs O((1/B) log3 n) cache misses. Hence we have the base case
Q(Y) = O(Y log2 n/B) when Y log2 n ≤ M . For the span, each individual Θ(log n)-way dis-
tribution instance works on O(log3 n) elements and has O(log2 log n) span under binary forking,
achieved by forking and joining log3 n tasks at each level of the AKS sorting network.

7

Therefore, we have that for β = 2n/Z: Q(β) = O((n/B) logM n) and T (β) = O(log n·log logn).
Finally, if we want M = Ω(log1+ε n) rather than M = Ω(log3 n), we can simply parametrize the
bin size to be log1+ε/2 n and let γ = logε/2 n. This gives rise to the following lemma.

Lemma 3.1. Algorithm REC-ORBA has cache-agnostic caching complexity O((n/B) logM n)
provided the tall cache has M = Ω(log1+ε n), for any given positive constant ε. The algorithm
performs O(n log n) work and has span O(log n · log log n).

3.3 Full Sorting Algorithm

From ORBA’s output we obtain β bins where each bin contains real and filler elements. To obtain a
random permutation of the input array, it is shown in [CGLS18, ACN+20] that it suffices to do the
following (see Section C.3 for details): Assign a (log n · log log n)-bit random label to each element,
and sort the elements within each bin based their labels using bitonic sort, where all filler elements
are treated as having the label ∞ and thus moved to the end of the bin. Finally, remove the filler
elements from all bins, and output the result.

Let us sort the elements in each bin by their labels with bitonic sort (with a cost of O(log log n)
for each comparison due to the large values for the labels). Then, the performance bounds for
converting the output of REC-ORBA to a random permutation using this method are dominated by
the bounds for REC-ORBA. So the resulting algorithm generates a random permutation with the
same work, span and cache-oblivious caching bounds as REC-ORBA. (See Section D.2 for details.)

Finally, once the elements have been permuted in random order, we can use any insecure comparison-
based sorting algorithm to sort the permuted array. We use SPMS sort [CR17b], the best cache-
agnostic sorting algorithm for the binary fork-join model. Thus we achieve the bounds in The-
orem 3.2, and we have a data-oblivious sorting algorithm that matches the current best insecure
algorithm in the cache-agnostic binary fork-join model (that is, SPMS itself [CR17b]).

Theorem 3.2. Sorting n items data-obliviously in the binary fork-join model can be performed
in span O(log n · log log n) with O(n log n) work and O((n/B) logM n) cache misses cache-
agnostically if the tall cache has size M = Ω(log1+ε n), for any given positive constant ε > 0.

3.4 A Practical Variant

So far, our algorithm relies on AKS [AKS83] and the SPMS [CR17b] algorithm as blackbox prim-
itives and thus is not suitable for practical implementation. We now describe a practical variant that
is self-contained and implementable, and gets rid of both AKS and SPMS. To achieve this, we make
two changes. (The details are in Section E.)

• First, we present a simple algorithm to sort a randomly permuted input. This algorithm REC-
SORT uses the same structure as REC-ORBA but uses a sorted set of pivots to determine the
binning of the elements. Outside of the need to initially sort O(n/poly log(n)) random pivot
elements, this algorithm has the same performance bounds as REC-ORBA.

• Second, we give an improved cache-agnostic, binary fork-join implementation of bitonic sort.
A naı̈ve binary fork-join implementation of bitonic sort would incur O((n/B) · log2 n) cache
misses and O(log3 n) span (achieved by forking and joining the tasks in each layer in the

8

bitonic network). In our binary fork-join bitonic sort, the work remains O(n · log2 n) but
the span reduces to O(log2 n · log logn) and the caching cost reduces to O((n/B) · logM n ·
log(n/M)).

• By using our improved bitonic sort algorithm in REC-ORBA and REC-SORT, we obtain a
simple and practical data-oblivious sorting algorithm that has optimal cache-agnostic cache
complexity if M = Ω(log2+ε n) and incurs only an O(log log n) blow-up in work and an
O(log n) blow-up in span. This algorithm has small constant factors, with each use of bitonic
sort contributing a constant factor of 1/2 to the bounds for the comparisons made.

We also obtain a conceptually simpler data-oblivious sorting algorithm that performs optimal work,
has optimal cache-agnostic caching cost if M = Ω(log2+ε n), and has O(log2 n) span in a natural
EREW implementation in the binary fork-join model. For this, we replace the bitonic sorts with
AKS sorting networks in both REC-ORBA and REC-SORT.

4 Oblivious, Binary Fork-Join Simulation of PRAMs

We show that our new oblivious sorting algorithm gives rise to oblivious simulation of CRCW
PRAMs in the binary fork-join model with non-trivial efficiency guarantees.

4.1 Oblivious, Binary Fork-Join Simulation of Space-Bounded PRAMs

We first give an oblivious simulation of PRAM in the binary fork-join model that is only efficient
if the space s consumed by the original CRCW PRAM is small (e.g., roughly comparable to the
number of cores p). Then in Section 4.2, we present another simulation that yields better efficiency
when the original PRAM may consume large space. For PRAM with small space, however, this
section’s simulation is asymptotically better, and it enables new, non-trivial algorithmic results for
the binary fork-join model. In fact, any fast and efficient parallel PRAM algorithm that uses linear
space (and many of them do) will give rise to an oblivious algorithm in the cache-agnostic binary
fork-join model with good performance, as stated in Theorem 4.1. For example, in Section 5 we
will use this theorem to obtain new results for graph problems such as tree contraction, graph con-
nectivity, and minimum spanning forest — for all three problems, the performance bounds of our
new data-oblivious algorithms improve on the previous best results even for algorithms that need
not be data oblivious.

Our oblivious simulation is based on a sequential cache-efficient emulation of a PRAM step given
in [CGG+95], which in turn is based on a well-known emulation of a p-processor CRCW PRAM on
an EREW PRAM in O(log p) parallel time with p processors (see, e.g., [KR90]). To ensure data-
obliviousness, we will make use of an additional building block called send-receive3. The send-
receive abstraction has the following syntax. In the input, there is a source array and a destination
array. The source array represents n senders, each of whom holding a key and a value; it is promised
that all keys are distinct. The destination array represents n′ receivers each holding a key. Now, have
each receiver learn the value corresponding to the key it is requesting from one of the sources. If
the key is not found, the receiver should receive ⊥. Note that although each receiver wants only

3The send-receive abstraction is often referred to as oblivious routing in the data-oblivious algorithms litera-
ture [BCP15, CS17, CCS17]. We avoid the name “routing” because of its other connotations in the algorithms literature.

9

one value, a sender can send its values to multiple receivers. In Appendix F, we will show how to
accomplish send-receive within the sorting bound in the binary fork-join model.

The PRAM simulation on binary fork-join works as follows. We separate each PRAM step into a
read step, followed by a local computation step (for which no simulation is needed), followed by a
write step. Suppose that in some step of the original CRCW PRAM, each of the p processors has a
request of the form (read, addri, i) or (write, addri, vi, i) where i ∈ [p], indicates that either it wants
to read from logical address addri or it wants to write vi to addri.

1. For a read step, using oblivious send-receive, every request obtains a fetched value from the
memory array.

2. In a write step we need to perform the writes to the memory array. To do this, we first perform
a conflict resolution step in which we suppress the duplicate writes to the same address in the
incoming batch of p requests. Moreover, if multiple processors want to write to the same ad-
dress, the one that is defined by the original CRCW PRAM’s priority rule is preserved; and all
other writes to the same address are replaced with fillers. This can be accomplished with O(1)
oblivious sorts. Now, with oblivious send-receive, every address in the memory array can be
updated with its new value.

Thus we have the following theorem.

Theorem 4.1. Let M > log1+ε s and s ≥ M ≥ B2. Any p-processor CRCW PRAM that uses
space at most s can be converted to a functionally equivalent, oblivious and cache-agnostic algo-
rithm in the binary fork-join model, where each parallel step in the CRCW can be simulated with
O(Wsort(p+ s)) work, O(Qsort(p+ s)) cache complexity, and O(Tsort(p+ s)) span.

4.2 Oblivious, Binary Fork-Join Simulation of Large-Space PRAMs

The simple oblivious simulation strategy given earlier only gives good efficiency when the original
PRAM consumes small space (say, comparable to the number of processors p). In this section,
we describe another simulation strategy that achieves better bounds when the PRAM’s space can
be large. This is obtained by combining our new cache-agnostic, binary fork-join algorithm with
the prior work of Chan et al. [CCS17]. Specifically, we show that any p-processor CRCW PRAM
consuming at most s space can be converted to a functionally equivalent, data-oblivious and binary
fork-join program, where each parallel step in the CRCW can be simulated with O(p log2 s) total
work, O(log s · log log s) span, and O((p/B) · logM p log s+ p · log s · logB s) cache complexity.

Our result can be viewed as a generalization of the prior best Oblivious Parallel RAM (OPRAM)
result [CS17, CCS17]4. The prior result [CS17, CCS17] shows that any p-processor CRCW PRAM
can be simulated with an oblivious CREW PRAM where each CRCW PRAM step is simulated
with p log2 s total work and O(log s log log s) parallel runtime (without the binary-forking require-
ment). Essentially our result matches the best known result, and we further show that the extra
binary-forking requirement does not incur additional overhead during this simulation. The prior
work [CS17, CCS17] also did not explicitly consider cache complexity.

4The concurrent work by Asharov et al. [AKL+20c] shows that assuming the existence of one-way functions, each
step of a CRCW PRAM can be obliviously simulated in O(log s) work and O(log s) parallel time on a CRCW PRAM.
Their work is of a different nature because they consider computational security and moreover, their target PRAM allows
concurrent writes.

10

Background on Chan, Chung, and Shi [CCS17]. In Chan, Chung, and Shi [CCS17]’s algorithm,
there are O(log s) recursion depths, where each recursion depth stores metadata called position
labels for the next one. For each recursion depth i, there is a binary tree containing 2i leaves (called
the ORAM trees [SCSL11,CS17]). The top log2 p levels of each tree is grouped together into a pool
of sizeO(p), in this way, the binary tree actually becomesO(p) disjoint subtrees. Since the elements
and their position labels are stored in random subtrees along random paths, except with negligible
probability, only slightly more than logarithmically many requests will hit the same subtree.

Chan et al. [CCS17]’s scheme relies on a few additional oblivious primitives called oblivious “send-
receive”, “propagation”, and “aggregation”. We have introduced send-receive earlier. For oblivious
aggregation and propagation, we shall define them in Appendix F, and show that in the cache-
agnostic, binary fork-join model, they can be realized within the scan bound.

During each PRAM step, the scheme in [CCS17] relies on oblivious sorting and oblivious propaga-
tion to 1) perform some preprocessing of the batch of p memory requests; 2) use oblivious routing
and attempt to fetch the requested elements and their position labels from the pools if they exist in
the pools; and 3) perform some pre-processing to needed to look up the trees (since the requested
elements may not be in the pools). At this point, they sequentially look through all the log s trees,
where in each tree, a single path from the root to some random leaf is visited, taking O(log log s)
parallel time per tree, and O(log s log log s) depth in total. All other steps in the scheme can be
accomplished in O(log s) PRAM depth and thus in Chan et al. [CCS17], the sequential ORAM tree
lookup phase is the bottleneck in depth.

