
Computational Bounds for Fundamental Problems on
General-Purpose Parallel Models�

Philip D. MacKenziey

Dept. of Mathematics and Computer Science

Boise State University

Boise, ID 83712

philmac@cs.idbsu.edu

Vijaya Ramachandranz

Department of Computer Sciences

University of Texas

Austin, TX 78712

vlr@cs.utexas.edu

April 21, 1998

Abstract

We present lower bounds for time needed to solve basic problems on three general-purpose models

of parallel computation: the shared-memory models qsm and s-qsm, and the distributed-memory

model, the bsp. For each of these models, we also obtain lower bounds for the number of rounds

needed to solve these problems using a randomized algorithm on a p-processor machine. Our re-
sults on `rounds' is of special interest in the context of designing work-e�cient algorithms on a

machine where latency and synchronization costs are high. Many of our lower bound results are

complemented by upper bounds that match the lower bound or are close to it.

1 Introduction

Recently, there has been a great deal of interest in developing general-purpose models of parallel
computation that incorporate features of real machines such as bandwidth limitations and the
resulting cost for global memory accesses. The bsp [24] and logp [5] models are distributed memory
models of this type, and the qsm [10] and s-qsm are shared-memory models of this type.

As a shared-memory model, the qsm can be viewed as a generalization of the pram model [13]
with the qrqw memory access rule [9] (which is intermediate between the erew and crcw rules),
a parameter g to capture bandwidth limitations, and `bulk-synchrony' in place of synchronization
after each step as in the pram model. In a bulk-synchronous computation, individual processors
can execute a number of steps in an asynchronous manner before a global synchronization step.

In this paper we study the time needed to solve basic problems on the qsm and the s-qsm. We
will prove many of our lower bounds on a more generalized shared-memory model, the gsm, and
those results will also translate into lower bounds for the bsp model.

In addition to studying the time needed to solve a problem regardless of the number of processors
used, we also obtain bounds on the number of rounds needed in a computation with p processors.

�An extended abstract of this work will appear in Proc. 1998 ACM Symp. on Parallel Algorithms and Architectures

[19].
yPart of this work was performed at Sandia National Laboratories and was supported by the U.S. Department of

Energy under contract DE-AC04-76DP00789. Part of this work was performed while visiting the University of Texas.
zSupported in part by NSF Grant CCR/GER 90-23059.

1

A round in a computation is a sequence of steps between two global synchronizations in which
the total work performed by the algorithm is linear in n, the size of the input. It is desirable
to minimize the number of global synchronization steps in an algorithm that runs on a machine
that has high latency or synchronization costs. In addition, if one is interested in algorithms that
perform linear work, then it becomes desirable to require the algorithm to compute in rounds,
since any linear-work algorithm must compute in rounds. In this paper, we present bounds on the
number of rounds needed for basic problems on a p-processor machine, where p � n.

Our lower bound results are tabulated in four tables in Table 1. A brief description of some
upper bounds is given in Section 8. We study the following three classes of problems.
(1.) Linear Approximate Compaction (LAC). In many cases our lower bounds for this problem
also hold for related problems such as load balancing and padded sort.
(2.) Computing the OR. Our lower bound on time for randomized algorithms uses the Random
Adversary Technique [15] in a novel way, which could be of independent interest. Although the
lower bound is quite weak { on the order of log� n { it establishes that the OR function cannot
be computed in time independent of the size of the input by any randomized algorithm on these
models.
(3.) Parity. The lower bounds for this problem imply lower bounds for other important problems
such as list ranking and sorting.

There are a large number of lower bound results known for computation on the traditional
pram models as well as some for the qrqw pram [9]. However, we are not aware of many lower
bounds results for the general-purpose models considered in this paper. A tight lower bound on
the time needed for broadcasting on the qsm and the bsp is given in [1]. A lower bound for the
number of rounds needed on the bsp to compute the OR by a deterministic algorithm is given in
[11]. Among the results we present is the same lower bound as the one in [11], but one that holds
for randomized algorithms as well.

Many of our results build on techniques and results developed earlier for the crcw pram [3, 15],
qrqw pram [9, 16, 17, 18, 14], erew pram [16], and the few-write pram [6].

