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the `Tolerant' protocol for resolving write conicts) with n global memory cells and unlimited localmemory is computationally equivalent to the OCPC (Optical Communication Parallel Computer)model [3, 28, 29, 31, 50] on n processors. (This is in contrast to the statement given in [3] that theOCPC model is equivalent to an EREW PRAM with n global memory cells.) In previous work,it was shown that the EREW PRAM could be simulated on the OCPC with some overhead perstep [44, 18]. This overhead was a result of trying to simulate accesses to an arbitrary numberof memory cells. We achieve better simulation results (and in fact, computational equivalenceof models) by limiting the number of memory cells of the ERCW PRAM. The following exampleillustrates the bene�t of our approach. Computing the global OR of n bits using the approach in [44]would require simulating the �(logn) step EREW PRAM algorithm using an expected overheadof �(log logn) time per step, resulting in a total expected time of �(logn log log n). However, inour direct approach, we simulate the constant time ERCW PRAM algorithm for global OR withonly constant overhead, resulting in a constant time algorithm. (Note that since there is no `queue'delay in optical communication networks, the ERCW PRAM is a better model for parallel machineswith such networks than the recently proposed QRQW (or ERQW) model [30].)Many results for the ERCWPRAM follow directly from results for the EREW PRAM or CRCWPRAM. For instance, the global OR of n bits can be found in constant time on an n processorERCW PRAM, as on a CRCW PRAM, but broadcasting 1 bit to n processors requires �(logn)steps, as on an EREW PRAM. The result for broadcasting implies that computing the pre�x sumsof n inputs and merging two lists of size n both require �(logn) time also. However, some resultsobtained directly from EREW PRAM and CRCW PRAM results do not give tight bounds. Forinstance, the problem of computing the parity of n bits on the ERCW PRAM has a lower bound of
(logn= log logn) from the result for the CRCW PRAM, and an upper bound of O(logn) from theEREW PRAM. Tight bounds are not known for the ERCW PRAM. Furthermore, tight boundsare not known for many other problems, including the problems of compaction and �nding themaximum. In this paper, however, we make signi�cant progress towards developing tighter boundsfor these and other problems.Here is a summary of our results for the ERCW PRAM. Many of these results depend on thewrite collision resolution protocol used, which we ignore here; these results are stated more preciselyin the sections that follow. In the following, n is the size of the input, and all algorithms performlinear work except as noted. We present a k-compaction algorithm that runs in O(log logn+log k)time; a randomized algorithm for k-compaction that runs in O(logk) expected time; a randomizedalgorithm for approximate k-compaction that runs in O(log log k) time, with failure probability 1=k;an algorithm for �nding the maximum of inputs in the range [1; n] that runs in O(log logn) time; analgorithm for chaining that runs in O(log log n) time; an algorithm for integer chain-sorting (linear-size integers) that runs in O(log logn) time; and an algorithm for integer sorting (polynomial-sizeintegers) that runs in O(logn) using almost linear work.We present two lower bounds results for the ERCW PRAM: a lower bound of 
(plog logn)time for solving compaction, and a lower bound of 
(plogn) for �nding the maximum of generalinputs. (The former result, along with a similar result for the OCPC discovered independentlyby Goldberg and Jerrum, led to the 
(plog logn) lower bound on h-relation routing in Goldberg,Jerrum and MacKenzie [32].)Finally, we consider unbounded fan-in, bounded fan-out (BFO) circuits. The computations onsuch circuits can be mapped optimally onto an ERCW PRAM as oblivious algorithms. This couldbe important if the ERCW PRAM is implemented using an optical network that has only limited2



recon�guration abilities. In an oblivious algorithm the communication patterns are �xed before thealgorithm is run. Thus, each processor may have only a small set of other processors with whichit needs to communicate, and this set is �xed before the algorithm is run. By designing obliviousalgorithms, we may avoid some of the costs of recon�guration.We show that any BFO circuit for adding two n-bit integers, merging a bit into an n bit sortedsequence, sorting n bits, or computing the pre�x sums or parity of n bits requires 
(logn) depth.Let THk;n denote the threshold function which outputs 1 if and only if at least k of the inputsare equal to 1. We show that THk;n can be computed by a linear size, O(log logn + log k) depthcircuit, and that any BFO circuit which computes THk;n requires 
(log logn + log k) depth.The current interest in the OCPC model, the close relation between the OCPC model and theERCW PRAM model, and the richness of results obtained so far on the OCPC, the ERCW PRAM,and the BFO circuit model, all indicate that these are important models of parallel computationwhich should be studied further.The rest of this paper is organized as follows. In Section 2, we de�ne the ERCW PRAM anddiscuss di�erent write conict protocols. Section 3, we describe the relationship of the ERCWPRAM to the OCPC model. Section 4 gives lower and upper bounds for compaction problems,and Section 5 gives lower and upper bounds for computing the maximum. In Section 6, we givealgorithms for chaining and integer sorting. Section 7 gives lower and upper bounds for computingcertain functions on unbounded fan-in, bounded fan-out circuits. Finally, in Section 8 we giverelations between the di�erent ERCW PRAM models.2 PreliminariesAn Exclusive Read, Concurrent Write (ERCW) PRAM consists of a collection of processors, eachwith in�nite local memory, which operate synchronously and communicate through a global mem-ory. Each read or write to global memory takes one time step. Only one processor can read fromany memory cell at any time step, but multiple processors may write to a memory cell in a sin-gle time step. Write conicts are handled according to one of the following collision resolutionprotocols:Priority The lowest numbered processor succeeds and writes its value to the cell;Arbitrary An arbitrary processor succeeds and writes its value to the cell;Common All processors must be writing the same value, which is written to the cell;Collision A special collision symbol is written to the cell;Tolerant The cell remains unchanged.Nice Robust Either the cell remains unchanged, or an arbitrary processor succeeds and writesits value to the cell.Robust An arbitrary value is written to the cell.(Since the standard OCPC model uses the Tolerant protocol, we will be most concerned withdeveloping ERCW PRAM algorithms using the Tolerant protocol. We de�ne the OCPC model inSection 3.) 3



The ERCW(ack) PRAM is an ERCW PRAM with the added feature that a processor whichsuccessfully writes to a cell receives an acknowledgement. To retain the spirit of the Common model,we assume no processor receives an acknowledgement in the Common model. To retain the spiritof the Robust model, we assume that false \successful" writes could cause bogus acknowledgementsto be sent.Often we would like to separate the issues of using the global memory as storage for inputsand outputs, and using the global memory for communication. In these cases, we will assume thatinputs and outputs are spread evenly among the local memories of the processors. For instance,given p processors and n inputs, we will assume each processor contains n=p inputs in its localmemory. With this assumption, we will be free to design algorithms which use less than n cells ofglobal memory.In our algorithms we do not require that all processors learn the output of an algorithm, forthis would force a trivial 
(logn) time lower bound on all our algorithms.Lemma 2.1 An n processor ERCW(ack) PRAM with m global memory cells can be simulated ona maxfn;mg processor ERCW PRAM with 2m+n global memory cells with the same write conictprotocol (except Robust).Proof: On the Common model, the ERCW(ack) PRAM and ERCW PRAM are the same, sothe simulation is trivial. Otherwise, let E1 be the ERCW(ack) PRAM and let E2 be the ERCWPRAM. The �rst m cells of E2 will correspond to the m cells of E1, the second m cells of E2 willbe used for �nding the processor that succeeds in writing to the corresponding cell of E1, and thelast n cells will be used for writing acknowledgements to the successfully writing processors. Wesimulate a read of cell j by processor i of E1, by having processor i read cell j of E2. We simulatea write step as follows. First, every processor j (0 � j � m � 1) writes n to cell m + j, and thenevery processor i (0 � i � n � 1) writes 0 to cell 2m + i. For any processor i of E1 that writessome value vi to any cell ci, processor i of E2 writes i to cell m+ ci. Then processor j (1 � j � m)reads cell m + j, and if the value read, say v, is not n or \collision", processor j writes 1 to cell2m+ v. Now, for each processor i of E1 writing to some cell ci, processor i of E2 reads cell 2m+ i.If it reads a 1, then it writes vi to cell ci (with no contention). Note that we require E2 to have thesame write conict protocol as E1, so that the processor that succeeds in writing to cell m + j inE2 (for some j) is the same as the processor that succeeds in writing to cell j in E1. (Note: Thesimulation for the Collision model is slightly di�erent. We omit the details.) 2The following lemma will be useful in designing Robust ERCW PRAM algorithms.Lemma 2.2 An n processor Nice Robust ERCW(ack) PRAM with m global memory cells can besimulated on a maxfn;mg processor Robust ERCW PRAM with m(n+ 2) global memory cells.Proof: Let E1 be the ERCW(ack) PRAM and let E2 be the ERCW PRAM. For each cell of E1,we associate 1 extra cell to test for the processor which is successful, and n extra cells to be used forwriting acknowledgements. We simulate a read of cell j by processor i of E1, by having processori read cell j of E2. We simulate a write step as follows. First, every processor j (0 � j � m� 1)writes n to cell m + j. Then for any processor i of E1 that writes some value vi to any cell ci,processor i of E2 writes i to cell m + ci, and writes 0 to cell m(2 + i) + ci. Then processor j(1 � j � m) reads cell m+ j, and if the value read, say v, is such that 0 � v � n � 1, processor j4