After the aforementioned fetch phase, they then need to perform maintenance operations to maintain
the correctness of the data structure: first, the fetched elements and their position labels must be
removed from the ORAM trees. To perform the removal in parallel without causing write conflicts,
some coordination effort is necessary and the coordination can be achieved through using oblivious
sorting and oblivious aggregation. Next, the algorithm performs a maintenance operation called
“evictions”, where selected elements in the pool are evicted back into the ORAM trees. Each of the
log s trees will have exactly two paths touched during the maintenance phase, and oblivious sorting
and oblivious routing techniques are used to select appropriate elements from the pools to evict back
into the ORAM trees. Finally, a pool clean up operation is performed to compress the pools’ size
by removing filler elements acquired during the above steps — this can be accomplished through
oblivious sorting. We refer the reader to Chan et al. [CCS17] for a full exposition of the techniques.

Implementing Chan et al. [CCS17]’s algorithm in the binary fork-join model. To simulate any
CRCW PRAM as a data-oblivious, binary fork-join program, we follow the algorithm of Chan,
Chung, and Shi [CCS17] at a high level, but make several modifications. First, we switch several
core primitives they use to our cache-agnostic, binary fork-join implementations:

1. replace their oblivious sorting algorithm with our new sorting algorithm in the cache-agnostic,
binary fork-join model; and

2. replace their oblivious “send-receive”, “propagation”, and “aggregation” primitives with our new
counterparts in the cache-agnostic, binary fork-join model (see Appendix F);

Second, we need to make a couple modifications to improve their cache complexity:

• The first modification needed is to store all the ORAM trees in Chan et al. [CCS17] in an Emde

11

Boas layout. In this way, accessing a tree path of length O(log s) incurs only O(logB s) cache
misses.

• The second modification necessary is for the “simultaneous removal of visited elements” step in
the maintain phase of the algorithm. In this subroutine, for each of O(log s) recursion levels:
each of the p processors populates a column of a (log s)× p matrix, and then oblivious aggrega-
tion is performed on each row of the matrix. To make this cache efficient, we can have each of
the p threads populate a row of a p × (log s) matrix, and then perform matrix transposition. At
this moment, we then apply oblivious aggregation to each row of the transposed matrix.

Plugging in the aforementioned modifications to Chan et al. [CCS17] would give the desired theo-
rem:

Theorem 4.2 (Oblivious, binary fork-join simulation of any CRCW PRAM). Suppose that M >
log1+ε s, s ≥ M ≥ B2, and s ≥ p. Any p-processor CRCW PRAM consuming at most s space
can be converted to a functionally equivalent, oblivious program in the cache-agnostic, binary fork-
join model, where each parallel step in the CRCW can be simulated with O(p log2 s) total work,
O(log s · log log s) span, and O(log s · ((p/B) · logM p+ p · logB s)) cache complexity.

Proof. The total work is the same as Chan et al. [CCS17] since none of our modifications incur
asymptotically more work. Specifically, all of our primitives, including sorting, aggregation, prop-
agation, and send-receive are optimal in total work. Further, the modifications needed for cache
complexity do not incur additional work.

Our span matches the PRAM depth of Chan et al. [CCS17], that is, O(log s log log s), because
all of our primitives, including sorting, aggregation, propagation, and send-receive incur at most
O(log s log log s) span. The bottleneck in PRAM depth of Chan et al. [CCS17] comes not from
the sorting/aggregation/propagation/send-receive, but from having to sequentially visit O(log s) re-
cursion levels during the fetch phase, where for each recursion level, we need to look at a path in
an ORAM tree of length O(log s), and find the element requested along this path — this operation
takes O(log log s) PRAM depth as well as O(log log s) span in a binary fork-join model. Finally,
the new matrix transposition modification in the “simultaneous removal” step does not additionally
increase the span.

For cache complexity, there are two parts, the part that comes from log s number of oblivious sorts
on O(p) number of elements — this incurs O((p/B) · logM p · log s) cache misses in total. The
second part comes from having to access p · log s ORAM tree paths in total where each path is of
length O(log s). If all the ORAM trees are stored in Emde Boas layout, this part incurs O(p · log s ·
logB s) cache misses. These two parts dominate the cache complexity, and the caching cost of all
other operations is absorbed by the sum of these two costs.

5 Applications

We describe various applications of our new sorting algorithm, including list ranking, Euler tour and
tree functions, tree contraction, connected components, and minimum spanning forest. Some of our
data-oblivious algorithms asymptotically outperform the previous best known insecure algorithms
(in the cache-agnostic, binary fork-join model), while the rest of our results match the previous

12

best known insecure results. Euler tour and tree contraction were also considered in data-oblivious
algorithms [GS14, GOT13, BSA13] but the earlier works are inherently sequential.

5.1 List Ranking

In the list ranking problem we are given an n-element linked list on the elements {1, 2, . . . , n}. The
linked list is represented by the successor array S[1..n], where S[i] = j implies that element j is
the successor of element i. If i is the last element in the linked list, then S[i] is set to 0. Given the
successor array S[1..n], the list ranking problem asks for the rank array R[1..n], where R[i] is the
number of elements ahead of element i in the linked list represented by array S, i.e., its distance
to the end of the linked list. In the weighted version of list ranking, each element has a value, and
needs to compute the sum of the values at elements ahead of it in the linked list. Both versions can
be solved with essentially the same algorithm.

To realize list ranking obliviously, we first apply an oblivious random permutation to randomly
permute the input array. Then, every entry in the permuted array calculates its new index through an
all-prefix-sum computation — we assume that each entry also carries around its index in the original
array. Now, every entry in the permuted array requests the permuted index of its successor through
oblivious routing. At this point, we can apply a non-oblivious list ranking algorithm [CR12a].
Finally, every entry in the permuted array routes the answer back to the original array and this can
be accomplished with oblivious routing.

We thus have the following theorem and we match the state-of-the-art, non-oblivious, cache-agnostic,
parallel list ranking algorithm [CR12a].

Theorem 5.1 (List ranking). Assume that M ≥ log1+ε n and that n ≥ M ≥ B2. Then, we can
obliviously realize list ranking achieving spanO(log2 n·log logn), cache complexityO((n/B) logM n),
and total work O(n log n). Moreover, the algorithm is cache-agnostic.

5.2 Euler Tour

In the Euler tour problem we are given an unrooted tree T , where each edge is duplicated, to
represent the two edges corresponding to a forward and backward traversal of the edge in depth first
traversal of the tree, when rooted at some vertex. This multigraph representation of T has an Euler
tour since every vertex has even degree. The goal is to create an Euler tour on the edges of T by
creating a linked list on these edges, where the successor of each edge is the next edge in the Euler
tour.

In the standard PRAM algorithms literature, the input is assumed to be represented by circular
adjacency listsAdj(v) where v is a vertex in T . Specifically, Adj(v) stores all the edges of the form
(v, ∗) in a circular list. Also, for each edge (u, v) in Adj(u) it is assumed that there is a pointer to
its other copy (v, u) in Adj(v) (and vice versa). For each edge (u, v) in T , let Adjsucc(u, v) be the
successor of edge (u, v) in Adj(u). It can be shown that if we assign the successor on the Euler tour
of each edge (x, y) as τ((x, y)) = Adjsucc(y, x), then the resulting circular linked list is an Euler
tour of T . This is a constant time parallel algorithm on an EREW PRAM and is an O(log n) span
and linear work algorithm with binary forks and joins.

Oblivious and cache-agnostic algorithm. The above parallel algorithm is not cache-efficient since

13

a cache miss can be incurred for computing τ((x, y)) for each edge (x, y). We now adapt the Euler
tour algorithm in [CR12a] to obtain a data-oblivious, cache-agnostic, binary fork-join realization.

Suppose that the input is a list of edges in the tree. Our algorithm does the following:

1. Make a reverse of each edge, e.g., the reverse of (u, v) is (v, u).

2. Sort all edges by the first vertex such that every edge (u, v) except the last one, by looking at its
right neighbor, knows its successor in the (logical) circular adjacency list Adj(u).

Use oblivious propagation such that the last edge in each vertex’s circular adjacency list learns
its successor in the circular list too.

3. Finally, use oblivious send-receive where every edge (u, v) requests (v, u)’s successor inAdj(v).

All steps in the above algorithm can be accomplished in the sorting bound.

Tree computations with Euler tour. Euler tour is a powerful primitive. Once an Euler tour τ
of T is constructed, the tree can be rooted at any vertex, and many basic tree properties such as
preorder numbering, postorder numbering, depth, and number of descendants in the rooted tree can
be computing using list ranking on τ (with an incoming edge to the root removed to make it a non-
circular linked list). We can therefore obtain oblivious realizations of these tree computations too,
by invoking our oblivious Euler tour algorithm followed by oblivious list ranking. The performance
bounds will be dominated by the list ranking step.

5.3 Tree Contraction, Connected Components, and Minimum Spanning Forest

We present new results on tree contraction, connected components, and minimum spanning forest.
Our data-oblivious algorithms for all three problems asymptotically outperform the previous best
known insecure algorithms (in the cache-agnostic, binary fork-join model). Our data-oblivious
algorithms are randomized due to the use of our randomized sorting algorithm; for the prior best
insecure algorithms it suffices to use the SPMS sorting algorithm [CR17b] and therefore, they are
deterministic (but not data oblivious).

Tree contraction. The EREW PRAM tree contraction algorithm of Kosaraju and Delcher [KD88]
runs in O(log n) parallel steps with O(n/ log n) processors. Viewing this computation in the work-
time formulation (see, e.g., [JáJ92]), this computation has log n phases where the i-th phase, i ≥ 1,
performs a constant number of parallel steps with O(n/ci−1) work on O(n/ci−1) data items, for a
constant c > 1. Further, the rate of decrease is fixed and data independent, and at the end of each
phase, every memory location knows whether it is still needed in future computation. Since the
memory used is geometrically decreasing in successive phases, a constant fraction of the memory
locations will be no longer needed at the end of each phase.

To obtain an oblivious simulation of tree contraction in the cache-agnostic, binary fork-join model,
we can apply our earlier Theorem 4.1 in Section 4.1 in a slightly non-blackbox fashion. Basically,
we use the strategy of Section 4.1 to simulate each PRAM step, always using the actual number
of processors needed in that step, which is the work for that step in the work-time formulation.
Additionally, we introduce the following modification: at the end of each phase, use oblivious sort
move the memory entries no longer needed to the end, effectively removing them from the future
computation. In this way, we get the first result in in Theorem 5.2 below.