The rest of this paper is organized as follows. In Section 2 we de�ne the qsm, s-qsm and
bsp models, as well as our lower-bound model, the gsm, and we present some basic results on
mapping lower bounds from the gsm to the other models. In Section 3 we present our lower bound
results for Parity. In Section 4 we review the Random Adversary technique [16]. In Section 5
we develop a general lower bound proof based on the Random Adversary for the gsm, which we
use in Section 6 to derive lower bounds for Linear Approximate Compaction (LAC) and related
problems. In Section 7 we present a modi�ed version of the Random Adversary and show how it
can be used to derive a lower bound for OR (in Sections 6 and 7 we also present some deterministic
lower bounds for LAC and OR). Section 8 presents our upper bound results.

2 De�nitions and Basic Results

2.1 General-purpose Models

1. The qsm model. [10]
The Queuing Shared Memory (qsm) model consists of a number of identical processors, each

with its own private memory, communicating by reading and writing locations in a shared memory.
Processors execute a sequence of synchronized phases, each consisting of an arbitrary interleaving
of the following operations:

2

Shared-memory reads: Each processor i copies the contents of ri shared-memory locations into its
private memory. The value returned by a shared-memory read can only be used in a subsequent
phase.
Shared-memory writes: Each processor i writes to wi shared-memory locations.
Local computation: Each processor i performs ci ram operations involving only its private state
and private memory.

Concurrent reads or writes (but not both) to the same shared-memory location are permitted
in a phase. In the case of multiple writers to a location x, an arbitrary write to x succeeds in
writing the value present in x at the end of the phase.

The maximum contention of a qsm phase is the maximum, over all locations x, of the number
of processors reading x or the number of processors writing x. A phase with no reads or writes is
de�ned to have maximum contention one.

Consider a qsm phase with maximum contention �. Let mop = maxifcig and mrw = maxf1;maxifri; wigg
for the phase. Then the time cost for the phase is max(mop; g �mrw; �). The time of a qsm algorithm
is the sum of the time costs for its phases.

The particular instance of the Queuing Shared Memory model in which the gap parameter, g,
equals 1 is the Queue-Read Queue-Write (qrqw) pram model de�ned in [9].
2. The s-qsm Model. [10]

This is essentially the qsm, except that there is a gap parameter with value g for processing each
access at memory, in addition to the gap parameter at processors. Thus the time cost of an s-qsm
phase with maximum contention �, and with mop = maxifcig and mrw = maxf1;maxifri; wigg is
max(mop; g �mrw; g � �).

The qrqw pram is the same as the s-qsm with gap parameter 1.
3. The bsp Model. [24]

The bsp model consists of p processor/memory components that communicate by sending point-
to-point messages. The interconnection network supporting this communication is characterized by
a bandwidth parameter g and a latency parameter L. An input of size n is partitioned uniformly
among the p components so that each component is assigned either dn=pe or bn=pc of the inputs. A
bsp computation consists of a sequence of \supersteps" separated by bulk synchronizations. In each
superstep the processors can perform local computations and send and receive a set of messages.
Messages are sent in a pipelined fashion, and messages sent in one superstep will arrive prior to the
start of the next superstep. It is assumed that in each superstep messages are sent by a processor
based on its state at the start of the superstep. The time charged for a superstep is calculated
as follows. Let wi be the amount of local work performed by processor i in a given superstep.
Let si (ri) be the number of messages sent (received) by processor i, and let w = maxpi=1 wi. Let
h = maxpi=1(max(si; ri)); h is the maximum number of messages sent or received by any processor,
and the bsp is said to route an h-relation in this step. The cost, T , of a superstep is de�ned to be
T = max(w; g � h; L). The time taken by a bsp algorithm is the sum of the costs of the individual
supersteps in the algorithm. We will assume L � g throughout this paper.

2.2 A Lower Bound Model

Generally speaking, the bsp is a lower level model than the qsm or s-qsm since it is a distributed-
memory model, and it has an additional parameter, L, that is not present in the qsm models.
However, due to the message-passing mode of communication used in the bsp, in certain situations
it is more powerful than the qsm or s-qsm. For instance , if several di�erent processors send values
to a given processor to be placed in an array (in any order), the bsp processor can �ll in the array

3

by simply picking out the elements from its input bu�er. On a qsm this computation involves
compaction, since each value needs to be tagged with an explicit location within the array in which
it needs to be placed.