writes 1 to cell m(2+ v) + j. Now, for each processor i of E1 writing to some cell ci, processor i ofE2 reads cell m(2 + i) + ci. If it reads a 1, then it writes vi to cell ci (with no contention). 23 Optical Communication and ERCW PRAMSHere we describe the technology for optical communication, the OCPC model which is derived fromthis technology, and its relation to the ERCW PRAM.3.1 Optical Communication TechnologyThere are two basic types of optical interconnection networks, �ber optic networks, and free-spaceoptic networks. Research on routing in general �ber optic networks can be found in [1]. In thispaper, however, we are only concerned with a speci�c type of �ber optic network, namely thePassive optical star coupler network [6, 7, 20, 35], which allows unit time communication betweenany pairs of processors. In this network all processors are connected via optical �bers to a passiveoptical star coupler, which broadcasts messages sent from one processor to all other processors.To allow more exible communication, time division multiplexing (TDM) or wavelength divisionmultiplexing (WDM) is used. For unit time communication, we must use WDM. For dynamicrecon�guration ability, we must have tunable transmitters and/or receivers. Currently, tunabletransmitters and receivers are too slow to be practical.The other type of optical interconnection network is a free-space optic network. In this network,we do not use wires, but instead use the directional property of light to send messages to the correctdestination. Free-space optics has the potential to reduce space requirements and to alleviate manytopological di�culties associated with more conventional routing. There are two types of free-spaceoptic networks which achieve unit time communication, the beam spreading/masking network, andthe beam steering network. The beam spreading/masking network [39, 48] (also called the crossbaror matrix multiplication network) uses an n�n array of switching elements with each row assignedto a transmitting processor and each column assigned to a receiving processor. A transmittingprocessor spreads its light encoded message out to the row of optical switches, and those switcheseither block the message or send it on to the designated receiving processor. This network hasthe disadvantages of having n2 switches, 1=n total power transfer, and slow switching time. Abeam steering network can either be made up of recon�gurable holograms [33, 5] or acousto-opticdeectors [39]. The typical recon�gurable hologram method assumes the processors are sittingon a board, and there is some holographic material above the board. To transmit a message, areecting hologram is written into the holographic substrate and the processor transmits a lightencoded message to that hologram, which then steers it to the correct receiving processor. In theacousto-optic deector method, it is assumed that each processor is connected to a two-dimensionaldeector which can be programmed to steer a light encoded message to any other processor. Interms of speed of recon�guration, the acousto-optic deector seems to be the fastest, although itis still not as fast as an electronic switch. 5



3.2 OCPC modelOne abstraction of the beam steering model (which could also be considered an abstraction of thepassive optical star coupler with tunable transmitters) was �rst considered by Anderson and Miller[3], and has since been studied in [18, 22, 28, 29, 31, 32, 44, 50]. Various names for this model havebeen proposed, including Local Memory PRAM, S*PRAM, OMC, OCP, and OCPC. We will usethe term OCPC, denoting Optical Communication Parallel Computer.An OCPC consists of a collection of processors, each with in�nite local memory, which operatesynchronously and communicate by transmitting messages to each other. At any step, a processorcan transmit at most one message to another processor. The message will succeed in reachingthe processor if it is the only message being sent to that processor at that step. Concurrenttransmissions to the same processor will be handled according to one of the following standardcollision resolution protocols: Priority, Arbitrary, Common, Collision, Tolerant and Robust [38].(Note that the standard OCPC model uses the Tolerant protocol.)The OCPC(ack) is an OCPC with the added feature that a processor which successfully trans-mits a message to another processor receives an acknowledgement as in the ERCW(ack) PRAM(see Section 2).In Anderson and Miller [3] it is stated that an n processor OCPC is equivalent to an n processorEREW PRAM with n global memory locations. However this result is incorrect and we show inthis section that an n processor OCPC is equivalent to an n processor Tolerant ERCW PRAMwith n global memory locations. We also show additional relationships between OCPC and ERCWPRAM models, with and without acknowledgements.Note that our simulations are not at all like those in [44, 18]. Our simulations are simple,straightforward and e�cient, causing only constant slowdown.Lemma 3.1 A step of an n processor OCPC can be simulated in constant time on an n processorERCW PRAM with n global memory cells with the same write conict protocol.Proof: One step of the OCPC is simulated by a write and a read on the ERCW PRAM. Wesimulate an attempted transmission from processor i to processor j on the OCPC by processor iwriting to cell j and processor j reading cell j. Since the write conict resolution protocols are thesame, processor j receives the same value on the ERCW PRAM as on the OCPC. 2Note that in the next proof, the simulation of an ERCW PRAM on an OCPC requires thatthe OCPC has at least as many processors as the ERCW PRAM has global memory cells. Thisis not necessarily bad, since only global memory cells are counted, and for many ERCW PRAMalgorithms, only O(n) global memory cells are required.Lemma 3.2 A step of an n processor ERCW PRAM with m global memory cells can be simulatedin constant time on a maxfn;mg processor OCPC with the same write conict protocol.Proof: Assign each processor of the OCPC to a memory cell and assign the �rst n processors alsoto the n processors of the ERCW PRAM. We simulate a write from processor i to cell j on theERCW PRAM by processor i transmitting to processor j. Because the write conict resolutionprotocols are the same, processor j receives the same value on the OCPC as is written to cell j on6



the ERCW PRAM. Processor j stores the value transmitted to it. We simulate processor i readingcell j in the ERCW PRAM by processor i transmitting a read request to processor j and processorj transmitting the value stored there to processor i. Note that there can never be any transmissionconicts when simulating the read step. 2Lemma 3.3 A step of an n processor OCPC(ack) can be simulated in constant time on an nprocessor OCPC with the same write conict protocol (except Robust).Proof: On the Common model, the OCPC and the OCPC(ack) models are equivalent, since noprocessor ever \succeeds" in a write. On the other models we simulate a transmission of a messageM from processor i to processor j by the following procedure. Processor i �rst transmits i toprocessor j. If processor j receives a value v, then it transmits an acknowledgement to processorv. If processor i receives an acknowledgement, then it transmits M to processor j. This will beguaranteed to succeed without collision. 2Lemma 3.4 A step of an n processor ERCW(ack) PRAM with m global memory cells can besimulated in constant time on an on a maxfn;mg processor OCPC with the same write conictprotocol (except Robust).Proof: By Lemma 3.3, it su�ces to prove the theorem for the OCPC(ack) model. Assign eachprocessor of the OCPC(ack) to a memory cell and assign the �rst n processors also to the nprocessors of the ERCW(ack) PRAM. A write step of the ERCW(ack) PRAM is simulated bya transmission step of the OCPC(ack). We simulate a write from processor i to cell j on theERCW(ack) PRAM by processor i attempting a transmission to processor j. If processor i issuccessful in writing to the cell, then it will receive an acknowledgement. Because the OCPC(ack)is using the same write conict resolution protocol, processor i's transmission will succeed andprocessor i will receive an acknowledgement. Processor j now stores the value transmitted to it. Aread step of the ERCW(ack) PRAM is simulated by two transmission steps of the OCPC(ack). Wesimulate processor i reading cell j in the ERCW(ack) PRAM by processor i transmitting a readrequest to processor j and processor j transmitting the value stored there to processor i. Note thatthere can never be any transmission conicts when simulating the read step. 24 Compaction problemsIn this section, we study the problems of k-compaction and approximate k-compaction on theERCW PRAM. The k-compaction problem takes an array of size n with k marked elements, andplaces the marked elements into an array of size k. The approximate k-compaction problem takesan array of size n with k marked elements, and places the marked elements into an array of sizeO(k). Compaction and approximate compaction are important subproblems in processor realloca-tion and load balancing. For instance, if some processors have completed their tasks and some havenot, we would like to be able to round up those tasks in a small area, so other processors can �ndthem and help out; this can be achieved using approximate compaction. In addition, compactionand approximate compaction have been used as subroutines for many algorithms, including algo-rithms for space allocation, estimation, sorting, CRCW PRAM simulation, generation of randompermutations, and computational geometry. 7