14

Connected components and minimum spanning forest. Another important application of The-
orem 4.1 is in computing connected components and minimum spanning forest (MSF) in an undi-
rected graph (edge-weighted graph for MSF) on n nodes and m edges. Both of these problems can
be solved on a PRAM in T (n) = O(log n) parallel time and with O(m + n) space and number of
processors [SV82,PR02]. Hence we have T (n) = O(log n) and p(n) + s(n) = O(m+n), leading
to the second result in the following theorem using Theorem 4.1 for each of the T (n) steps.

Theorem 5.2. Suppose that M > log1+ε(m+ n) and m+ n ≥M ≥ B2. Then,

(i) Tree contraction on an n-node rooted tree can be obliviously realized with a cache-agnostic,
binary fork-join program with O(Wsort(n)) work, O(Qsort(n)) cache complexity, and O(log n ·
Tsort(n)) span.

(ii) Connected components and minimum spanning forest in a graph with n nodes and m edges can
be obliviously realized with a cache-agnostic, binary fork-join program withO(log n·Wsort(m+n))
work, O(log n ·Qsort(m+ n)) cache complexity, and O(log n · Tsort(m+ n)) span.

Appendices

A Computation Model

A.1 Cache-efficient Computations

Memory in modern computers is typically organized in a hierarchy with registers in the lowest level
followed by several levels of caches (L1, L2 and possibly L3), RAM, and disk. The access time and
size of each level increases with its depth, and block transfers are used between adjacent levels to
amortize the access time cost.

The two-level I/O model in Agarwal and Vitter [AV88] is a simple abstraction of the memory hier-
archy that consists of a cache (or internal memory) of size M , and an arbitrarily large main memory
(or external memory) partitioned into blocks of sizeB. An algorithm is said to have caused a cache-
miss (or page fault) if it references a block that does not reside in the cache and must be fetched
from the main memory. The cache complexity (or I/O complexity) of an algorithm is the number
of block transfers or I/O operations it causes, which is equivalent to the number of cache misses it
incurs. Algorithms designed for this model often crucially depend on the knowledge of M and B,
and thus do not adapt well when these parameters change.

The cache-oblivious model in Frigo et al. [FLPR99] is an extension of the two-level I/O model which
assumes that an optimal cache replacement policy is used, and requires that the algorithm remains
oblivious of cache parameters M and B. A cache-oblivious algorithm is flexible and portable,
and simultaneously adapts to all levels of a multi-level memory hierarchy. The assumption of an
optimal cache replacement policy can be reasonably approximated by a standard cache replacement
method such as LRU. As noted earlier, in this paper we will use the term cache-agnostic in place of
cache-oblivious, and reserve the term ‘oblivious’ for data-obliviousness (see Section B).

Two basic cache complexities are known: the number of cache-misses incurred to read n contiguous
data items from the main memory is Qscan(n) = Θ(n/B) and the number of cache-misses incurred
to sort n data items is Qsort(n) = Θ(nB logM

B

n
B) [AV88]. For most realistic values of M , B and n,

15

Qscan(n) < Qsort(n) ≤ n. In the cache-agnostic model a tall cache with M = Ω(B2) is needed
to obtain the optimal sort bound (the exponent on B can be reduced to any constant strictly greater
than 1).

Several sorting algorithms with optimal work and cache-agnostic cost are known, including two
such algorithms in the paper by Frigo et al. [FLPR99] that proposed the cache-agnostic model.

A.2 Multithreaded, Binary Fork-Join Computation Model

We consider a multicore environment consisting of P cores (or processors), each with a private
cache of size M . The p processors communicate through an arbitrarily large shared memory. Data
is organized in blocks (or ‘cache lines’) of size B.

We will express parallelism through paired fork and join operations (See Chapter 27 in Cormen
et al. [CLRS09] for an introduction to this model). A fork spawns two tasks that can execute in
parallel. Its corresponding join is a synchronization point: both of the spawned tasks must complete
before the computation can proceed beyond this join.

The work of a multithreaded algorithm Alg is the total number of operations it executes; equiva-
lently, it is the sequential time when it is executed on one processor. The span of Alg, often called
its critical path length or parallel time T∞, is the number of parallel steps in the algorithm.

Once can consider multi-way forking in place of requiring binary forking, but in this paper we
choose to stay with binary fork-joins since multithreaded algorithms with nested binary fork-joins
have probably good scheduling results under randomized work-stealing [BL99,ABB00,CR13]. One
can also consider extensions to this model such as using test-and-set to achieve synchronizations
outside of joins complementing forks as in the recent binary forking model [BFGS20], but we
will not use this extra power in our algorithms. So, for the rest of this paper we will deal with a
multithreaded model with binary fork-joins, where the forks expose parallelism, synchronization
occurs only at joins, and any pair of fork-join computations are either disjoint or one is nested
within the other. We will refer to such a computation as a binary fork-join algorithm, or simply a
multithreaded algorithm.

The execution of a binary fork-join algorithm starts at a single processor. Forked parallel tasks
can be executed by other processors, as determined by a scheduler. A widely used scheduler for
multithreaded algorithms is randomized work-stealing, which schedules the parallel tasks in a bi-
nary fork-join computation with work W and span T∞ on P processors to run in O((W/P) + T∞)
time with polynomially small probability of failure in P , a result shown by Blumofe and Leiser-
son [BL99].

Cache-efficient, parallel algorithms. The cache complexity of a binary fork-join algorithm is the
total number of cache misses incurred across all processors during the execution. Let Alg be a
binary fork-join algorithm with work W and span T∞, and let Q be its sequential caching cost, i.e.,
Alg’s caching cost when executed on one processor. If algorithm Alg is executed on P processors
using randomized work stealing, then it is shown in [ABB00] that the number of cache misses in
this parallel execution is is O(Q + (M/B) · P · T∞) with polynomially low probability of failure.
Since we typically operate with an input size n that is greater than the total available cache size,
i.e., n ≥ P ·M , this bound will be close to or dominated by the caching cost Q if the span is small.

16

Thus, we would like to design fork-join algorithms with small work, small sequential caching cost,
preferably cache-agnostic, and small span.

Let Tsort(n) be the smallest span for a binary fork-join algorithm that sorts n elements with a
comparison-based sort. It is readily seen that Tsort(n) = Ω(log n). The current best binary fork-
join algorithm for sorting is SPMS (Sample Partition Merge Sort) [CR17b]. This algorithm has
span O(log n · log log n) with optimal work Wsort = O(n log n) and optimal cache complexity
Qsort(n). But the SPMS algorithm is not data-oblivious. No non-trivial data oblivious parallel
sorting algorithm with optimal cache complexity was known prior to the results we present in this
paper.

When designing cache-agnostic algorithms with parallelism, one would need to address the issue
of false-sharing, since without the knowledge of the block-size B it is inevitable that a block that
is written into could be shared across two or more processors. This would lead to the potential
for false sharing. The design of algorithms that mitigate the cost of false sharing is addressed in
the resource-oblivious framework in the work of Cole and Ramachandran [CR12a,CR17b], and the
SPMS algorithm in [CR17b] is designed to have low worst-case false sharing cost. For the most
part, the algorithms we develop here are in the Hierarchical Balanced Parallel (HBP) formulation
developed by Cole and Ramachandran [CR12a, CR17b], and hence incur an overhead of no more
than O(B) cache miss cost due to false sharing for each parallel task scheduled in the computation.
The one exception to HBP is the use of certain small subproblems, all of size smaller than M .

B Data-Oblivious Binary Fork-Join Algorithms

We define the notion of a data-oblivious binary fork-join algorithm. Unlike “cache obliviousness”,
data obliviousness captures the privacy requirement of a program. In our paper, we will consider
statistical data-obliviousness, i.e., except with negligibly small probability, no information should
be leaked through the program’s “access patterns” (to be defined later) even in the presence of a
computationally unbounded adversary.

To understand the requirements of data obliviousness, it helps to think about a multicore machine
with trusted hardware support (e.g., Intel SGX + hyperthreading). On such a secure, multicore
architecture, any data that is written to memory is encrypted under a secret key known only to the
secure processors. Therefore, unless the adversary can break into the secure processor’s hardware
sandbox, it cannot observe any memory contents during the execution.

The adversary can observe 1) the computation DAG that captures the pattern of forks and joins
during the course of the execution; 2) the sequence of memory addresses accessed during every
CPU step of every thread (but not the data contents), and whether each access is a read or write.
In our model, even when the processor is accessing words in the cache, the adversary can observe
which exact address within which block is being requested. The above observations jointly form
the adversary’s view in the execution — in our paper, we also call the adversary’s view the “access
patterns” of the execution.

We now extend the data-oblivious framework developed in earlier work for sequential and PRAM
parallel environments [GO96, Gol87, AKL+20a, SCSL11, CS17] to binary fork-join algorithms.
Henceforth, we use the notation

O, view← Alg(I)

17

to denote a possibly randomized execution of the algorithm Alg on the input I. The randomness
of the execution can come from the algorithm’s internal random coins. The execution produces an
output array O, and the adversary A’s view during the execution is denoted view.

Definition 1 (Data-oblivious algorithms in the binary-fork-join model). We say that an algorithm
Alg δ-data-obliviously realizes a possibly randomized functionality F , iff there exists a simulator
Sim such that for any input I of length n,

(O, view)
δ≡ (F(I),Sim(n))

where (O, view) denotes the joint distribution of the output and the adversary’s view upon a ran-

dom invocation of Alg(I), and
δ≡ means that the left-hand side and the right-hand side must have

statistical distance at most δ. Note that δ can be a function of n, i.e., the length of the input.

Typical choice of δ. Typically, we want the failure probability δ to be negligibly small in the input
length5 denoted n. A function δ(·) is said to be a negligible function, iff it drops faster than any
inverse-polynomial function. More formally, we say that δ(·) is a negligible function, iff for any
constant c ≥ 1, there exists a sufficiently large n0 ∈ N such that for all n ≥ n0, δ(n) ≤ 1/nc.

Whenever we say that Alg data-obliviously realizes (or obliviously realizes) a functionality F omit-
ting the failure probability δ, we mean that there exists a negligible function negl(·), such that Alg
negl(n)-data-obliviously realizes F .

Remark 1 (Real-world interpretation of the obliviousness definition). On multicore architectures,
the processors execute at asynchronous speeds due to various factors including cache misses, clock
speed, etc. Since our model allows the adversary to observe even accesses within the processors’
caches, our notion of data-obliviousness precludes the adversary from gaining secret information
through any cache-miss-induced timing channels. However, just like in all prior works on data-
oblivious algorithms and Oblivious RAM [GO96, Gol87, SCSL11, CGLS18], data-obliviousness
does not provide full protection against timing channel leakage caused by the processor’s branch
predictors, speculative execution, and other pipelining behavior that are data dependent (although
it has been shown that the lack of data-obliviousness can sometimes exacerbate attacks that exploit
timing channel differences caused by the processors’ data-dependent pipelining behavior).

Note that the adversary, e.g., a malicious OS, also controls the scheduler that maps threads to avail-
able processors. However, since processors like SGX encrypt any data in memory, the adversary
is unable to base scheduling decisions on data contents. Indeed, the standard parallel algorithms
literature considers schedulers that are data-independent too [BL99,BG04,CR10b,CR17b,BGS10].