In order to derive lower bounds for the three models we consider, we de�ne below the gsm

model, which is stronger than all three of these models (and also stronger than the qsm(g; d)
[10, 21], which is a generalization of the qsm and s-qsm.) We derive most of our lower bounds on
this stronger model, and then obtain the lower bounds for the three models of interest as corollaries
of the lower bound on the gsm.
The gsm Model

The Generalized Shared Memory (gsm) model consists of a number of identical processors, each
with its own private memory, communicating by reading and writing cells in a shared memory.
These shared-memory cells can hold an arbitrarily large amount of information. Processors execute
a sequence of synchronized phases, each consisting of an arbitrary interleaving of shared-memory
reads and shared-memory writes. Concurrent reads or writes (but not both) to the same shared-
memory location are permitted in a phase. In the case of multiple writers, all information from

all writing processors is transferred to the cell, and added to the information already present in the

cell. We refer to this as the strong queuing model. The maximum contention for a phase is de�ned
as in the qsm.

The gsm model has three parameters, �, �, and . We will always take � = maxf�; �g,
� = minf�; �g. At the beginning of an algorithm, we assume that each cell contains information
about up to inputs (disjoint from other cells). A gsm phase operates in integral units of big-steps
which take � = maxf�; �g time each. The number of big-steps in a phase with maximum contention
� and maximum number of reads and writes by any processor mrw is b = maxfdmrw=�e; d�=�eg.
The time cost of a gsm phase with b big-steps is � � b. The time of a gsm algorithm is the sum of
the time costs of its phases. Note that a single big step can \handle" � reads and writes, and �
contention at any cell.

2.3 Rounds

A round in a computation (deterministic or randomized) with p processors on an n-element input is
a phase in a qsm or s-qsm computation that takes O(gn=p) time. On a bsp a round is a superstep
in which the bsp routes an O(n=p)-relation (i.e., h = O(n=p)) and performs O(gn=p + L) local
computation at any processor.

A round in a gsm computation with p processors on an n-element input, where p � n and
 � n=p, is a phase which takes O(�n=�p) time.

A p-processor algorithm on the qsm or s-qsm performs linear work if the processor-time product
is O(g � n), where n is the size of the input. As shown in [10],
(g � n) is a lower bound on this
product for most nontrivial problems. A p-processor algorithm on a gsm performs linear work if
the processor-time product is O(�n=�); this is again a lower bound for most nontrivial problems.

Under the above de�nitions, it should be clear that any linear-work algorithm must compute in
rounds, and that an r-round computation on an input of size n performs at most O(rgn) work on a
gsm, qsm or s-qsm. On a p-processor bsp this computation has an upper bound of O(r(gn+Lp))
on work. For small r these upper bounds are close to linear work.

As noted in the introduction, it is desirable to minimize the number of rounds in a computation,
if one wants to design e�cient algorithms for parallel machines in which latency is high or global
synchronization is a costly operation (or both).

4

2.4 Mapping GSM Bounds to the Other Models

We now show that lower bound results for the gsm translate into corresponding lower bound results
for the qsm, s-qsm, and bsp.

Claim 2.1 Let Tgsm(n; �; �;) be the time bound of a fastest algorithm on the gsm for a compu-

tational problem, and let Rgsm(n; �; �; ; p) be the minimum number of rounds needed to perform

the computation with p processors, p � n, on the gsm. Let Tqsm(n; g), Rqsm(n; g; p), Ts�qsm(n; g),
Rs�qsm(n; g; p), Tbsp(n; g; L; p), and Rbsp(n; g; L; p) be the corresponding quantities on the qsm,

s-qsm, and bsp, respectively.