We will primarily deal with the k-compaction problem and our only result for approximatek-compaction is a randomized algorithm for the Nice Robust ERCW PRAM, which is described atthe end of Section 3.2.1.4.1 Lower BoundsHere we will show that 2-compaction on the Robust, Nice Robust, Tolerant, Collision, or CommonERCW PRAM requires p(log logn)=2�1 time; that k-compaction on the Arbitrary ERCW PRAMrequires time k for k � p(log logn)=2 � 1; that 4k-compaction on the Priority ERCW PRAMrequires time k for k � p(log logn)=2� 1; and that 2k-compaction on the Priority ERCW PRAMrequires time k for k � (log log log n)=4 � 1. We do not place any restrictions on the numberof global memory cells, or the number of processors. (We assume that each of the �rst n globalmemory cells contains an input.)Without loss of generality, we assume that each input is tagged by a pair (i; b), where i is itsindex (from 1 to n) and b is 0 if the input is unmarked, 1 if the input is marked. Then we will showa lower bound on solving compaction for the simpler problem of performing compaction on the tagswhich are marked with 1s. This will obviously imply a lower bound for the general compactionproblem.Our lower bound proof will use the following de�nition and results.De�nition 4.1 A sunower is a collection of sets in which any element that is contained in twoof the sets is contained in all of the sets.Theorem 4.1 (Erd�os-Rado) [21] Let r and s be positive integers and let F be a family of sets suchthat every set in F has at most r elements, and the number of sets in F is greater than r!(s� 1)r.Then F contains a sunower of size s.Theorem 4.2 (Turan) [4] A simple graph with n vertices and m edges has an independent set ofsize n2=(2m+ n).Theorem 4.3 (Dilworth) [19] Let X be a set and P be a partial ordering on X. If the largestantichain in X has k elements, then there is a set of k chains whose union is X.Corollary 4.1 [2] Given a sequence of n distinct integers, there is either an increasing subsequenceof size pn, or a decreasing subsequence of size pn. Furthermore, given k sequences of n integers(each sequence being a permutation of the n integers), there is a subset of size n1=2k such that ineach sequence, the subset is arranged in either increasing or decreasing order.Let 2COMP be an algorithm for 2-compaction on the Tolerant, Collision, or Common ERCWPRAM. For a given k, let COMP-A be an algorithm for k-compaction on the Arbitrary ERCWPRAM; let COMP-P-4k be an algorithm for 4k-compaction on the Priority ERCW PRAM; andlet COMP-P-2k be an algorithm for 2k-compaction on the Priority ERCW PRAM. We will use anadversary argument for our lower bound proof. A step will consist of a write followed by a read.8



At each step, the adversary will designate some of the inputs as unmarked (by setting their valuesto 0) or marked (by setting their values to 1). Let Vt be the set of indices of inputs which have notbeen designated by step t. These will be the live inputs in step t. Initially V0 = f1; : : : ; ng.We will say that a processor is a�ected by a live input i in step t if there exists a 0-1 assignmentto the values of the other live inputs for which the state of the processor in step t is di�erent whenthe value of i is 0 and the value of i is 1. Similarly, a cell is a�ected by live input i in step t if thereexists a 0-1 assignment to the values of the other live inputs such that the contents of the cell instep t are di�erent when i = 0 and when i = 1.We will assume that concurrent writes on the Robust ERCW PRAM are resolved using theTolerant protocol. We will assume that concurrent writes on the Arbitrary ERCW PRAM areresolved by allowing the lowest numbered processor that is not a�ected by any live input to write,and if none, then simply the lowest numbered processor.Let pt be the maximum number of processors that could be a�ected by a single live input instep t. Let ct be the maximum number of cells that could be a�ected by a single live input. Letht = maxfct; ptg.Lemma 4.1 We can construct an adversary such that after step t of 2COMP, COMP-A, orCOMP-P-4k, as long as ht � jVtj1=(2ht)=8, (1) ht � 4t; (2) jVtj � jVt�1j1=ht�1=248h2t�1; (3)each processor and cell is a�ected by at most one live input; (4) for COMP-A, at most t items havebeen designated as marked; and (5) for COMP-P-4k, at most 4t+1 items have been designated asmarked. Also, we can construct an adversary such that after step t of COMP-P-2k, (1) ht � 4t;(2) jVtj � jVt�1j1=4ht�1=124ht�1; (3) each processor and cell is a�ected by at most one live input;and (4) at most 2t items have been designated as marked.Proof: We prove this by induction. First, p0 = 0 < 20, c0 = 1 = 20, each processor is a�ected byno inputs, and each cell is a�ected by at most one input; h0 = 1 � jV0j=8 if n � 8.Now assume the lemma is true up to step t. Then we show how to make it hold for step t+ 1.Let q = ht. By the induction hypothesis, each processor and each cell is a�ected by at most onelive input at the start of step t + 1. We will refer to this live input of a processor (or a cell) as itslive input. Similarly, for a live input, its processors and its cells are the processors and cells thatare a�ected by it. Let P be a processor that is a�ected by a live input at the start of step t + 1.Processor P zero-writes to a cell C in step t + 1 if P writes to C if its live input is unmarked.Processor P one-writes to a cell in step t+ 1 if P writes to the cell if its live input is marked.We will use the following strategy to push through the induction for step t+1. We will describea strategy for the adversary to �x the values of a subset of the live inputs in step t + 1 (therebyrendering these inputs to be no longer live) so that each cell and processor is a�ected by only aconstant number of live inputs. To do this, the adversary �xes certain live inputs to value 0 so thatevery cell is a�ected by at most one live input whose processor zero-writes to it. Then the adversarydoes the same for one-writes { it �xes certain remaining live inputs to value 1 so that every cellis a�ected by at most one live input whose processor one-writes to it. So at this point, every cellis a�ected by at most 3 live inputs { its live input from step t, one live input for zero-writes, andone live input for one-writes. As a result, every processor is a�ected by at most 7 live inputs { itslive input l from step t, and 3 live inputs each from the cell it reads in step t + 1 if l = 0 and thecell it reads in step t + 1 if l = 1. The adversary then uses Theorem 4.2 on a graph derived from9