Remark 2 (Alternative definition for deterministic functionalities). If the functionality F is de-
terministic (e.g., the sorting functionality), we can alternatively define δ-data-obliviousness with a
slightly more straightforward definition. We may say that an algorithm Alg δ-data-obliviously real-
izes F , iff there exists a simulator Sim, such that for any possibly unbounded adversary A, for any
input I, the following hold:

5Sometimes, we may want that the failure probability be negligibly small in some security parameter κ ∈ N —
however, in this paper, we care about the asymptotical behavior of our algorithms when the problem size n is large.
Therefore, without loss of generality, we may assume that n ≥ κ and in this case, negligibly small in n also means
negligibly small in κ.

18

1. the algorithm Alg correctly computes the function F with probability 1− δ; and

2. the adversary’s view in the execution AlgA(I) has statistical distance at most δ(n) away from
the output of the simulator Sim(n). Notice that since the simulator Sim knows only the length
of the input I but not the input itself, this definition implies that the adversary can essentially
simulate its view in the execution on its own without knowing anything about the input I —
in other words, nothing is leaked about the input I except for a small δ failure probability.

Due to the definition and property of statistical distance, we immediately have the following. If
an algorithm Alg δ-data-obliviously realizes a deterministic functionality F by the above alterna-
tive definition, then it 2δ-data-obliviously realizes F by Definition 1. Furthermore, if Alg δ-data-
obliviously realizesF by Definition 1, it must δ-data-obliviously realizesF by the above alternative
definition.

One sometimes inefficient way to design binary-fork-join algorithms is to take a Concurrent-Read-
Exclusive-Write (CREW) PRAM algorithm, and simply fork n threads in a binary-tree fashion to
simulate every step of the PRAM. If the original PRAM has T (n) parallel runtime, then the same
program has T (n) · log n span in a binary-fork-join model. Moreover, if the algorithm δ-obliviously
realizes some functionality F on a CREW PRAM, the same algorithm δ-obliviously realizes F
in a binary-fork-join model too. In the above, we say that an algorithm δ-obliviously realizes the
functionality F on an CREW PRAM iff Definition 1 holds, but the adversary’s view now consists
of the memory addresses accessed by all processors in all steps of the execution.

Fact B.1. Suppose that an algorithm Alg δ-obliviously realizes some functionality F on an CREW
PRAM and it completes with total workW (n) and parallel runtime T (n). Then, the same algorithm
Alg (using a binary-tree to fork n threads for every PRAM step), δ-obliviously realizes F in a
binary-fork-join model, with total work W (n) but span T (n) · log n.

C Details of Our Meta-Algorithm for Sorting

In this section, we provide additional details of our “meta-algorithm”. This meta-algorithm obliv-
iously sorts n input elements with O(n log n) total work, but it does not worry about being cache
efficient or having small span. Our full construction later (Section D) is a novel way to implement
this meta-algorithm, achieving small cache complexity and span.

C.1 Bin Placement

We consider the problem of obliviously placing the elements in one layer in the META-ORBA
algorithm into their designated bin in the next layer. For this, we will need a data-oblivious building
block called bin placement that places elements into their desired bins, and pads each bin with
filler elements to its capacity. In META-ORBA and REC-ORBA, we will use data-oblivious bin
placement for small problem instances of size log3 n (where n is the size of the array we want to
sort).

Bin placement realizes the following deterministic functionality [CS17]. Let β denote the number
of bins, and let Z denote the target bin capacity. We are given an input array denoted I, where each
element is either a filler denoted ⊥ or a real element that is tagged with a bin identifier g ∈ [β]

19

denoting which bin it wants to go to. It is promised that every bin will receive at most Z elements.
Now, move each real element in I to its desired bin. If any bin is not full after the real elements have
been placed, pad it with filler elements at the end to a capacity of Z. Output the concatenation of
the β bins as a single array. An algorithm that obliviously realizes bin placement by Definition 1 is
called oblivious bin placement.

Chan and Shi [CS17] described a deterministic, data-oblivious algorithm that accomplishes bin
placement in total work O(ñ log ñ) and parallel runtime O(log ñ) where ñ = max(|I|, β · Z)
on a CREW PRAM. Thus the algorithm has span O(log2 ñ) in a binary fork-join model. More
specifically, Chan and Shi’s algorithm [CS17] invokes the AKS sorting network [AKS83] O(1)
number of times on arrays of length at most ñ. We will use bin placement in META-ORBA, so for
completeness, we give a brief description of Chan and Shi’s data-oblivious bin placement algorithm
which relies on O(1) number of oblivious sorts (which can be instantiated with the AKS sorting
network [AKS83]):

Bin Placement Algorithm.

1. For each group g ∈ [β], append Z temporary elements of the form (temp, g) to the resulting
array. At this moment, all real elements and temp elements are tagged with g which is called the
element’s group number. These temp elements ensure that every group will receive at least Z
elements after the next step6.

2. Obliviously sort the resulting array by the group number, placing all fillers at the end. When
elements have the same group number, place temp elements after real elements.

3. Each element in the array finds the leftmost element in its own group by invoking oblivious
propagation. Now for each element in the array in parallel, if its offset within its own group is
greater than Z, assign it with the tag excess; otherwise, assign it with the tag normal.

4. Obliviously sort the resulting array placing all elements tagged with excess and all filler ele-
ments at the end; and all other elements should be ordered by their group number.

5. Truncate the resulting array keeping only the first β · Z elements — the resulting array is called
O.

6. For every element in O: if it is a temp element, replace with a filler; further, remove tags such
as excess and normal that are needed only internally by this algorithm. Output O.

C.2 META-ORBA: Random Bin Assignment

Random bin assignment is an algorithm that realizes the following randomized functionality. Let
Z be an even integer. Upon receiving an input array with n := β · Z/2 real elements, assign each
element to a random bin among a total of β output bins. Finally, for each output bin, if it receives
fewer than Z elements, pad the bin at the end with filler elements to a capacity of exactly Z; if it
receives more than Z elements, truncate the bin to a capacity of Z. Output the list of β output bins.
An algorithm that obliviously realizes random bin assignment by Definition 1 (see Section B) is
called oblivious random bin assignment (ORBA). Observe that by the requirements of Definition 1,

6The temp elements are placeholder elements that make sure each array must be fully filled. They are not the same
as the filler elements that might be part of the input array I. Both real elements and temp elements are assigned group
numbers, but filler elements do not have group numbers.

20

the algorithm’s access patterns cannot reveal the random bin choices made by each element (except
for a small δ failure probability).

Algorithm. Below we describe our meta-algorithm for accomplishing ORBA, called META-ORBA.
Let the bin size Z = log2 n, and let γ be a branching factor which is assumed to be a power of 2.
Our META-ORBA algorithm will invoke instances of the oblivious bin placement algorithm (see
Section C.1) to plaze γ · Z elements into γ bins. Henceforth we use the notation

O0, . . . ,Oγ−1 ← BinPlace(I0, . . . Iγ−1, s)

to mean the following: given an input list consisting of γ bins denoted I0, . . . Iγ−1 each of size
Z, using the algorithm in Section C.1, obliviously place the elements into γ output bins denoted
O0, . . . ,Oγ−1, each also of capacity Z; moreover, to decide which bin each element falls into, we
use the bits indexed s+ 1, s+ 2, . . . , s+ log2 γ in the elements’ random labels (where we assume
that the first bit is indexed with 1).

META-ORBAγ(I)

Input: we assume that n = |I| = β · Z/2 where β is a power of 2.

Algorithm:

First, assign each element in I with a random label of log2 β bits. View the input I as a set
of β bins each with Z/2 elements. Pad each bin with filler elements to a capacity of Z. Let
A

(0)
0 , A

(0)
1 , . . . , A

(0)
β−1 denote the list of β initial bins.

For i = 0 to logγ β − 1:
For j = 0 to β/γ − 1:

let j′ = bj/γic · γi+1,

A
(i+1)
γj , A

(i+1)
γj+1 , . . . , A

(i+1)
γ(j+1)−1 ← BinPlace({A(i)

j′+j+k·γi}k∈{0,1,...,γ−1}, log2 γ · i)

Output A
(logγ β)

0 , . . . , A
(logγ β)

β−1 .

Our algorithm is based on the earlier works of Asharov et al. [ACN+20] and Chan et al. [CGLS18].
Their algorithm can be viewed as a special case of ours where γ = 2; however, their algorithm is a
log logn factor away from optimal on a CREW PRAM as explained below. In their algorithm, the
for-loop on iwill repeat Θ(log n) iterations. In each iteration i, they take pairs of bins which contain
elements whose first i− 1 bits of their labels already agree. They then look at the i-th bit of their la-
bels, and based on its value, they assign each element in the input pair of bins into one of two output
bins. Therefore, each iteration must invoke an instance of two-way bin assignment for every small
problem of size 2Z, and there are β/2 such instances. The two-way bin assignment can be realized
with either a sorting network such as AKS [AKS83] which can sortm elements inO(m logm) work
and O(logm) parallel runtime, or an oblivious tight compaction algorithm [AKL+20a, AKL+20b]
which can sort m elements tagged with 0/1 keys in O(m) work and O(logm) parallel runtime on
an CREW PRAM. If AKS is adopted for the two-way bin assignment, the total work of the re-
sulting ORBA would be O(n log n log logn), and the parallel runtime on an EREW PRAM would
be O(log n log log n). If an oblivious tight compaction algorithm is adopted, the resulting ORBA
would have O(n log n) total work but still O(log n log logn) parallel runtime on an EREW PRAM.

21

Our new idea is to generalize the prior works [ACN+20, CGLS18] with a more general branching
factor γ. In other words, in every iteration i, we take γ-tuples of bins in which the elements already
agree on the first log2 γ · (i − 1) of their labels, we then look at the next unconsumed log2 γ bits
of the elements labels and classify elements in the γ input bins to γ output bins. To make this
generalization work, we will need to employ the oblivious bin placement algorithm described in
Section C.1 to perform a γ-way bin assignment (as opposed to 2-way).

With this generalization, and by setting γ = Θ(log n), we can save an extra log log n factor in
the parallel runtime in comparison with the prior works [ACN+20, CGLS18] (assuming that obliv-
ious tight compaction is used to instantiate their 2-way bin assignment). Specifically, we achieve
O(n log n) total work and O(log n) parallel runtime on an EREW PRAM.

Overflow analysis. Our META-ORBA algorithm has deterministic data access patterns that are
independent of the input I. However, if some bin overflows its capacity, the algorithm can lose real
elements during the routing process. Asharov et al. [ACN+20] and Chan et al. [CGLS18] proved
that for the special case γ = 2, the probability of overflow is upper bounded by exp(−Ω(log2 n))
assuming that the bin size Z = log2 n. It is not hard to see that their argument works for general
choices of γ too, as we argue now: Suppose that γ = 2r, then the elements in the level-i bins7 in our
META-ORBAγ=2r correspond exactly to the elements in the level-(r · i) bins in META-ORBAγ=2.
Since the failure probability exp(−Ω(log2 n)) is negligibly small in n, we have the following theo-
rem:

Theorem C.1. Let Z = log2 n and γ = Θ(log n) in the above META-ORBAγ algorithm. Then
the algorithm META-ORBAγ obliviously realizes random bin assignment on an EREW PRAM with
O(n log n) total work and O(log n) parallel runtime.