For lower bounds that do not consider local computations we have

1. Tqsm(n; g) =
(Tgsm(n; 1; g; 1))

2. Ts�qsm(n; g) =
(g � Tgsm(n; 1; 1; 1))

3. Tbsp(n; g; L; p) =
(g � Tgsm(n;L=g; L=g; n=p))

4. Rgsm(n; �; �; ; p) =
(Tgsm(n;�n=�p;�n=�p;)�n=�p)

5. Rqsm(n; g; p) =
(Rgsm(n; 1; g; 1; p))

6. Rs�qsm(n; g; p) =
(Rgsm(n; 1; 1; 1; p))

7. Rbsp(n; g; L; p) =
(Rgsm(n; 1; 1; n=p; p))

Proof: The results for the time bounds follow from the observation that a phase of a qsm with time
cost maxfmop; gmrw; �g can be executed in the same time cost or less on a gsm with � = 1 and
� = g; a phase of an s-qsm with time cost � = maxfmop; g �mrw; g�) can be executed on a gsm with
� = 1 and � = 1 in time at most �=g; and a superstep of an bsp with time cost � = maxfw; g �h;Lg
can be executed on a gsm with � = L=g and � = L=g in time at most �=g. The result relating the
number of rounds on the gsm to time on the gsm comes from considering a round as a phase on a
gsm containing a single big-step that takes O(�n=�p) time, but operations take the same amount
of time as on the original gsm. The remaining results follow from the observation that a round of
a qsm can be executed in one round on a gsm with � = 1 and � = g; a round of an s-qsm can be
executed in one round on a gsm with � = 1 and � = 1; and a round of a bsp can be executed in
two rounds (one for writing and one for reading) on a gsm with � = 1, � = 1, and = n=p. 2

In the sections that follow, we will derive our lower bounds on the gsm and then translate them
to the qsm, s-qsm, and bsp, using the above claim.

We also note that a similar claim can be obtained for the qsm(g; d) model [10, 21], and can be
used to derive lower bounds for this model using the results we derive for the gsm.

Claim 2.2 Let Tgsm(n; �; �;) be the time bound of a fastest algorithm on the gsm for a computa-

tional problem, and let Rgsm(n; �; �; ; p) be the minimum number of rounds needed to perform the

computation with p processors, p � n, on the gsm. Let Tg>d�qsm(n; g; d) and Rg>d�qsm(n; g; d; p)
be the corresponding quantities on the QSM(g; d) when g > d and let Td>g�qsm(n; g; d) and

Rd>g�qsm(n; g; d; p) be the corresponding quantities on the QSM(g; d) when g < d.
For lower bounds that do not consider local computations we have

1. Tg>d�qsm(n; g) =
(d � Tgsm(n; 1; g=d; 1))

5

2. Td>g�qsm(n; g) =
(g � Tgsm(n; d=g; 1; 1))

3. Rg>d�qsm(n; g; p) =
(Rgsm(n; 1; g=d; 1; p))

4. Rd>g�qsm(n; g; p) =
(Rgsm(n; d=g; 1; 1; p))

2.5 Boolean Functions

Let x1; : : : ; xn denote boolean variables, a1; : : : ; an denote elements of f0; 1g and a denote an element
of f0; 1gn. Let Bn denote the set ff jf : f0; 1gn ! f0; 1gg. For S � f1; : : : ; ng let mS be the positive
monomial

Q
i2S xi and mS(a) =

Q
i2S ai.

Fact 2.1 ([22]) Every f 2 Bn can be written f =
P

S �S(f)mS for unique integer coe�cients

�S(f).

For f 2 Bn, let deg(f) = maxfjSj j�S(f) 6= 0g.

Fact 2.2 ([6]) For arbitrary f; g 2 Bn, the following hold:

1. deg(f ^ g) � deg(f) + deg(g),

2. deg(f) = deg(f),

3. deg(f _ g) � deg(f) + deg(g),

4. If g � f , i.e., g results from f by �xing some inputs to 0 or 1, then deg(g) � deg(f).

Let C(f) be the maximum of the numbers

minfkj9S�f1;:::;ng;jSj=kf(a) = f(b) if 8i2Sai = big
taken over all input maps a. (This was called the certi�cate complexity in Nisan [20].)

Fact 2.3 ([6]) C(f) � (deg(f))4.

For A � f0; 1gn, we denote the characteristic function of A by �A or �(A). For A a class of
subsets of f0; 1gn, let deg(A) = maxfdeg(�A)jA 2 Ag.