processors, cells and live inputs to extract a large independent set in the graph that correspondsto a subset of live inputs; all other live inputs are set to 0, and it is shown that this results in eachprocessor and cell being a�ected by at most one live input in step t + 1. We �ll in the details ofthis strategy below, where we also establish that this can be accomplished by �xing the values ofa su�ciently small number of live inputs so that all four of the inductive assumptions will hold atthe end of step t + 1.We �rst consider zero-writes to a cell. We say that the adversary zeros a live input if it designatesit as unmarked. Note that once an adversary zeros a live input, the input is not live anymore. Wewill make the adversary zero some of the live inputs so that each cell is a�ected by at most onelive input whose processor zero-writes to it in this step. To do this, we describe a simple procedurefor the adversary. Until each cell has at most one live input whose processor zero-writes to it,the adversary arbitrarily chooses a remaining live input l and for each cell to which l's processorscould write, the adversary zeros the other live inputs whose processors zero-write to the same cell{ up to two per cell for Tolerant, Collision, or Common (one su�ces for Common), and the onecorresponding to the lowest numbered processor that zero-writes to that cell, for Arbitrary. Noticethat once we zero live inputs whose processors zero-write to a cell according to the rule speci�edabove, the value of the cell is �xed for this step, and no information about live inputs is writtento it. Using this procedure, the adversary sets at most 2pt live inputs for each live input l chosen.Thus we are left with jVtj=(2pt + 1) live inputs. Let m = jVtj=(2q + 1). At this point, there are atleast m live inputs, and for each cell there is at most one live input that could cause a processor tozero-write to it.Now we deal with one-writes. We will �x the values of some live inputs so that every cell isa�ected by at most one live input during a one-write. For this, we will �nd a su�ciently large setof live inputs such that if one of these inputs is one-written to a cell by a processor, then eithereach other live input is also one-written to the same cell by a processor, or none are one-written tothe same cell. This is equivalent to �nding a sunower in a group of sets, where each set containsthe cells one-written to by processors which know a given live input. Thus we can apply Theorem4.1 with r = q and m as a lower bound on the number of sets. It follows that there must be asunower of size (m=q!)1=q � m1=q=q. We set all the live inputs that are not in the sunower tozero. Let m0 be the number of live inputs remaining. Then m0 � m1=q=q. At this point we havethe property that each cell is either a�ected by at most one live input, or is a�ected by all liveinputs on a one-write. We only need to consider the latter set of cells. Call this set of cells S.On the Tolerant, Collision, and Common ERCW PRAM models, note that the cells in S are �xed(because two of the live inputs must be marked, implying that there will be a write-conict in eachcell) and thus the cells are not a�ected by any live input on a one-write. For Arbitrary we need todo something slightly di�erent. We mark a live input corresponding to a processor that one-writesto a cell in S. Note that by the de�nition of S, every other cell in S is one-written to by a processorthat is a�ected by that input. By our Arbitrary rule, all cells in S will be �xed. For Priority wealso need to do something di�erent. Note that there are at most pt � q cells in S. Then we proceedaccording to one of the following options. (Option 1 is used to obtain the bound for COMP-P-4k,and Option 2 is used to obtain the bound for COMP-P-2k.)1. For each of the cells in S we mark the live input corresponding to the lowest numberedprocessor that performs a one-write into that cell. Thus we �x at most q live inputs, and we�x each cell in S2. Consider a cell v 2 S, and rank each live input from 1 tom0 in the same order as the processor10



numbers of processors that one-write to v. For each other cell v0 2 S consider the sequenceformed by the ranks of live inputs (computed from cell v) in order of processor numbers ofprocessors that one-write to v0. By Corollary 4.1, we can choose a subset of live inputs ofsize m01=2q�1 such that for each cell's sequence, the ranks (from the subset) are all presentin increasing or decreasing order. We zero the other live inputs, and mark the live inputscorresponding to the lowest and highest ranks in this subset. Thus we �x each cell in S.Let m00 be the number of live inputs remaining. Note that m00 = m0 � jVtj1=q=4q � q � jVtj1=q=8q,(using the fact that q � jVtj(1=2q)=8) except for COMP-P-2k, in which case m00 � m01=2q�1 �jVtj1=4q=4.At this point, each cell is a�ected by at most 3 live inputs { its live input from step t, and onelive input each for a zero-write and a one-write in the current step. Now at most c0 = ct+ 2pt cellsare a�ected by a live input after this write step. Also, since each cell can be read by at most oneprocessor, after the read step at most p0 = c0 + pt processors will be a�ected by a live input, andeach processor could be a�ected by at most seven live inputs (its live input l from step t and 3 liveinputs each from the cell it could read in the current step if l = 0 and if l = 1). The adversarywill zero some inputs so that each cell and processor is only a�ected by one live input. To do this,we construct a graph in which the vertices are the live inputs and edges between vertices exist ifthe live inputs are known to the same cell or processor. There are m0 vertices in this graph andthe degree of each vertex is at most 2c0 + 6p0. Hence the number of edges in the graph is no morethan m00 � (2c0 + 6p0)=2 < m00 � (4ct + 11pt). By Turan's Theorem (Theorem 4.2), we can �nd anindependent set of vertices of size(m00)2=(m00 + 2m00(4ct + 11pt)) = m00=(1 + 8ct + 22pt) � m00=(30q + 1)This is at least jVtj1=q=(31q �8q) � jVtj1=q=248q2, except for COMP-P-2k, in which case it is at leastjVtj1=4q=(31q � 4) � jVtj1=4q=124q, The inputs corresponding to vertices not in the independent setare then zeroed by the adversary.Now we can set pt+1 = ct + 3pt � 4t+1, ct+1 = ct + 2pt � 4t+1, Vt+1 to be the remaining set oflive inputs, where jVt+1j � jVtj1=q=248q2 except for Option 2 for the Priority model, in which casejVt+1j � jVtj1=4q=124q. Since q = ht, the lemma follows. 2Theorem 4.4 (1) Solving 2-compaction on a Robust, Common, Collision, or Tolerant ERCWPRAM requires p(log logn)=2 � 1 steps; (2) for k � p(log logn)=2 � 1, solving k-compactionon an Arbitrary ERCW PRAM requires at least k steps; (3) for k � p(log logn)=2 � 1, solv-ing 4k-compaction on an Priority ERCW PRAM requires at least k steps; and (4) for k �(log log log n)=4� 1, solving 2k-compaction on a Priority ERCW PRAM requires at least k steps.Proof: For the �rst three parts of the theorem, we can bound jVtj using Lemma 4.1 as follows.jVtj � jV0jQ0�i�t 1=4i42(t+1)248t � nQ0�i�t 1=4i16(4000t) � n4�P0�i�t i16(4000t) � n4�t(t+1)=216(4000t) � n2�(t+1)216(4000t)provided t satis�es the constraint ht � jVtj1=(2ht)=8. We note that this condition is satis�ed for allt � p(log log n)=2) for su�ciently large n. Thus after T = p(log logn)=2)� 1 steps, we will havejVT j � 
(2plogn=16(4000plog logn=2)). Now assume k � T . For large n, jVT j � maxf5; k+2; 4k+2g.11



For the case of 2-compaction on the Robust, Nice Robust, Collision, Common, or Tolerant models,there will be 3 live inputs which do not a�ect either of the �rst two global memory cells. Thus theadversary could mark two of them so that the compaction fails.For the case of k-compaction on the Arbitrary model, after k � 1 steps, at most k � 1 inputshave been designated as marked, and there will be at least 2 live inputs that do not a�ect any ofthe �rst k cells. Thus the adversary could mark (or unmark) one of them so that the compactionfails.For the case of 4k-compaction on the Priority model, after k�1 steps, at most 1+4+42+ � � �+4k�1 � 4k � 1 inputs have been designated as marked, and there will be at least 2 live inputs thatdo not a�ect any of the �rst 4k cells. Thus the adversary could mark (or unmark) one of them sothat the compaction fails.For the last part of the theorem (2k-compaction on the Priority model), we can bound jVtj usingLemma 4.1 as follows. jVtj � jV0jQ0�i�t 1=24i4t+1124t � n2�4t+14(500t)Thus after T = (log log log n)=4 � 1 steps, we will have jVT j � 
(2plogn=4(500loglog logn). Nowassume k � T . For large n, jVT j � 2k + 2.After k� 1 steps, at most 2(k� 1) < 2k� 1 inputs have been designated as marked, and therewill be 2 live inputs which do not a�ect any of the �rst 2k cells. Thus the adversary could mark(or unmark) one of them so that the compaction fails. 2Since this lower bound holds for any number of processors and global memory cells, it also holdsfor the ERCW(ack) PRAM, the OCPC, and the OCPC(ack) models with the same write conictresolution protocols.4.2 Upper BoundsFirst we note that there is a simple algorithm that consists of performing one concurrent write,which solves k-compaction in O(k) time on an Arbitrary ERCW PRAM. However, this algorithmwill not work unless some processor can succeed in each write. For the other write conict resolutionprotocols we need a di�erent approach.We construct an algorithm which runs in O(log log n+log k) time on a Tolerant ERCW PRAM.This is an adaptation of an O(logk) time algorithm for k-compaction on the Robust CRCW PRAMgiven in Fich et al. [24]. If k � n1=5, we use a standard EREW pre�x sums algorithm to performthe compaction in O(log k) time. Otherwise, as in [24] we partition the input cells into groups of lcells, where l = 8>><>>: 2k(k � 1) if k � logn4 log logn(k�1) logn3 log logn�1 if logn4 log logn < k � log n, and(k�1) logn3 log k�1 if logn < k < n1=5:We solve k-compaction within each group in O(log l) = O(log k) time using the standard EREWalgorithm. 12