C.3 Random Permutation

Random permutation is the randomized functionality that takes an input array I and outputs a ran-
dom permutation of I. An algorithm that obliviously realizes random permutation by Definition 1 is
called oblivious random permutation (ORP). Observe that by the requirements of Definition 1, the
algorithm’s access patterns cannot reveal the random permutation that is being applied to the input
(except for a small δ failure probability).

The prior works by Asharov et al. [ACN+20] and Chan et al. [CGLS18] showed that we can rely
on an ORBA to construct an ORP as follows:

1. Let I be an input array containing n = β · Z/2 elements where β is assumed to be a power of 2.

2. Invoke an instance of META-ORBA to place each input element into a randomly chosen bin
among a total of β bins, where each bin is padded with filler elements to a capacity of Z.

3. At this moment, for each of the β bins, apply a naı̈ve oblivious random permutation to per-
mute within the bin. This can be accomplished by assigning each real and filler element a
log n log log n-bit label, and obliviously sorting the elements in the bin based on their keys. It is
not hard to see that the probability of having label collision is negligibly small in n.

7A bin in level i is denoted A(i)
∗ in the META-ORBA algorithm description.

22

4. Finally, we remove all filler elements from all the bins — this step need not be oblivious, and
can be computed with a prefix sum computation.

In the last step of the above algorithm, the actual load of each final bin is revealed (c.f., it is impor-
tant that one does not leak the actual loads of the intermediate bins in the butterfly network). As
Asharov et al. [ACN+20] and Chan et al. [CGLS18] argue, the loads of the bins are simulatable with
knowledge only of the length of the input array I and the bin size Z but not of the actual contents
of I. For this reason, the above algorithm is proven to obliviously realize random permutation by
Asharov et al. [ACN+20] and Chan et al. [CGLS18]. Note also, the random labels must each be
super-logarithmic in length to guarantee that no collision happens except with negligible probability,
such that the resulting permutation has negligible statistical distance from a random one.

This ORP algorithm runs with O(n log n) total work and O(log n) parallel runtime on an EREW
PRAM since the costs are dominated by META-ORBA.

C.4 Constructing Oblivious Sort from ORP and Non-Oblivious Sort

Asharov et al. [ACN+20] and Chan et al. [CGLS18] proved that given an ORP, one can construct
an oblivious sorting algorithm by first running ORP to randomly permute the input array, and then
applying any comparison-based non-oblivious sorting algorithm to sort the permuted array. It is
important that the non-oblivious sorting algorithm adopted be comparison-based, otherwise the
resulting algorithm may leak information through its access patterns (e.g., a non-comparison-based
sorting algorithm can look at some bits in each element and place it in a corresponding bin).

D Details of Our Cache-Agnostic, Binary Fork-Join Sorting Algorithm

We describe a new approach to implement the meta-algorithm in Section C to achieve cache effi-
ciency in a cache-agnostic model, and small span.

D.1 Random Bin Assignment

The key step in the meta-algorithm of Section C is META-ORBA. Therefore, we shall first de-
scribe a cache-agnostic, binary fork-join implementation of our META-ORBA algorithm, hence-
forth called REC-ORBA.

• Upon receiving an input array I containing n := β · Z/2 elements where β is a power of 2,
divide the array I into β bins each of size Z/2. Pad each bin with Z/2 filler elements so its
size becomes Z. Let I′ be the new array which is the concatenation of β bins each of size Z.

• Let γ = Θ(log n) be a power of 2. Call REC-ORBAγ,Z(I′, 1) and output the resulting β
bins. The recursive algorithm REC-ORBAγ,Z is defined below.

REC-ORBAγ,Z(I, s)

Input: the input contains an array I containing n = β · Z elements where β is assumed to be
a power of 2. Each element in I is either real or a filler. The input array I can be viewed as

23

β bins each of size Z. It is promised that each bin has at most Z/2 real elements. Every real
element in I has a label that determines which destination bin the element wants to go to.

Algorithm:

If β ≤ γ, invoke an instance of oblivious bin placement (Section C.1) to assign the input array
I to a total of β bins each of capacity Z. Here, each element’s destination bin is determined by
the s-th to (s+ log2 β − 1)-th bits of its label. Return the resulting list of β bins.

Else, proceed with the following recursive algorithm.

• Let β1 be
√
β rounded up to the nearest power of 2. Divide the input array I into β1

partitions where each partition contains exactly β2 := β/β1 consecutive bins. Note that if
β is a perfect square, β1 = β2 =

√
β. Henceforth let Ij denote the j-th partition where

j ∈ [β1].

• In parallela: For each j ∈ [β1], let Binj1, . . . ,Bin
j
β2
← REC-ORBAγ,Z(Ij , s).

• Let Bins be a β1×β2 matrix where the j-th row is the list of bins Binj1, . . . ,Bin
j
β2

. Note that
each element in the matrix is a bin. Now, perform a matrix transposition: TBins← BinsT .
Henceforth, let TBins[i] denote the i-th row of TBins consisting of β2 bins,

• In parallel: For i ∈ [β2], let B̃in
i

1, . . . , B̃in
i

β1 ← REC-ORBAγ,Z(TBins[i], s+ log2 β2 − 1)

• Return the concatenation B̃in
1

1, . . . , B̃in
1

β1 , B̃in
2

1, . . . , B̃in
2

β1 , . . ., . . ., B̃in
β2
1 , . . ., B̃in

β2
β1 .

aThe “for” loop is executed in parallel, and in the binary fork-join model, a k-way parallelism is achieved by
forking k threads in a binary-tree fashion in log2 k depth. In the rest of the paper, we use the same convention
when writing pseudo-code for binary fork-join algorithms; we will use fork and join in the pseudocode for two-way
parallelism.

The intuition is the following — for convenience, we assume β is a perfect square below (but our
formal algorithm description indeed takes care of the case when β is not a perfect square). We divide
the task of bin assignment into

√
β sub-problems each of size

√
β (where the size is measured in

terms of bins). We recursively solve each sub-problem: for each sub-problem, we place
√
β · Z

elements into
√
β bins based on the most significant 1

2 · log2 β bits of their labels. After this phase,
since each of the

√
β instances outputs

√
β bins, we can view all bins as a

√
β ×
√
β matrix, where

in every column, the elements all share the same most significant 1
2 · log2 β bits of their labels.

We now perform a matrix transposition on this matrix. Then, each row of the transformed matrix
becomes another sub-problem of size

√
β: we recursively solve the sub-problem defined by each

row, and assign elements containd in the row to
√
β bins based on the least significant 1

2 · log2 β bits
of their labels.

Analysis. We now analyze our REC-ORBA algorithm. We assume that the cache size M is large
enough to hold γ bins, that is M = Ω(log3 n).

• Base case: when the number of bins β ≤ γ. The base case assigns γ ·Z elements into γ bins
based on log2 γ bits in their labels. This is achieved by invoking the oblivious bin placement
algorithm (see Section C.1). Since we assume that M is large enough to hold γ bins, we have

24

that

for β ≤ γ :

W (β) = O(log3 n log logn)

Q(β) = O(log3 n/B)

T (β) = O((log logn)2)

where W (β) denotes the total work, Q(β) denotes the cache complexity, and T (β) denotes
the span.

• Recurrence: when β > γ. Note that matrix transposition for an
√
β ×
√
β matrix where

each entry in the matrix is of size Z = log2 n can be accomplished in O(log(βZ)) span, and
incurring O(β · Z) total work and O(βZ/B) cache misses. Therefore, in this case, we have
the following recurrences:

for β > γ :

W (β) = 2
√
β ·W (

√
β) +O(β log2 n)

Q(β) = 2
√
β ·Q(

√
β) +O(β log2 n/B)

T (β) = 2 · T (
√
β) +O(log(β log2 n))

The above recurrences solve to

W (n/Z) = O(n log n)

Q(n/Z) = O((n/B) · logM n)

T (n/Z) = O(log n · log log n)

Note that the above calculations assume that β is a perfect square in every level of the recursion, but
even if not, the recurrence would solve to the same asymptotic expressions.

D.2 Sorting Algorithm

Oblivious random permutation (ORP). We use the same algorithm as in Section C.3 to construct
an oblivious random permutation from REC-ORBA. We analyze the costs in the binary fork-join
model below. We have β parallel sorting problems on Θ(log2 n) elements, where each element has
an O(log n · log logn)-bit label. Each sorting problem can be performed with span O(log4 log n)
and workO(log2 n·log3 log n) in binary fork-join using bitonic sort by paying aO(log log n) factor
for the work and span for each comparison due to theO(log n · log logn)-bit labels. The overall cost
for this step across all subproblems is O(n · log3 log n) work and the span remains O(log4 log n).
Since each bitonic sort subproblem fits in cache, the caching cost is simply the scan boundO(n/B).
These bounds are dominated by our bounds for REC-ORBA, so this gives an algorithm to generate
a random permutation with the same bounds as REC-ORBA.

Oblivious sort. Finally, once the elements have been permuted in random order, we can use any in-
secure comparison-based sorting algorithm to sort the permuted array. We use SPMS sort [CR17b],
the best cache-agnostic sorting algorithm for the binary fork-join model. In this way, we obtain a
data-oblivious sorting algorithm in the cache-agnostic, binary fork-join model, with optimal cache
complexity assuming tall cache and M = Ω(log1+ε n), optimal total work O(n log n), and span
O(log n · log logn) which matches the best-known insecure algorithm in this model (that is, SPMS
itself [CR17b]).

25

Figure 1: A bitonic sorting network [Bat68b, Bit] for n = 16.

Summarizing the above, we obtain a cache-agnostic and data-oblivious sorting algorithm with
O(n log n) total work,O((n/B) logM n) cache complexity, andO(log n log log n) span. This gives
our main theorem:

Theorem D.1 (Main theorem). Assume that the cache size M ≥ log3 n. Then, there exists a cache-
agnostic and data-oblivious sorting algorithm that achievesO(n log n) total work,O((n/B) logM n)
cache complexity, and O(log n log logn) span in a binary-fork-join model.

E Practical Oblivious Sort

In this section, we describe a practical oblivious sorting algorithm in the cache-agnostic, binary
fork-join model.

E.1 Cache-Agnostic, Binary Fork-Join Implementation of Bitonic Sort

Our practical variant uses bitonic sort [Bat68a] rather than AKS in various places to solve smaller
instances of the sorting problem. We show a data-oblivious and cache-agnostic binary fork-join
implementation of bitonic sort that achieves the following:

Theorem E.1 (Cache-agnostic, binary fork-join implementation of Bitonic Sort). There is a data
oblivious cache-agnostic binary fork-join implementation of bitonic sort that can sort n elements in
O(n log2 n) work, O(log2 n · log logn) span, andO((n/B) · logM n · log(n/M)) cache complexity,
when n > M ≥ B2.