2.6 Yao's Theorem

The following theorem relates the success probability of a randomized algorithm to the success
probability of a deterministic algorithm for a given distribution on the inputs. This theorem can
be proved in a manner similar to the proof of Yao's Theorem [25].

Theorem 2.1 Let S1 be the success probability of a T step randomized algorithm solving problem

P , where the success probability is taken over the random choices made by the algorithm, and

minimized over all possible inputs. Let S2 be the success probability over a distribution D of inputs,

maximized over all possible T step deterministic algorithms to solve P . Then S1 � S2.

This theorem greatly simpli�es the problem of proving randomized lower bounds, as it converts
the original problem to one where randomness only comes into play through the input distribution,
and this can be set as one wishes. It is of course necessary to choose a distribution that will be
di�cult for any deterministic algorithm. Note that the input distribution cannot place all the
probability on one input (i.e. a \worst case" input), since then a simple deterministic algorithm
which checks for this input and outputs the precomputed answer will succeed with probability 1.

6

3 Parity and Related Problems

Given a Boolean n-array, the Parity problem returns a 1 if the number of 1's in the input is odd,
and returns a 0 otherwise. In this section we present algorithms and lower bounds for parity and
related problems.

We start with a lower bound for deterministic algorithms on the gsm, even if unit-time con-
current reads are allowed. Our proof is an adaptation of a method used by [14] to obtain a lower
bound for parity for the simd-qrqw model with concurrent reads (which is more restrictive than
even the crqw model) but with the added feature of `latency detection', which is not present in
the qrqw or qsm model.

Theorem 3.1 Any deterministic algorithm for the n-element Parity problem on the gsm requires

time
(� log(n=)= log �), even if unit-time concurrent reads are allowed.

Proof: Let r = n=. Note that the problem reduces to computing Parity on an input of size r.
The proof bounds the degrees of functions describing the states of processors and contents of

memory cells in each phase by restricting the set of inputs Ai we will consider in each phase i.
A0 = f0; 1gr and for each i > 0, Ai � Ai�1. Let �Ai be the characteristic function of Ai, i.e., the
function that evaluates to 1 for inputs in Ai and evaluates to 0 for inputs not in Ai. The sets Ai

will be chosen so as to force the ith phase to take the maximum time.
We will prove by induction on j that the degrees of �Aj , and of the functions describing the

states of processors and contents of cells at phase j are bounded by bj = (3 + �j + 2� 0j)bj�1, where
� 0j is the maximum queue length at any memory cell in phase j, and �j is the maximum number of
read or write requests issued by any processor in phase j for inputs in Aj. Note that b0 = 1.

Assume the result holds for j < i and consider phase i. For phase i, we de�ne Ai to be the set
of inputs in Ai�1 that cause a processor to read from or write to the maximum possible number
of cells, and subject to this constraint also cause a maximum number of writes to some cell. After
the read phase, by Fact 2.2, deg(�Ai) � bi�1 + bi�1 + � 0i � bi�1, where the �rst term is from �Ai�1 ,
the second term comes from �xing the state of one processor so that a maximum number of cells
are read or written, the third term comes from �xing the contents of up to � 0i processors so that
the maximum contention (� 0i) occurs. So deg(�Ai) � (2 + � 0i)bi�1.

The degree of a function describing the state of a processor is bounded by bi�1 + �i � bi�1 +
deg(�Ai) � (3 + �i + � 0i)bi�1. Similary the degree of a function describing the contents of a memory
location at the end of the ith phase is no more than bi�1 + � 0ibi�1 + deg(�Ai) � (3 + 2� 0i)bi�1. Thus
bi = (3 + �i + 2� 0i)bi�1 is an upper bound on the degree of �Ai and the functions describing the
states of processors and contents of cells at phase i.

Let � 00i = maxfd�i=�e; d� 0i=�eg. Assume the machine halts after phase l. Then the computation
time T � �(� 001 + : : :+� 00l). Since �i � 1 and � 0i � 1, we have T � l�. Also, the degree of the function
specifying the contents of the output cell should be at least r at termination since the degree of a
function f that computes the parity of r bits is r [14]. Hence,

r � bl

�
lY

j=1

(3 + �j + 2� 0j)

�
lY

j=1

(6�� 00j)

7

�
lY

j=1

(6�)�
00
j

� (6�)(�
00
1 +�

00
2 +���+� 00l)

� (6�)T=�:

It follows that T =
(� log r= log �). 2

Corollary 3.1 Any deterministic algorithm for the n-element Parity problem requires time
((g= log g) log n)
on the qsm,
(g log n) time on the s-qsm, and
((L= log(L=g)) log q) time on a p-processor bsp,
where q = minfn; pg.