Let yj = j if the jth group contains a non-zero entry, and let yj = 0 otherwise. As in [24], if wesolve the k-compaction problem for y1; : : : ; yn=l, we can solve the original k-compaction problem inO(log l) = O(log k) more steps. To solve the k-compaction problem on y1; : : : ; yn=l, we proceed asin [24], and reduce the problem in O(log l) (i.e., O(log k)) time on a Tolerant or Collision ERCWPRAM to k-compaction in an array of size 2ln(k�1)=l. If k > logn=4 log logn, then 2ln(k�1)=l =kO(1), and clearly, we can solve this k-compaction problem in O(log k) time. If k � logn=4 log logn,then in [24] the problem is solved in constant time using a CRCW technique, but on the ERCWPRAM we will, instead, solve the problem recursively on an array of size 2ln(k�1)=l � 2ln1=2k. Fork � logn=4 log logn, 2l � n1=k, so we can bound the time of this recurrence byT (n) � T (n3=(2k)) + O(logk) = O � log lognlogk (log k)� = O(log log n):Hence, using the fact that the Tolerant protocol is a Nice Robust protocol, and using Lemma 2.2,we obtain the following theorem.Theorem 4.5 Let t(n; k) = log logn+log k. The k-compaction problem can be solved in O(t(n; k))time on an n=t(n; k) processor Collision or Tolerant ERCW PRAM with n=t(n; k) global memorycells, and on an n=t(n; k) processor Robust ERCW PRAM with O((n=t(n; k))2) global memorycells. It can also be solved in O(k) time on an n=k processor Arbitrary ERCW PRAM with 1 globalmemory cell.4.2.1 RandomizedWe present two results for randomized algorithms for compaction. Both results are obtained byhaving processors hash into random locations in an array. We will assume the inputs are given inthe local memories of the processors.Our �rst result is an O(log k) expected time randomized algorithm for compaction on theRobust ERCW PRAM with n processors and n memory locations. If k > n1=16, we use thestandard O(logn) = O(log k) time parallel pre�x algorithm to perform the compaction. Otherwise,let A be an array of size k4. Clear this array, and let each processor representing some markedelement write its processor number to a random location of A. We use an O(log k) time pre�xoperation to check if k processors succeeded without collision. If so, we compact them into the�rst k locations in the array by computing pre�x sums, and inform the marked processors of theirsuccess. If any processor doesn't receive notice of success, (and so, by construction no processorreceives notice of success) it simply retries the procedure. It is straightforward to see that theprobability of failure decreases geometrically with the number of attempts. Then using Lemma 2.2,we obtain the following theorem.Theorem 4.6 An n= log k processor Robust OCPC or an n= log k processor Robust ERCW PRAMwith no more than n= logk global memory cells can solve k-compaction in O(logk) expected time.Proof: We only need to show that the Nice Robust ERCW(ack) PRAM procedure runs in O(log k)expected time. The probability that there are any collisions when writing to the array of size k4 is� k=k4. The time for writing and the pre�x sums computation is c log k for some constant c, and13



thus the total expected time until the procedure is successful is given byc log k + (c logk)=k3 + (c log k)=k6 + : : : = c log k 1Xi=0 k�3i = O(log k):2 Now we describe an O(log log k) algorithm for approximate compaction on an n processor NiceRobust ERCW(ack) PRAM which works with probability 1� 1k and uses only O(k) global memorylocations. Each processor with a marked element writes it to a random location in an array of size8k. If a processor receives an acknowledgement, it idles. If not, the processor writes its elementinto an array of size 4k. This procedure continues for a total of log log k steps as the array sizereduces by half each time. Then we attempt for three steps to write the remaining elements intoarrays of size k.It is not di�cult to see, using a Cherno� bound, that the number of remaining elements afterstep t is at most maxfk2�(2t+t�1); k1=4g with probability 1� te�k1=4=4.Lemma 4.2 After step t, with probability 1� te�k1=4=4, the number of remaining elements will beat most maxfk2�(2t+t�1); k1=4g.Proof: By induction. The base case is trivial. For the induction step, the probability of havingmore than the number left will be at most (t � 1)e�k1=4=4. Assume we have the required numberleft. We will randomly write these to an array of size k2�t+4. The probability of a write collisionfor any given processor is � k2�(2t+t�1)=k2�t+4, so the expected number remaining after step t willbe k2�(2t�1+(t�1)�1)(2t�4�(2t�1+(t�1)�1)) � k2�(2t+t)If k2�(2t+t) � k1=4=2, then by a Cherno� bound, the probability of having over twice this number, ork2�(2t+t�1), is less than e�k2�2t+t+1=4 � e�k1=4=4. If k2�(2t+t) < k1=4=2, then by a Cherno� bound,the probability of having over k1=4 remaining is less than e�k1=4=4. Thus the total probability offailure at step t is less than te�k1=4=4. 2The probability of any element colliding in the last three steps is k1=4(1=k3=4)3 � 1=k2. Since(log log k)e�k1=4=4 � 1=k2 for su�ciently large k, we can bound the total probability of not suc-ceeding by 1=k. Then using Lemma 2.1, we obtain the following theorem.Theorem 4.7 An n=(log log k) processor Nice Robust OCPC or an n=(log log k) processor NiceRobust ERCW PRAM with n=(log log k) global memory cells can solve approximate k-compactionin time O(log log k), with probability 1� 1=k.If we are on a model that can compute a Global OR in constant time (i.e. not the Robustor Nice Robust model), a single �xed processor can detect a failure and inform the \successful"processors in O(log k) time. To use this information in an algorithm that runs in 
(log k) time anduses compaction as a subroutine, the algorithm would run in stages of O(log k) steps, and a checkfor successful approximate compactions would be performed at the end of each stage. The expectedasymptotic running time of this algorithm would then not be a�ected by the possible failure of theapproximate compaction. 14