For bitonic sort, the constants in the big-O notation are very small, roughly 1/2 when counting
comparisons for both the total work and span. A cache-agnostic data-oblivious implementation of
bitonic sort is given in [CGLS18] but our implementation is asymptotically better both in cache
complexity and span. In particular, our span improves on the O(log3 n) bound that is obtained
by converting each PRAM step in the O(log2 n) time EREW PRAM bitonic sort algorithm into a
fork-join computation.

The rest of this subsection describes how to achieve Theorem E.1.

26

E.1.1 Bitonic Sort

A bitonic sorter [Bat68b] is a sequence of log n layers of bitonic merges, where each bitonic merge
is a butterfly network. Figure 1 depicts a bitonic sorting network for 16 inputs [Bit]. The n = 16
inputs come in from the left, and go out on the right. Each vertical arrow represents a comparator
that compares and possibly swaps a pair of elements. At the end of the comparator, the arrow should
point to the larger element. We can see that in the first layer, there are n/2 butterfly networks (i.e.,
bitonic merges) each of size 2. In the second layer, there are n/4 butterfly networks each of size 4,
and so on. In the final layer, there is a single butterfly network of size n.

We implement bitonic sorting with the recursive BITONIC-SORT algorithm given below. It uses
a recursive algorithm BITONIC-MERGE for the bitonic merging step (which corresponds to each
butterfly network in Figure 1), and we shall explain how to efficiently realize BITONIC-MERGE in
the binary fork-join model later in Section E.1.2.

BITONIC-SORT(A, flag)

Input: An unsorted array A on n distinct elements, and a flag bit which is 1 if A is to be
sorted in increasing order and 0 for a sort in decreasing order. Assume n is a power of 2.

Algorithm:

if n = 1 then return A; else continue with the following.

• Let Al and Ar be the subarrays of A containing the first and last n/2 elements of A respec-
tively.

Fork

A′l ← BITONIC-SORT(Al, f lag)
A′r ← BITONIC-SORT(Ar, f lag)

Join

• let A′ be the concatenation of A′l and A′r
return BITONIC-MERGE(A′, f lag)

To analyze the performance bounds of BITONIC-SORT, we use Wbmerge(m), Qbmerge(m) and
Tbmerge(m) to denote the work, caching complexity and span, respectively, of BITONIC-MERGE

on an input of size m. These bounds are obtained in Section E.1.2, where we will show that
Wbmerge(m) = O(m logm), Tbmerge(m) = O(logm · log logm), and Qbmerge(m) = O((m/B) ·
logM n). For now, let us analyze the bounds for BITONIC-SORT assuming that the above bounds
hold for the BITONIC-MERGE subroutine.

We have:

W (n) = 2 ·W (n/2) +Wbmerge(n) with W (2) = 1

Q(n) = 2 ·Q(n/2) +Qbmerge(n) with Q(n) = n/B if n < M

T (n) = T (n/2) + Tbmerge(n) with T (2) = 1

Plugging in the values forWbmerge, Tbmerge, andQbmerge from Section E.1.2, we obtain our bounds

27

for BITONIC-SORT:

W (n) = O(n log2 n), T (n) = O(log2 n · log logn), and Q(n) = O((n/B) · logM n · log(n/M)),
as long as n ≥M ≥ B2.

If we count only the number of comparisons for W (n) and T (n), the constant factor in the O(·)
is 1/2. In our algorithm, in order to achieve cache efficiency, we also have matrix transpositions
for which we have data movement costs. The data movement cost is about n log2 n for work and
about log2 n · log log n for the span. For Q(n) the cache miss cost is about 2n · logM n · log(n/M)
including memory accesses for bitonic sort comparisons as well as for the matrix transposes.

E.1.2 Bitonic Merge

Earlier in our paper, we essentially showed how to realize a butterfly network efficiently in a cache-
agnostic, binary fork-join model. The same approach applies to each bitonic merge within bitonic
sort. In Figure 1, we can see that each bitonic merge is a butterfly network. In comparison with our
earlier REC-ORBA algorithm, here the butterfly network is in the reverse direction: in the first layer
of am-size bitonic merge, each element in the input sequence is compared to the elementm/2 away
from it in the sequence, and it is only in the last layer that adjacent elements are compared. For this
reason, in our algorithm BITONIC-MERGE below, we first perform a transpose of the

√
m partitions,

and then perform the first batch of recursive calls. We then perform another tranpose right after the
first batch of recursive calls. This recursion structure we adopt is also similar to the FFT algorithm
in Frigo et al. [FLPR99]. As in BITONIC-SORT we include a flag bit in BITONIC-MERGE along
with the input I to indicate whether the output is in increasing or decreasing order.

The algorithm BITONIC-MERGE below obliviously evaluates a single bitonic merge within bitonic
sort in the cache-agnostic, binary fork-join paradigm. For simplicity, in this section, we assume that
the size of the problem m is a perfect square in every recursive call. If m is not a perfect square, we
can deal with it in a similar way as in Section D.

BITONIC-MERGE(I, f lag)

Input: The input array I contains m elements where m is a power of 2.

Algorithm: Ifm = 1, just return I. Ifm = 2, apply a single comparator to the pair of elements
and return the elements in increasing order if flag = 1 and in decreasing order if flag = 0.
Otherwise, perform the following:

1. Write them inputs as a
√
m×
√
mmatrix where each group of consecutive

√
m elements

form a row. Perform a transposition on this matrix, and let J1, . . . , J√m be the rows of
the transposed matrix.

2. In parallel: For i ∈ [
√
m], recursively call Ki := BITONIC-MERGE(Ji, f lag).

3. Imagine that each Ki is a row of a
√
m ×

√
m matrix. Perform a transposition on this

matrix. Let L1, . . . , L√m be the rows of the transposed matrix.

4. In parallel: For i ∈ [
√
m], recursively call Oi := BITONIC-MERGE(Li, f lag).

5. Return O1, . . ., O√m.

28

Correctness. We argue why the above algorithm BITONIC-MERGE implements a reverse-butterfly
network as shown in Figure 1. To see this, it suffices to show that Steps 1, 2, and 3 together evaluate
the first

√
m layers of the butterfly network. Henceforth we number the m input elements to the

butterfly 0, 1, . . . ,m− 1.

The first step performs a matrix transposition on the input elements. After the matrix transposition,
for i ∈ [0..

√
m − 1], the i-th element is followed by the elements with indices i +

√
m, i +

2
√
m, . . . , i+ (

√
m− 1)

√
m and they reside in the same row.

For j ∈
√
m, in the j-th layer of the butterly network, elements with indices i satisfying the con-

dition (i mod (m/2j−1)) < m/2j gets paired with the element i′ := i + m/2j . After the first
matrix transposition, i and i′ must be in the same row, and they are distance

√
m/2j apart — notice

that this is exactly a smaller reverse-butterfly structure within the same row whose size is
√
m.

This shows that after Steps 1 and 2, every element performs the same set of compare-and-swaps
with the correct elements stipulated in the reverse-butterfly structure. Now, Step 3 does a reverse
transposition and rearranges the output into the same order as they appear in the original reverse-
butterfly network.

Analysis. The algorithm BITONIC-MERGE’s performance is charaterized by the following recur-
rences where Qbmerge(m) denotes the cache complexity on a problem of size m, Tbmerge(m) de-
notes the span, and Wbmerge(m) denotes the total work.

for m > 2 : Wbmerge(m) = 2
√
m ·Wbmerge(

√
m) +O(n)

for m > M : Qbmerge(m) = 2
√
m ·Qbmerge(

√
m) +O(m/B)

for m > 2 : Tbmerge(m) = 2 · Tbmerge(
√
m) +O(logm)

The base conditions are:

for m ≤ 2 : Wbmerge(m) = O(1), Tbmerge(m) = O(1)

for m ≤M : Qbmerge(m) = m/B

The recurrences solve toWbmerge(n) = O(n log n), Tbmerge(n) = O(log n log logn), andQbmerge(n) =
O((n/B) logM n) as long as n ≥M ≥ B2.

E.2 Our Practical Oblivious Sort

Our practical variant incurs an additional a log log n blowup in total work and a log n blowup in
span; but it achieves optimal cache complexity and is nonetheless highly parallel. It also has a small
constant factor in its bounds.

Now, to obtain a practical variant of our sorting algorithm, we need to

1. replace AKS with bitonic [Bat68b]: in our construction so far, AKS is used to perform the
Θ(log n)-way distribution step on small groups of Θ(log3 n) elements. We can replace it with
bitonic sort [Bat68b]. By Theorem E.1 and since we are applying it to sort small problems
with Θ(log3 n) elements, this replacement would an additional log logn factor in total work
and an extra log log log n factor in span within REC-ORBA and Rec-Sort (described in the
next section).

29

2. replace SPMS with REC-SORT: we describe a simple sorting algorithm in the binary fork-join
model called REC-SORT, which is comparison-based, and is capable of sorting a randomly
permuted input array with all but negligible probability. Note also that REC-SORT need not
be data-oblivious.

Our new REC-SORT algorithm has slightly higher span than SPMS [CR17b] but it is con-
ceptually much simpler — notably, it relies on the same butterfly network structure as REC-
ORBA. (If we use the AKS network in place of bitonic sort and REC-SORT in place of SPMS,
we will recover the optimal work and caching bounds we achieved when using SPMS but now
with log2 n span, and the resulting algorithm will no longer be practical.)

We will focus on describing REC-SORT below. As mentioned, REC-SORT uses the same network
structure as REC-ORBA. During pre-processing, we pick and sort a random set of pivot elements.
Initially, elements in the input array I are partitioned in bins containing Θ(log3 n) elements each.
Then, the elements traverse a γ-way butterfly network where γ = Θ(log n) and is chosen to be a
power of 2: at each step, we use bitonic sort to distribute a collection of γ bins at the previous level
into γ bins at the next level. Instead of determining the output bin at each level by the random label
assigned to an element as in REC-ORBA, here each bin has a range determined by two pivots, and
each element will be placed in the bin whose range contains the element’s value. Also, in REC-
ORBA we needed to use filler elements to hide the actual load of the intermediate bins, but we do
not need filler elements in REC-SORT since the algorithm need not be data-oblivious.

Pivot selection. The pivots are chosen in a pre-processing phase, so that we can guarantee that every
bin has O(log3 n) elements with all but negligible failure probability, as we show below. Roughly
speaking, the pivots are chosen to be approximate Θ(n/ log3 n)-quantiles, which divide the input
elements into Θ(n/ log3 n) subsets of approximately equal size. To select the pivots, we do the
following:

1. First, generate a sample Π of size close to n/ log n from the input array I by sampling each
element with probability 1/ log n. We then sort Π using bitonic sort.

2. In the sorted version of Π, every element whose index is a multiple of log2 n is moved into a
new sorted array pivots. Pad the pivots array with an appropriate number of∞ pivots such
that its length plus 1 would be a power of 2.