For randomized algorithms for parity, we obtain two types of lower bounds. The �rst is a lower
bound on the gsm, which gives us the strongest result we are able to obtain for the bsp. The
second type of result is an adaptation of crcw lower bounds to the queuing models. We are able
to obtain stronger bounds for the qsm and s-qsm by this latter method. Since this type of lower
bound does not hold for a `strong queuing' model, it does not adapt to the gsm or the bsp.

Our �rst lower bound is obtained by an adaptation of the lower bound for randomized parity
on the simd-qrqw from [14].

Theorem 3.2 Computing the parity of n bits on a gsm by a randomized algorithm requires

(�

r
log(n=)

log log(n=)+log �) time.

Proof: Let r = n=. We assume a uniform probability distribution on the inputs, and prove that
any deterministic algorithm will take
(� �plog r=(log log r + log �)) time on more than half of
the inputs. By Yao's theorem this will give us a lower bound on the running time of randomized
algorithms for this problem.

We let � =
p

log r=(log log r + log�) and let � = �� . Our goal is to prove a lower bound of

(�). Our lower bound proof will �x the values of certain input variables during the computation
in order to maintain the following invariants at the end of phase t:

1. Each processor and memory cell knows at most one un�xed input variable.
2. The number of processors and memory cells that know an un�xed input variable xi is no

more than kt � �t.
3. Let Vt be the set of un�xed input variables at the end of phase t. Then, jVtj � jVt�1j=(5�kt).
4. The values revealed for variables not in Vt have been chosen to maximize the number of

correct answers for settings of variables in Vt.
If the number of possible read-writes by a processor P is more than �1 = � � � in a given phase,

then for at least half of the possible settings for the variables in Vt, P will perform more than �1
read-writes in that phase, and the running time of the algorithm will exceed the stated bound for
these settings. By invariant 4, the algorithm will fail with probability at least 1/2. Hence we can
assume that every processor performs no more than �1 read-writes in each phase.

Similarly, suppose the possible number of reads or writes at a memory cell m from processors
that know di�erent inputs is more than �2 = 2�� in a given phase. We assume that m is read
or written to by a given processor at most once in a phase (since otherwise we can convert this
algorithm into another one which performs the second access to m as a local operation and hence
would run faster). Let B be the set of variables in Vt that are known by those processors accessing
m in phase t. Thus, for at least half of the possible settings of the variables in Vt, at least half of
the bits in B will be set so as to cause the corresponding processors to access memory cell m. Thus

8

the running time of the algorithm will exceed � for these settings, and hence the algorithm will fail
with probability at least 1/2. Hence we can assume that every memory cell is accessed by no more
than �2 processors (that know di�erent inputs) in each phase.

We now show how we �x variables in Vt after the reads and writes in phase t+1 while maintaining
our four invariants. The �rst invariant is violated at a processor if it reads a cell that knows a
variable that is di�erent from the one known by the processor; it is violated at a cell if it is written
into by a processor that knows a di�erent variable than that known by the cell. We construct an
undirected graph G on the vertex set Vt such that there is an edge between vertices corresponding
to variables xi and xj i� a processor that knows xi (xj) either reads or writes a cell that knows xj
(xi). The degree of any vertex in this graph is

� 2 max(2�1kt; �2kt) � 4�kt.
Here the term 2�1kt within the max represents the number of edges inserted for processors that
know a variable xi, and the term �2kt represents the number of edges inserted for memory cells
that know xi, and the factor of 2 arises from the case when we interchange xi and xj .