5 MaximumFinding the maximum of n input elements requires �(logn) time on an EREW or CREW, evenwhen the values are restricted to be either 0 or 1 [17]. Finding the maximum of n inputs on aPriority CRCW with n processors requires �(log logn) time if the inputs come from a large rangeand O(k) time if the inputs are restricted to the range [1; nk] [26]. In this section we will show that�nding the maximum over an unrestricted range requires 
(plogn) time on an ERCW PRAM. Ifinput values are restricted to the range [1; s], s � n we will show that the maximum can be foundin O(log log s) time on the Common or Tolerant ERCW PRAM, and that 
(plog log s) time isrequired to �nd the maximum.5.1 Lower BoundsOur �rst lower bound will be for the case of unrestricted input range. Wlog, we will assume that allthe inputs are distinct. Let MAX be an algorithm on the Priority ERCW PRAM which �nds themaximum of n inputs stored one per processor in the �rst n processors. For concreteness, assumethat the output of MAX is to be stored in the �rst global memory cell. Consider step t of MAX.Let Vt � fI1; : : : ; Ing be the set of inputs which could still be the maximum. These will be calledthe live inputs. Let St � f1; 2; 3; : : :g be the possible values for the live inputs, as restricted by theadversary. Let Ft = ffijIi 62 Vtg be the adversary's assignment of values to �xed inputs. Let kt bethe maximum number of processors or cells which are a�ected by any given live input.As the computation proceeds, the adversary �xes the values of certain inputs and maintainsa set of allowed inputs, such that, after each step, each processor is a�ected by at most one liveinput. Initially V0 = fI1; : : : ; Ing, S0 = f1; 2; 3; : : :g and is in�nite, and F0 = ;.Lemma 5.1 We can construct an adversary such that after step t of MAX, the following propertieshold: (1) Vt � Vt�1 and jVtj � jVt�1j3t+1 ; (2) each processor and cell is a�ected by at most one inputin Vt; (3) kt � 3t; (4) St � St�1 and St is in�nite; (5) Ft�1 � Ft � f1; 2; 3; : : :g � St; and (6) aninput in Vt a�ects at most kt processors and kt cells.Proof: De�ne a processor's read (write) function at step t to be a function which maps the liveinput this processor knows about at step t to the cell which it reads(writes).The lemma is obviously true for step 0. Now assume the lemma is true for all steps up tot � 1. Consider step t of MAX. Each processor knows at most 1 live input. Depending on thislive input, it will (possibly) write to a speci�c cell and (possibly) read from a speci�c cell. As in[25], we use Ramsey Theoretical arguments to restrict the possible values for inputs such that (1)each processor either writes for all values or for no values; (2) each processor either reads for allvalues or for no values; (3) each processor's read function is either constant or one-to-one; (4)each processor's write function is either constant or one-to-one; and (5) any two read and/or writefunctions from any step t0 � t are either identical or disjoint. Let S0t � St�1 be the set of possiblevalues for inputs after this restriction. The fact that S 0t is still in�nite is shown in [25]. Now, becausewe are assuming the inputs are distinct, one-to-one read (or write) functions can not be used toby processors to gain any information. (Notice that in this case a processor will only read a cell ifthe input I it knows is a certain value, and the only possible writes to that cell occur from someprocessor which also only knows I , since no other input could be that value) Thus we can restrict15



our attention to constant read and write functions. In this case, since the reading and writing cellsare �xed, and since we are using the Priority model, a processor reading a location knows exactlywhich processor last wrote (successfully) to that cell, and thus which single live input it will learnabout, if any.Form a graph with the live inputs (Vt�1) as vertices and an edge between two vertices if aprocessor is a�ected by those two live inputs (one from the previous step, and one from the celljust read). Take the largest independent set in the graph and let Vt be the inputs associated withthis independent set. Fix the smallest distinct values fi from S 0t to variables i 2 Vt�1 � Vt andremove them from S 0t to obtain St. Add these values to Ft�1 to obtain Ft. By Tur�an's Theorem,we can choose a set Vt such that jVtj � jVt�1j2jVt�1j+2e , where e is the number of edges in the graph.The degree of this graph is at most 3kt�1. (Consider a live input Ij . At most kt�1 processorsare originally a�ected by that live input, and possibly read a cell a�ected by another live input.Also, each of the kt�1 cells originally a�ected by Ij , plus the kt�1 cells written to by the processorsa�ected by Ij could be read by other processors.) Thus the number of edges is at most jVt�1j3kt�12 , sojVtj � jVt�1j2jVt�1j3t+1 � jVt�1j2jVt�1j3t+1 � jVt�1j3t+1 . By the same reasoning as above, the number of cells a�ectedby a given live input after step t is at most 2kt�1 < kt, and the number of processors a�ected by agiven live input after step t is at most 3kt�1 < kt. 2Theorem 5.1 Finding the maximum of n inputs on a Priority ERCW PRAM requires 
(plogn)communication steps.Proof: By Lemma 5.1, one can conclude that jVtj � n=3(t+1)+t+(t�1)+���+2 � n=3(t+2)(t+1)=2. Thenat step T = p2 logn= log 3� 2, VT � 2, and the �rst cell is a�ected by at most one of these inputs.Then the adversary can simply set the other input to be higher than the value stored in the �rstglobal memory cell. 2Theorem 5.1 only holds when the inputs are drawn from a very large range. For the case ofinputs restricted to a small range, we can prove the following lower bound.Theorem 5.2 Finding the maximum of n inputs drawn from the range [1; s], for s � n, requires
(plog log s) time on a Robust, Nice Robust, Tolerant, Collision, or Common ERCW PRAM.Proof: Consider an input array of size n which consists of all zeros except for two entries atlocations i; j 2 [1; s], which contain the values i and j, respectively. If we have an algorithm to�nd the maximum in this n element input, then we solve the 2-compaction problem on this arraywith the same time bound, and thus the 
(plog log s) lower bound on 2-compaction applies to theproblem of �nding the maximum. 25.2 Upper BoundsWe �rst show a doubly logarithmic time algorithm for Rightmost One problem, and then show analgorithm for Maximum which is doubly logarithmic in the number of di�erent values allowed forthe input elements (i.e., the `range'), up to a range of size n.16



Theorem 5.3 The rightmost one of n bits can be found on an n= log log n processor Common,Tolerant, or Collision ERCW PRAM in O(log log n) time, or on an n processor Priority ERCWPRAM in constant time.Proof Sketch: The algorithm for the Priority model is trivial. For the other models, we divide thearray into subarrays of size pn and recursively �nd the rightmost subarray which contains a 1 andthe rightmost one in each subarray. Note that on the CRCW PRAM, the recursion is unnecessary,since n processors can �nd the rightmost one in an array of size pn in constant time. 2Theorem 5.4 The maximum of n inputs in the range [1; s] can be found on a maxfn; sg= log log sprocessor Common, Tolerant, or Collision ERCW PRAM in O(log log s) time.Proof Sketch: We create an array of size s, place 1's at positions in the array which correspondto input values, and �nd the rightmost one in O(log log s) time. 2Using an algorithm similar to one in [23], we obtain the following result for �nding the maximumof binary inputs (i.e., the global OR) on a Robust ERCW PRAM.Theorem 5.5 An n= log log n processor Robust ERCW PRAM can �nd the global OR of n bits in�(log log n) time with error probability 1n .6 Chaining and Integer SortingOur goal is to obtain a fast ERCW PRAM algorithm to sort integers from a polynomial range. Todo this, we �rst develop algorithms for the Chaining problem, which takes an n-bit array as inputand �nds for each 1 in the input, the position of the nearest 1 to its left.Theorem 6.1 The Chaining problem on n bits can be solved on an n= log logn processor Common,Tolerant, or Collision OCPC or ERCW PRAM in O(log log n) time.Proof: First partition the input array into consecutive groups of log2 n bits and solve the NearestOnes problem in these groups computing pre�x sums in O(log logn) time. Now we assign a 1 toeach group which contained a 1, and solve the Chaining problem on n= log2 n bits. Once this isdone, the processor associated with the leftmost 1 bit in each group can simply read the positionof the rightmost 1 bit in the nearest group to the left which contains a 1, and write it to the outputarray.To solve the Chaining problem on n= log2 n bits, notice that in O(log logn) steps, we canbroadcast each bit to logn processors, so we have log n processors working for each bit. Imaginea complete binary tree formed over the n= log2 n bits. For each bit, associate one of its associatedprocessors with each of its ancestors. Now, in parallel for each node in the tree, solve the RightmostOne and Leftmost One problems for the subarray containing the elements at the leaves of the subtreerooted at the node. This computation can be performed in O(log log n) time and linear work asshown in Section 5. Each processor assinged to a bit with value 1 will then know if its bit isthe rightmost or leftmost at that node. For each bit b with value 1, use a standard pre�x sums17