Using a Chernoff bound it is readily seen that the size of Π is (n/ log n) ± n3/4 except with
negligible probability. We choose every (log2 n)-th element after sorting Π to form our set of
pivots, hence r, the number of pivots, is n

log3 n
+ o(n/ log3 n) except with negligible probability.

Due to Theorem E.1, sorting ñ = Θ(n/ log n) samples incursO(n log n) total work,O((n/B) logM n)
cache complexity, and O(log2 n log logn) span — this step will dominate the span of our overall
algorithm. The second step of the above algorithm can be performed using prefix-sum, incurring
total work O(n), cache complexity O(n/B), and span O(log n).

Sort into bins. Suppose that r−1 pivots were selected above; the pivots define a way to partition the
values being sorted into r roughly evenly loaded regions, where the i-th region includes all values
in the range (pivots[i− 1], pivots[i]] for i ∈ [r].

Remark 3. For convenience, we may assume that pivots[0] = −∞ and pivots[r] =∞.

30

Now, we use the following REC-SORT algorithm to place the input elements into r bins where each
bin collects elements belonging to a region defined by the pivots. Specifically, the input array I will
be viewed as r = Θ(n/ log3 n) bins each containing n/r = Θ(log3 n) elements. The REC-SORT

algorithm first partitions the input bins into
√
r groups each containing

√
r consecutive bins. Then,

it recursively sorts each group using appropriate pivots among the precomputed pivots. At this point,
it applies a matrix transposition on the resulting bins. After the matrix transposition all elements in
each group of

√
r consecutive bins will have values in a range between a pair of pivots

√
r apart

in the sorted list of pivots, and this group is in its final sorted position relative to the other groups.
Now, for a second time, the algorithm recursively sorts each group of consecutive

√
r bins, using

the appropriate pivots and this will place each element in its final bin in sorted order. Our algorithm
also guarantees that the pivots are accessed in a cache-efficient manner.

We give a more formal description below. Recall that γ = Θ(log n) is the branching factor in the
butterfly network.

REC-SORTγ(I, pivots)

Input: The input array I contains β bins where β is assumed to be a power of 2. The array
pivots contains β − 1 number of pivots that define β number of regions, where the i-th region
is (pivots[i − 1], pivots[i]] (see also Remark 3). Each element in I will go to an output bin
depending on which of the β regions its value falls into.

Algorithm: If β ≤ γ, use bitonic sort to assign the input array I to a total of γ bins based on
pivots. Return the resulting list of β bins.

Else, proceed with the following recursive algorithm.

1. Divide the input array I into
√
β partitions where each partition contains exactly

√
β con-

secutive binsa. Henceforth let Ij denote the j-th partition.

2. Let pivots′ be constructed by taking every pivot in pivots whose index is a multiple of
√
β.

In parallel: For each j ∈ [
√
β], let Binj1, . . . ,Bin

j√
β
← REC-SORTγ(Ij , pivots′).

3. Let Bins be a
√
β ×
√
β matrix where the j-th row is the list of bins Binj1, . . . ,Bin

j√
β

. Note
that each element in the matrix is a bin. Now, perform a matrix transposition:
TBins← BinsT .
Henceforth, let TBins[i] denote the i-th row of TBins consisting of

√
β bins,

4. In parallel: For i ∈ [
√
β]:

let B̃in
i

1, . . . , B̃in
i√
β ← REC-SORTγ(TBins[i], pivots[(i− 1)

√
β + 1..i ·

√
β − 1])

5. Return the concatenation B̃in
1

1, . . . , B̃in
1√
β , B̃in

2

1, . . . , B̃in
2√
β , . . ., . . ., B̃in

√
β

1 , . . ., B̃in
√
β√
β .

aFor simplicity, we assume that β is a perfect square in every recursive call. If β is not always a perfect square,
we can use slightly non-square matrices as described in Section D.

Final touch. To output the fully sorted sequence, simply bitonic sort each bin and output the
concatenated outcome. It is not hard to see that the cost of this step is asymptotically absorbed by
REC-SORT in all metrics.

31

Performance analysis. We assume that if any bin in the above REC-SORT algorithm receives more
than C log3 n elements for some suitable constant C > 1, the algorithm fails — later, we will prove
that this happens only with negligibly small in n probability.

Since we have replaced the AKS with bitonic on problems of size Θ(log3 n), the total work becomes
O(n log n log logn), and the span becomes O(log n log logn log log log n).

To see the cache complexity, observe that Line 2 requires a sequential scan through the array pivots
that is passed to the current recursive call, writing down β − 1 number of pivots, and making√
β copies of them to pass one to each of the

√
β subproblems. Now, Line 4 divides pivots into√

β equally sized partitions, removes the rightmost boundary point of each partition, passes each
partition (now containing

√
β−1 pivots) to one subproblem. Both Lines 2 and 4 are upper bounded

by the scan bound Qscan(β · Θ(log3 n)), and so is the matrix transposition in Line 3. Therefore,
REC-SORT achieves optimal cache complexity similar to REC-ORBA, but now assuming thatM =
Ω(log4 n).

Putting everything all together, in our practical variant, we use REC-ORBA (instantiated with
bitonic for each poly-logarithmically sized problem) plus a few extra steps to randomly permute
the input array, we then compute the pivots as suggested above. Finally, we use REC-SORT to
sort the permuted input into bins, and use bitonic sort to sort within each bin. The entire al-
gorithm — outside of sorting the O(n/ log n) pivots — incurs O(n log n log logn) total work,
O(log n log log n log log log n) span, and optimal cache complexity O((n/B) logM n). When we
add the cost of sorting the pivots, the work and caching bounds remain the same but the span be-
comes O(log2 n · log logn).

Improving the requirement on M . We can improve the constraint on M to M = Ω(log2+ε n) for
an arbitrarily small ε ∈ (0, 1), if we make the following small modifications:

1. Choose every (log n)1+ε-th element from the samples as a pivot; and let γ = Θ(log n). Note
that in this case, the total number of pivots is r = Θ(n/ log2+ε n).

2. Earlier, we divided the input into r bins each with n/r elements; but now, we divide the input
array into r · γ bins, each filled with n/(r · γ) = Θ(log1+ε n) elements. Because there are γ
times more bins than pivots now, in the last level of the meta-algorithm, we will no longer have
any pivots to consume – but this does not matter since we can simply sort each group of γ bins
in the last level.

Overflow analysis. It remains to show that no bin will receive more than C log3 n elements for
some suitable constant C > 1 except with negligible probability.

Like META-ORBA, we use META-SORT to denote the non-recursive meta-algorithm for REC-
SORT. We can equivalently analyze META-SORT. Consider a collection of γ = Θ(log n) bins in
the j-th subproblem in level i− 1 of META-SORT whose contents are input to a bitonic sorter. Let
us refer to this as group (i− 1, j). These elements will be distributed into γ bins in level i using the
γ − 1 pivots with label pair (i − 1, j). The elements in these γ bins in group (i − 1, j) came from
γi−1 bins in the first level, each containing exactly log2 n elements from input array I. Let U be the
set of elements in these γi−1 bins in the first level, so size of U is u = γi−1 ·n/r = γi−1 ·Θ(log3 n).

Let us fix our attention on a bin b in the i-th level into which some of the elements in group (i−1, j)

32

are distributed after the bitonic sort. Consider the pair of pivots p, q that are used to determine the
contents of bin b (we allow p = −∞ and q =∞ to account for the first and last segment). This pair
of pivots is used to split the elements in the level i− 1 group (i− 1, j) hence the pivots p and q are
r/γi−1 apart in the sorted sequence pivots[1..r]. We also know that the number of elements in I with
ranks between any two successive pivots in pivots[1..r] is at most log3 n + o(log3 n) except with
negligible probability. Hence the number of elements in the input array I that have ranks between
the ranks of these two pivots is k = (r/γi−1) · log3 n. Recalling that r ≤ 2n/ log3 n (except
with negligible probability), we have k = (r/γi−1) · log3 n ≤ 2n/(γi−1) except with negligible
probability.

Let Yb be the number of elements in bin b. These are the elements in U that have rank between
the ranks of p and q. The random variable Yb is binomially distributed on u = |U | elements with
success probability at most k/n = 2/γi−1. Hence, E[Yb] ≤ u·k/n = Θ(log3 n) and using Chernoff
bounds, Yb < Θ(log3 n) + o(log3 n) with all but negligible probability.

F Additional Building Blocks

To obtain oblivious simulation of CRCW PRAMs in the binary fork-join model, we will make use
of three important primitives — just like oblivious sorting, these primitives have been core to the
data-oblivious algorithms literature and in constructing Oblivious Parallel RAM schemes [CS17,
CCS17, NWI+15, BCP15]:

• Aggregation in a sorted array. Given an array in which each element belongs to a group, and
the array is sorted such that all elements belong to the same group appear consecutively, let
each element learn the “sum” of all elements belonging to its group, and appearing to its right.
In a more general formulation, “sum” can be replaced with any commutative and associative
aggregation function f .

• Propagation in a sorted array. Given an array in which each element belongs to a group, with
the array sorted such that all elements belong to the same group appear consecutively, we call
the leftmost element of each group the group’s representative. In the outcome, every element
should output the value held by its group’s representative, i.e., the representative propagated its
value to everyone in the same group.

• Send-receive8. In the input, there is a source array and a destination array. The source array
represents n senders, each of whom holds a key and a value; it is promised that all keys are
distinct. The destination array represents n′ receivers each holding a key. Now, have each
receiver learn the value corresponding to the key it is requesting from one of the sources. If the
key is not found, the receiver should receive ⊥. Note that although each receiver wants only one
value, a sender can send its values to multiple receivers.

Prior works on data oblivious algorithms [NWI+15,BCP15,CS17] have suggested oblivious PRAM
constructions for the above primitives; but naı̈vely converting them to the binary fork-join model
would incur a log n factor blowup in span. To solve the aggregation and propagation, we can in
fact use the segmented prefix (or suffix) sum primitive [JáJ92] which is well-known in the parallel
algorithms literature, and can be implemented as a prefix sum computation incurring O(n) total

8The send-receive abstraction is often referred to as oblivious routing in the data-oblivious algorithms litera-
ture [BCP15, CS17, CCS17]. We avoid the name “routing” because of its other connotations in the algorithms literature.

33

work, O(n/B) cache complexity, and O(log n) span [CR12a, CR17b]. Moreover, the algorithm
naturally has fixed, data-independent access patterns.

To solve send-receive efficiently in the binary-fork join model, we can use the high-level construc-
tion by Chan et al. [CS17] who showed how to realize send-receive with O(1) oblivious sorts and
one invocation of oblivious propagation. If we replace the oblivious sort and propagation primitives
with efficient, binary fork-join implementations, oblivious send-receive achieves the sorting bound.

References

[ABB00] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work
stealing. In Proceedings of the Twelfth Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), page 112. Association for Computing Machinery,
2000.

[ABP98] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. In Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), page 119129, New York, NY, USA,
1998. Association for Computing Machinery.