Let ut = 5�kt. The maximum degree of vertices in G is no more than 4�kt, hence this graph
has an independent set of size at least jVtj=(deg(G) + 1) � jVtj=ut. We �nd an independent set I of
this size, and we �x the values of all variables in Vt� I with values such that the number of correct
answers for variables in I is maximized. Let kt+1 = � � kt. The number of processors and memory
cells that know a given variable in I after the read step is no more than kt+1, and each processor
and memory cell knows at most one variable in I. Let Vt+1 = I.

We note the following properties hold at the end of phase t + 1:
1. Each processor and memory cell at the end of phase t + 1 knows at most one variable in

Vt+1.
2. The number of processors and memory cells that know a given variable in Vt+1 is at most

kt+1 = �kt.
3.

jVt+1j � jVtj
(5�kt)

� r

((5�)t+1 �Qt
i=1 ki)

� r

((5�)t+1
Qt

i=1 �
i)

� r

((5�)t+1�t(t+1)=2)
:

4. We �xed the variables in Vt � Vt+1 to maximize the number of correct answers for settings
of variables in Vt+1.

Hence we have re-established the four invariants at the end of phase t + 1.
The output cell cannot contain the correct answer with probability greater than half as long as

jVT j > 1. Hence,

r � (5�(1+t=2))t+1 or t =
(

s
log r

log �
)

Since each phase takes time at least �, any randomized gsm algorithm that solves the parity
problem with probability at least 1=2 + �, � > 0 must take time
(�

p
log r=(log log r + log �)). 2

Corollary 3.2 Computing parity of n bits on a bsp by a randomized algorithm that succeeds with

probability at least 1=2 + �, � > 0, requires
(L
q

log q
log log q+log(L=g)) time, where q = minfn; pg.

9

For the qsm and s-qsm we have the following stronger lower bounds, which are obtained by
using the result in [1] on adapting crcw pram lower bounds to the qsm and the lower bound of
Beame and Hastad [3] on computing parity on the crcw pram.

Theorem 3.3 Any randomized algorithm for the n-element Parity problem on a p-processor qsm
requires time
(g log n

log log n+min(log log p; log log g)).

Proof: By using the result in [1] on adapting crcw pram lower bounds to the qsm and the lower
bound of Beame and Hastad [3] on computing parity on the crcw pram using p processors, we
obtain a lower bound of
(g logn= log log p) for computing parity with a randomized algorithm
on a qsm. This gives the stated lower bound if p is polynomial in n. If p is superpolynomial
in n, we note that in a sequence of T = �(log n= log log n) memory request steps by processors
(each of which takes g units of time), at most gT processors can obtain information about any
single input bit. Thus the number of processors q that are a�ected by any input bit is bounded
by q � n � g�(log n= log log n). By adaptation of the Beame-Hastad [3] lower bound to qsm given in
[1], this implies a lower bound of
(log n= log log q), i.e.,
(g log n

log log n+log log g) to compute parity by a
randomized algorithm on the qsm. We obtain the desired result by combining the results for the
case when p is polynomial in n and the case when p is not polynomial in n. 2

Corollary 3.3 Any randomized algorithm for the n-element Parity problem on an s-qsm requires

time
(g logn= log logn).

For the number of rounds needed to compute parity, the results obtained for the OR function
(later in this paper) in Theorem 6.2 and its corollary apply. However, in the following theorem and
its corollary we are able to strengthen the lower bound for the number of rounds on a qsm.

Theorem 3.4 The number of rounds needed to compute parity of n bits on a p processor qsm,
p < n, by a deterministic algorithm is
(log n

log(n=p)+minflog g; log log pg)

Proof: Note that for p <
p
n, the lower bound is constant, and thus trivially satis�ed.

For p � p
n, �rst we prove a lower bound of
(log n

log(n=p)+log log p). To do this, we change the proof

of Theorem 4.1, part (b) of Beame and Hastad [3]. The major changes are that the degrees of
the partitions of the processors after a read become (1 + n=p)s, instead of 2s, and the number of
di�erent cells that could be accessed becomes 2d(n=p)p instead of 2dp, where d is the degree of the
processor partitions. We perform two reductions, one with q = 1=(96(n=p)s) after the read step to
reduce processor partitions to degree s, and one with q = 1=(48s) after the write step to reduce
cell partitions to degree s. We need s = 2 log 4p for the probabilities to work out as in [3], along
with the fact that p >

p
n. After T steps we must have s � 1

48n((96(n=p)s)(48s))�(T�1) , and the

lower bound of T =
(log n
log(n=p)+log log p) follows.