computation over the processors associated with that bit to �nd the lowest node (closest to theleaves) for which b is not the leftmost bit. Then the processor for b assigned to that node can lookat the left child x of that node to �nd the rightmost bit r with value 1 in the subarray for x. Thisis the nearest one to the left of b. There will be no read conict, because at each node there is atmost one bit in its subarray which is the leftmost bit with value 1. 2The following theorem addresses the Chaining problem in the case when there is a processorassociated with each non-zero element in the input.Theorem 6.2 Let A[1::n] be an array of zeros and ones, with a processor associated with eachA[i] = 1 (hence the number of processors is equal to the number of ones in the input). Let thepriorities of the processors decrease with the position within A of the element to which a processor isassociated. The Chaining problem on this input can be solved in O(log logn) time on a PRIORITYERCW(ack) PRAM.Proof: The following algorithm solves the problem within the stated bounds. We create anauxiliary array of size pn and divide the input array A into pn blocks of size pn. All processorsassigned to elements in the ith block perform a concurrent write of their element's position withinA into location i of the auxiliary array. The processors that succeed delete their entry in A andrecursively solve the problem in the auxiliary array. The remaining processors recursively solvethe problem within their blocks. The recursive solutions are then combined into a solution for theoriginal problem in constant time. Since all of the recursive subproblems are of size pn, the overallalgorithm runs in O(log logn) time. 2We can now perform a stable sort of n integers in the range [0::n � 1] in O(logn) time withn log logn= logn processors and O(n2) space on a PRIORITY ERCW(ack) PRAM as follows. Asin the CRCW algorithm of [36] we use an n� n array (which is assumed to be initialized to zero).For each index i in the input, if element i has value j then a 1 is written into position (i; j) of thearray. We then solve the chaining problem on the n � n array (interpreted as a 1 � n2 array) toobtain the sorted elements in a linked list. This portion of the algorithm runs in O(log log n) timeusing n processors using the algorithm in the proof of Theorem 6.2. To obtain the sorted list in anarray form, we perform list ranking to �nd the position of each element in the output array. Sincethe sort is stable this allows us to sort n integers in the range [0::nk� 1], for any constant k, withinthe same processor-time bounds. It also allows us to reduce the space requirement to n1+�, forany constant � > 0, by viewing each value as the sum of powers of n�. This gives us the followingtheorem.Theorem 6.3 Integer chain-sorting can be performed on n integers in the range [0::n � 1] inO(log logn) time with n processors on a Priority ERCW(ack) PRAM. Integer sort into an arraycan be performed on n integers in the range [0::nk] in O(logn) time with n log logn= logn processorsand n1+� space on a Priority ERCW(ack) PRAM.7 Unbounded Fan-in, Bounded Fan-out CircuitsSince fast dynamic recon�guration between a large number of processors in optical networks doesnot yet seem to be technically feasible, we would like to �nd ways of reducing the need for it.18



One way is to design oblivious algorithms. An oblivious algorithm for an OCPC is an algorithm inwhich, if a processor transmits a message during a step, the destination of that transmission is �xedbefore the algorithm is run. An oblivious algorithm for an ERCW PRAM is an algorithm in which,if a processor reads or writes to any cells during a step, the locations read and written to by thatprocessor are �xed before the algorithm is run. In oblivious algorithms the pattern of transmissionsis known prior to the start of the algorithm (i.e., it is not dependent on the inputs). Thus, eachprocessor may have only a small set of other processors with which it needs to communicate, andthis set is �xed before the algorithm is run. Therefore, we would be able to �x or preset thetransmission elements, and we may avoid some of the recon�guration costs.A Boolean circuit is a directed acyclic graph. The nodes of in-degree 0 are called the inputs.The nodes of indegree k > 0 are called gates and are labeled with AND, OR, or NOT. (Nodeslabeled with NOT have must have indegree 1.) The fan-in of a node is its in-degree and the fan-outof a node is its out-degree. One of the nodes is designated as the output node. The size of a circuitis the number of gates, and the depth of a circuit is the maximum length of a directed path froman input to the output. A Boolean formula is a Boolean circuit whose underlying graph is a tree(all nodes except the output node have out-degree 1).A special type of oblivious algorithm is given by a bounded fan-out Boolean circuit (BFO),which is a Boolean circuit in which the fan-out of each node is at most two. We assume standardde�nitions for circuits and formulas [10]. A BFO circuit with size s and depth d can be simulatedin a straightforward way by an s processor, d step oblivious OCPC algorithm. Just as unboundedfan-in, unbounded fan-out circuits correspond closely to the CRCW PRAM [11], and the studyof bounded fan-in circuits often sheds light on algorithms for the CREW and EREW PRAM, webelieve that the study of BFO circuits should enhance the understanding of the ERCW PRAMsWe now give some results on solving some fundamental problems on BFO circuits.7.1 Lower BoundsOur �rst result shows how to transform a BFO circuit into something resembling a formula, so thatwe can obtain a lower bound the depth of the circuit using known lower bounds on formula size.We will assume the size of a formula is the number of inputs in the circuit corresponding to theformula.Theorem 7.1 Let f be a Boolean function over n variables. If f is computed by a circuit of depthd with fan-out at most c (with one input corresponding to each variable), then there is a Booleanformula of size at most ncd which computes f .Proof: Let C be a depth d circuit in which each gate has fan-out at most c. Let C0 be the samecircuit, but with every gate with some fan-out c0 > 1 replaced by a gate with a single output leadinginto a \fan-out" gate which fans out the output to c0 other gates. Then C0 has depth at most 2d.Now consider the following percolate operation. Assume a gate g has an output which enters ac0-fan-out gate. The percolate operation replaces this with a c0-fan-out gate at each input whichfans out each input into c0 duplicates of gate g. This has the e�ect of percolating the gate g up inthe circuit.We perform percolate operations on C 0 until all standard gates are above all fan-out gates.19



Notice that we have not changed the result nor the depth of the circuit. Call this new circuit C00.Notice that the standard gates of C 00 all have one output, and thus correspond to a formula for f .Let F correspond to this formula, i.e., the circuit consisting of the standard gates of C 00, with theinputs corresponding to every input into a gate which is an actual input or an output from one ofthe fan-out gates. Since there are at most d levels of fan-out gates, and each of those gates hasfan-out c, each input can be fanned out to at most cd inputs of F . Thus there are at most ncdinputs to F . 2Corollary 7.1 Any BFO circuit which computes parity requires 
(logn) depth.Proof: By Khrapchenko [42], any formula for parity must have size 
(n2). By the previous lemma,ncd = 
(n2), and since c is a constant, d = 
(logn). 2Let THk;n denote the threshold function which outputs 1 if and only if at least k of the inputsare equal to 1.Corollary 7.2 Any BFO circuit which computes THk;n requires 
(log k + log logn) depth.Proof: By Khrapchenko [42] any formula for THk;n must have size 
(k(n�k+1)). By Krichevskii[43] any formula for THk;n must have size 
(n logn). By the previous lemma, ncd = maxf
(k(n�k + 1));
(n logn)g, and since c is a constant, d = 
(log k + log logn). 2We next consider the computation of multiple-valued Boolean functions.Lemma 7.1 Let f : Rn ! Rm be a Boolean function. Consider the jth input variable for somej; 1 � j � n. Let O be a set of output variables with the property that for each o 2 O there is somen-bit input I such that the value of o is complemented when the jth bit in I is complemented. Thenany bounded fan-out circuit that computes f will require depth 
(log jOj).Proof: The circuit must contain a path from the jth input node to each of the output nodes in O.Since the circuit has bounded fan-out, the lemma follows. 2Corollary 7.3 Any bounded fan-out circuit for adding two n-bit integers, merging a bit into an nbit sorted sequence, sorting n bits, or computing the pre�x sums of n bits requires 
(logn) depth.7.2 Upper boundsThere are well known bounded fan-in circuits with O(logn) depth and linear size for parity, addition,merging, sorting binary inputs, and pre�x sums on binary inputs. By [40], these circuits can beconverted into bounded fan-out circuits of the same size and depth. By Corollaries 7.1 and 7.3,these are optimal BFO circuits for these problems in terms of both size and depth.Next we present a BFO circuit that computes the threshold function THk;n in optimal sizen and optimal depth O(log k + log logn). Our construction makes use of an optimal logarithmicdepth circuit for computing (in binary) the sum of n bits [46] and two constructions for monotoneformulas due to Valiant [49] and Friedman [27] which we sketch below.20