[ACN+20] Gilad Asharov, T.-H. Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine
Shi. Bucket oblivious sort: An extremely simple oblivious sort. In Martin Farach-
Colton and Inge Li Gørtz, editors, 3rd Symposium on Simplicity in Algorithms,
SOSA@SODA, pages 8–14. SIAM, 2020.

[AKL+20a] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and
Elaine Shi. OptORAMa: Optimal Oblivious RAM. In Advances in Cryptology -
EUROCRYPT 2020, 2020. See also: https://eprint.iacr.org/2018/892.

[AKL+20b] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi.
Oblivious parallel tight compaction. In Information-Theoretic Cryptography (ITC),
2020.

[AKL+20c] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi. Op-
timal Oblivious parallel RAM. Manuscript in preparation, 2020. Personal communi-
cation with Asharov et al.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In STOC,
1983.

[AV88] Alok Aggarwal and S. Vitter, Jeffrey. The Input/Output Complexity of Sorting and
Related Problems. Commun. ACM, 31(9):1116–1127, September 1988.

[Bat68a] K. E. Batcher. Sorting Networks and Their Applications. AFIPS ’68 (Spring), 1968.

[Bat68b] Kenneth E. Batcher. Sorting networks and their applications. In American Federation
of Information Processing Societies: AFIPS Conference Proceedings: 1968 Spring
Joint Computer Conference, Atlantic City, NJ, USA, 30 April - 2 May 1968, pages
307–314, 1968.

34

https://eprint.iacr.org/2018/892

[BCG+08] Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran,
Shimin Chen, and Michael Kozuch. Provably good multicore cache performance for
divide-and-conquer algorithms. In Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), page 501510, USA, 2008. Society for
Industrial and Applied Mathematics.

[BCP15] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram. In Theory of
Cryptography Conference (TCC), 2015.

[BCR+11] Zoran Budimlić, Vincent Cavé, Raghavan Raman, Jun Shirako, Sağnak
Taşundefinedrlar, Jisheng Zhao, and Vivek Sarkar. The design and implementation
of the habanero-java parallel programming language. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion (OOPSLA), page 185186, New York, NY, USA,
2011. Association for Computing Machinery.

[BFGS11] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan
Simhadri. Scheduling irregular parallel computations on hierarchical caches. In Pro-
ceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 11, page 355366, New York, NY, USA, 2011. Association
for Computing Machinery.

[BFGS20] Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel algo-
rithms in the binary-forking model. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2020.

[BG04] Guy E. Blelloch and Phillip B. Gibbons. Effectively sharing a cache among threads.
In Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), page 235244, New York, NY, USA, 2004. Association for
Computing Machinery.

[BGM99] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling
for languages with fine-grained parallelism. J. ACM, 46(2):281321, March 1999.

[BGS10] Guy E. Blelloch, Phillip B. Gibbons, and Harsha Vardhan Simhadri. Low depth cache-
oblivious algorithms. In Proceedings of the Twenty-Second Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), page 189199, New York, NY,
USA, 2010. Association for Computing Machinery.

[Bit] https://en.wikipedia.org/wiki/Bitonic_sorter.

[BL93] Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multi-
threaded computations. In Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing (STOC), page 362371, New York, NY, USA, 1993. Associa-
tion for Computing Machinery.

[BL99] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. J. ACM, 46(5):720748, September 1999.

[BSA13] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious graph algo-
rithms for secure computation and outsourcing. In ASIA CCS, 2013.

35

https://en.wikipedia.org/wiki/Bitonic_sorter

[CCS17] T.-H. Hubert Chan, Kai-Min Chung, and Elaine Shi. On the depth of oblivious par-
allel ram. In Advances in Cryptology – ASIACRYPT 2017, pages 567–597. Springer
International Publishing, 2017.

[CGG+95] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Darren Erik
Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 95, page
139149, USA, 1995. Society for Industrial and Applied Mathematics.

[CGLS18] T-H. Hubert Chan, Yue Guo, Wei-Kai Lin, and Elaine Shi. Cache-oblivious and data-
oblivious sorting and applications. In SODA, 2018.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan
Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: An object-
oriented approach to non-uniform cluster computing. In Proceedings of the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), page 519538, New York, NY, USA, 2005. As-
sociation for Computing Machinery.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[CR08] Rezaul A. Chowdhury and Vijaya Ramachandran. Cache-efficient dynamic program-
ming algorithms for multicores. In Proc. ACM SPAA, 2008.

[CR10a] Rezaul A. Chowdhury and Vijaya Ramachandran. The cache-oblivious gaussian elimi-
nation paradigm: Theoretical framework, parallelization and experimental evaluation.
Theory of Computing Systems, 47(1):878–919, 2010. Preliminary version in SPAA
2007.

[CR10b] Richard Cole and Vijaya Ramachandran. Resource oblivious sorting on multicores. In
Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide,
and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th Inter-
national Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part I, volume 6198 of Lecture Notes in Computer Science, pages 226–237. Springer,
2010.

[CR12a] Richard Cole and Vijaya Ramachandran. Efficient resource oblivious algorithms for
multicores with false sharing. In 26th IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012, pages 201–
214. IEEE Computer Society, 2012.

[CR12b] Richard Cole and Vijaya Ramachandran. Revisiting the cache miss analysis of multi-
threaded algorithms. In Proc. LATIN, 2012.

[CR13] Richard Cole and Vijaya Ramachandran. Analysis of randomized work-stealing with
false sharing. In Proc. IPDPS, 2013.

[CR17a] Richard Cole and Vijaya Ramachandran. Bounding cache miss costs of multithreaded
computations under general schedulers. In Proc. ACM SPAA, 2017.

36

[CR17b] Richard Cole and Vijaya Ramachandran. Resource oblivious sorting on multicores.
ACM Trans. Parallel Comput., 3(4), March 2017. Preliminary version in ICALP 2010.

[CRSB13] Rezaul Alam Chowdhury, Vijaya Ramachandran, Francesco Silvestri, and Brandon
Blakeley. Oblivious algorithms for multicores and networks of processors. J. Parallel
Distributed Comput., 73(7):911–925, 2013.

[CS17] T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: unifying statistically and compu-
tationally secure orams and oprams. In Theory of Cryptography Conference, (TCC),
2017.

[FLPR99] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pages 285–297. IEEE, 1999.

[FLR98] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation (PLDI), page 212223, New
York, NY, USA, 1998. Association for Computing Machinery.

[FS09] M. Frigo and V. Strumpen. The cache complexity of multithreaded cache-oblivious
algorithms. Theory of Computing Systems, 45:203–233, 2009.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivi-
ous RAMs. J. ACM, 1996.

[Gol87] O. Goldreich. Towards a theory of software protection and simulation by oblivious
RAMs. In STOC, 1987.

[GOT13] Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. Graph drawing in
the cloud: Privately visualizing relational data using small working storage. In Wal-
ter Didimo and Maurizio Patrignani, editors, Graph Drawing, pages 43–54, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[GS14] Michael T. Goodrich and Joseph A. Simons. Data-oblivious graph algorithms in out-
sourced external memory. In Combinatorial Optimization and Applications - 8th Inter-
national Conference, COCOA 2014, Wailea, Maui, HI, USA, December 19-21, 2014,
Proceedings, volume 8881 of Lecture Notes in Computer Science, pages 241–257.
Springer, 2014.

[IKK12] Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclo-
sure on searchable encryption: Ramification, attack and mitigation. In Network and
Distributed System Security Symposium (NDSS), 2012.

[JáJ92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[jfo] https://docs.oracle.com/javase/tutorial/essential/concurrency/

forkjoin.html.

[KD88] S. Rao Kosaraju and Arthur L. Delcher. Optimal parallel evaluation of tree-structured
computations by raking. In John H. Reif, editor, VLSI Algorithms and Architectures,
3rd Aegean Workshop on Computing, AWOC 88, Corfu, Greece, June 28 - July 1,

37

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

1988, Proceedings, volume 319 of Lecture Notes in Computer Science, pages 101–
110. Springer, 1988.

[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-memory
machines. In Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity, pages 869–942. Elsevier and MIT Press, 1990.

[LWN+15] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. Oblivm:
A programming framework for secure computation. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy, page 359376, USA, 2015. IEEE Computer Soci-
ety.

[NWI+15] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and
Elaine Shi. Graphsc: Parallel secure computation made easy. In 2015 IEEE Sympo-
sium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015, pages
377–394. IEEE Computer Society, 2015.

[PR02] Seth Pettie and Vijaya Ramachandran. A randomized time-work optimal parallel al-
gorithm for finding a minimum spanning forest. SIAM J. Comput., 31(6):1879–1895,
2002.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In ASIACRYPT, 2011.

[SV82] Yossi Shiloach and Uzi Vishkin. An O(log n) parallel connectivity algorithm. J.
Algorithms, 3(1):57–67, 1982.

[tbb] https://github.com/oneapi-src/oneTBB.

[tpl] https://docs.microsoft.com/en-us/dotnet/standard/

parallel-programming/task-parallel-library-tpl?redirectedfrom=

MSDN.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: De-
terministic side channels for untrusted operating systems. In Proceedings of the 2015
IEEE Symposium on Security and Privacy, pages 640–656, USA, 2015. IEEE Com-
puter Society.

38

https://github.com/oneapi-src/oneTBB
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl?redirectedfrom=MSDN

	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Cache-efficient Multithreaded Computations
	2.2 Data Oblivious Binary Fork-Join Algorithms

	3 Summary of Our Sorting Algorithm
	3.1 Meta-Algorithm for Random Bin Assignment: Meta-ORBA
	3.2 Efficient Cache Agnostic, Binary Fork-Join Implementation
	3.3 Full Sorting Algorithm
	3.4 A Practical Variant

	4 Oblivious, Binary Fork-Join Simulation of PRAMs
	4.1 Oblivious, Binary Fork-Join Simulation of Space-Bounded PRAMs
	4.2 Oblivious, Binary Fork-Join Simulation of Large-Space PRAMs

	5 Applications
	5.1 List Ranking
	5.2 Euler Tour
	5.3 Tree Contraction, Connected Components, and Minimum Spanning Forest

	A Computation Model
	A.1 Cache-efficient Computations
	A.2 Multithreaded, Binary Fork-Join Computation Model

	B Data-Oblivious Binary Fork-Join Algorithms
	C Details of Our Meta-Algorithm for Sorting
	C.1 Bin Placement
	C.2 Meta-ORBA: Random Bin Assignment
	C.3 Random Permutation
	C.4 Constructing Oblivious Sort from ORP and Non-Oblivious Sort

	D Details of Our Cache-Agnostic, Binary Fork-Join Sorting Algorithm
	D.1 Random Bin Assignment
	D.2 Sorting Algorithm

	E Practical Oblivious Sort
	E.1 Cache-Agnostic, Binary Fork-Join Implementation of Bitonic Sort
	E.1.1 Bitonic Sort
	E.1.2 Bitonic Merge

	E.2 Our Practical Oblivious Sort

	F Additional Building Blocks