The monotone formula construction of Valiant [49] shows that any monotone symmetric functionon n variables can be written as a monotone formula of size O(n5:3). Implicit in the constructionof this formula is a monotone BFO circuit of size O(n5:3) and depth O(logn).The monotone formula construction of Friedman [27] shows that THk;n can be written as amonotone formula of size O(k12:6n logn). This construction uses Valiant's construction on thresholdfunctions with 4k2 inputs, and thus has depth O(log k). The threshold function developed byFriedman has the formTHk(y1; : : : ; yn) = Wk4 lognj=1 THk �Wi2Aj1 yi;Wi2Aj2 yi; : : : ;Wi2Aj4k2 yi�,where for each j, Aj1; : : : ; Aj4k2 is a partition of the n inputs. Thus each of the n inputs must befanned out to k4 log n of Valiant's threshold circuits. This can be done in O(log k+log logn) depthand O(nk4 logn) size. The total size of all of the Valiant circuits are then k4 logn times O((4k2)5:3).We use these results for our circuit as follows. First we place the n inputs into groups of sizek15 logn and use the addition circuits to �nd the sum of the number of ones. This takes linear sizein each group, and thus linear size overall. The depth required is O(log k + log log n). Then usinga standard comparison circuit, each group can check to see if it has more than k 1's. The outputto this circuit goes into a �nal OR gate which determines the �nal outcome. Along with this, eachcircuit fans out each of its �rst dlog ke outputs into the appropriate number of ones, so that we willhave at most 2k outputs from each group, with the number of ones output equal to the numberof ones in the group (assuming the number of ones is at most k). The outputs of all the groupscan now be input into the Friedman circuit. Since there are 2kn=(k15 logn) inputs, the size of theFriedman circuit will be O(n). The depth will be O(log k+ log logn). The output to the Friedmancircuit is then ORed with the output of the comparator circuit at each of the groups. If any grouphad more than k inputs, then the output of the total circuit will be 1. If not, then the output fromeach group will be the correct number of ones in the group, and the output of the total circuit willbe the output of Friedman's circuit, which will be 1 if and only if the number of ones in the inputis at least k.This circuit implies the following theoremTheorem 7.2 There is a size O(n), depth O(log k+log logn) BFO circuit which computes THk;n.8 Relations between ERCW ModelsWe now discuss the relative powers of the di�erent write conict resolution protocols on theERCW(ack) PRAM. Many of our results parallel those on the CRCW PRAM. Using the resultsfrom Section 3, some of these results can be generalized to the ERCW PRAM model and the OCPCmodel.We use the notation Protocol(m) to denote a collision protocol on an ERCW(ack) PRAM withm global memory cells. If we let X � Y mean \X conict resolution protocol can be simulated onY conict resolution protocol with constant slowdown", then it is not hard to see thatRobust(m) � Collision(m) � Arbitrary(m) � Priority(m) , andRobust(m) � Nice Robust(m) � Tolerant(m) � Collision(2m):21



(The last simulation simply associates an extra memory cell with each memory cell of the TolerantERCW(ack) PRAM, to test whether there will be a collision at that cell, so that the value of thecell is not overwritten if there is a collision.) In addition, Common(m) � Arbitrary(m).In the next two subsections, we describe some less obvious simulation results.8.1 SeparationsIn our lower bounds, we will always assume the simulating machine has in�nite memory. Boppana[9] showed that solving Element Distinctness on the Common CRCWPRAM (and thus the CommonERCW(ack) PRAM) requires 
(logn= log log n) time. However on any of the other ERCW(ack)PRAMmodels, Element Distinctness can be solved in constant time. The following theorem follows.Theorem 8.1 There is a separation of 
(logn= log logn) between the Common ERCW(ack) PRAMmodel and any other ERCW(ack) PRAM model.This separation is tight for the CRCW PRAM, but so far the best algorithm for Element Distinct-ness on the Common ERCW(ack) PRAM requires 
(logn) time.Similarly, Grolmusz and Ragde [34] and Chaudhuri[12] provide separations between some otherCRCW PRAM models, which can be easily transferred to the ERCW(ack) PRAM, yielding thefollowing theorem.Theorem 8.2 There is a separation of 
(log log logn) between the Collision ERCW(ack) PRAMand Common ERCW(ack) PRAM models, a separations of 
(log logn) between the CollisionERCW(ack) PRAM model and the Arbitrary ERCW(ack) PRAM model, and a separation of
(log logn) between the Tolerant ERCW(ack) PRAM model and the Collision ERCW(ack) PRAMmodel.8.2 SimulationsFirst we note that the simulation of a Priority(m) CRCW PRAM on an Arbitrary(mn) CRCWPRAM. given in Chlebus et al. [15] can be easily transferred to the ERCW(ack) PRAM, yieldingthe following theorem.Theorem 8.3 There is a simulation of a Priority(m) ERCW(ack) PRAM on an Arbitrary(mn)ERCW(ack) PRAM that runs in O(log logn) steps.The rest of this subsection describes the simulation of an Arbitrary(m) ERCW(ack) PRAM ona Tolerant(mn) ERCW(ack) PRAM.For the simulation we need to use a partition algorithm from [15], which is run with a subset ofprocessors, and results in either one processor being marked, or at least one but at most half of theprocessors being marked. This partition algorithm uses O(n) memory cells and takes O(log logn)time. An additional feature of this algorithm is that each marked processor has an associatedunmarked processor, and thus if k processors are initially assigned to each processor in the subset,then the algorithm can assign 2k processors to each marked processor, k from the marked processor,22



and k from its associated unmarked processor. (This partition algorithm was written for theCollision CRCW PRAM, but can also be run on the Tolerant ERCW(ack) PRAM.)In the �rst phase of our simulation, we divide the processors into groups according to the cellsthey write to, and run the partition algorithm plogn= log logn times, with each subsequent appli-cation on the marked processors from the previous application. Then if there is more than a singleprocessor remaining in a group, each of the remaining processors will be assigned 2plogn= log lognprocessors.In the second phase of our simulation, we use a technique from [16] to choose one of the remaining(marked) processors for each cell as follows. Let k = 2plogn= log logn. Assign each marked processorto a cell in an n element array according to its processor number. Form a k-ary tree T over thisarray. For each marked processor P do the following: Associate the k processors assigned to Pwith the k leaves in T with the same parent as P . Now let P write a 0 to its own cell. Then let Pwrite a 1 to its own cell, and let the auxiliary processors associated with cells at positions greaterthan P also write 1 to their cells. Then let P read its location. P will only read a 1 if it is the �rst(lowest numbered) child of its parent which is writing. Say a marked processor \wins" this level ifit succeeds in writing a 1. Assume P wins this level. Then P and its k assigned processors moveup to the next level. Notice that on the ERCW(ack) PRAM, the marked processors that lose can'tinform their assigned processors that they've lost, so those processors will also move up to the nextlevel. But they will simply mimic the assigned processors of the winner, and this will still allowonly the �rst child of each parent to succeed in writing a 1. We continue this procedure through thelogn= log k levels, until exactly one winning processor remains. This processor then writes withoutcontention to the appropriate cell, completing the simulation of the Arbitrary Write step.The time for performing plog n= log logn partitions is O(plogn log logn) and the time to pro-ceed through logn= log k levels of the tree, each one taking constant time, is also O(plogn log logn).Thus the time for simulating a step is O(plogn log log n). The following theorem follows.Theorem 8.4 There is a simulation of a Arbitrary(m) ERCW(ack) PRAM on an Tolerant(mn)ERCW(ack) PRAM that runs in O(plogn log logn) steps.9 ConclusionsIn this paper we have studied the Exclusive Read, Concurrent Write (ERCW) PRAM model. Thismodel is of importance since we show a tight correspondence between an ERCW PRAM with alinear number of memory locations and the Optical Communication Parallel Computer (OCPC), amodel of parallel computation that uses optical communication between processors and memory.We have also presented results for bounded fan-out circuits (BFO's). Algorithms designed forBFO's will map on to the OCPC without the need for fully dynamic recon�guration.The OCPC model has been widely studied, and most of the prior work on this model hasbeen devoted to implementing one step of parallel communication using a small number of stepson the optical communication medium. In contrast, we show in this paper that each step of theERCW PRAM (with number of shared memory locations equal to the number of processors) canbe implemented in constant time on the OCPC and vice versa. Thus the algorithms we present inthis paper can be mapped on to the OCPC so that each step takes only a constant amount of time23
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