Next, a lower bound of
(log n
log(n=p)+log g) follows from the lower bound given in Corollary 7.3 for

the number of rounds need to compute OR. 2

Corollary 3.4 The number of rounds needed to compute parity of n bits on a p processor qsm,

p < n, by a randomized algorithm is
(log n
log(n=p)+minflog g; log log pg)

Proof: A lower bound of
(log n= log(gn=p)) follows from Corollary 7.3 (for the OR function). The
remaining part of the lower bound is obtained using [3] and extending it to randomized algorithms
using either the Random Adversary technique, or [2]. 2

We note that the lower bounds we have obtained for the Parity problem imply corresponding
lower bounds for other problems such as list ranking and sorting, since there are simple size-
preserving reductions from parity to these other problems.

10

4 The Random Adversary

Our lower bounds for Load Balancing and the OR function use the Random Adversary technique
[16].

We start by reviewing this method.
The Random Adversary Technique allows one to prove a lower bound on the time required

for a parallel randomized algorithm to solve a given problem. The �rst step of the technique is to
decide on an input distribution for the problem. By Yao's Theorem, a lower bound on deterministic
algorithms over this distribution provides the same lower bound for randomized algorithms.

The next step is to create a Random Adversary that proceeds through the given deterministic
algorithm step by step, �xing some of the inputs in order to ensure some desired properties. (As
shown below, this entails �lling in the details of a procedure called REFINE.) Note that the Random
Adversary is similar to a standard deterministic adversary in most parallel lower bound proofs.
However, unlike deterministic adversaries that can �x inputs arbitrarily, the Random Adversary
must �x inputs according to the chosen input distribution, i.e., using the procedure RANDOMSET,
as described below. Also, depending on how RANDOMSET �xes the inputs, the desired properties
might not hold. Therefore, it is possible that the Random Adversary might have to make repeated
calls to RANDOMSET to ensure the desired properties.

The �nal step is to show that these desired properties (such as knowledge about the inputs still
being widely dispersed among the processors, and that the number of inputs left unset is still large)
hold with some given probability.

In the rest of this section we formalize this method.

4.1 De�nitions

Let P be a problem and I the set of inputs to P . Let Q be the set of possible values to which each
input could be set. De�ne a partial input map to be a function f from I to ff�g[Qg. Here `�' will
denote a \blank" or \unset" input. A partial input map is an input map if no inputs are mapped
to `�'. Let f� denote the partial input map which maps every input to `�'. A partial input map f 0

is called a re�nement of a partial input map f if for all i 2 I, and q 2 Q, f(i) = q implies f 0(i) = q.
(We denote this by f 0 � f .)

4.2 RandomSet Procedure

We will assume the distribution chosen is D. Function RANDOMSET is used to randomly generate
an input map one input at a time. It is called with a partial input map f obtained through calls
to RANDOMSET, and a set S of elements which are mapped to `�'. The elements in S are then
randomly set one by one according to the distribution D, conditional on f .

Function RANDOMSET(f; S)
For each i 2 S

Set f(i) according to the conditional distribution
of i given that the input is drawn from D
and is a re�nement of f

Return f

Fact 4.1 ([17]) Assuming f generated solely by calls to RANDOMSET, then f will be generated

according to the distribution D.

11

4.3 REFINE and GENERATE

Say f is t-good if it satis�es certain properties, which will be de�ned with respect to the time t,
the problem P , and the input distribution D. Say T � n is the time that we are trying to show is
a lower bound for solving the problem P . Let A be an algorithm which allegedly solves problem P
over the input distribution D in time T .

Given this algorithm A, we create a procedure REFINE which tells the Random Adversary how
to �x the inputs at each step. Formally, REFINE(t; f) takes a time t and a partial input map f
and returns a pair (f 0; x) consisting of a new partial input map f 0 that is a re�nement of f and a
lower bound x on the time of the next step. We need to prove that the procedure REFINE has
two important properties, the �rst of which is concerned with preservation of \t-goodness".

Assertion 4.1 If t < T and REFINE is called with parameters (t; f), where f is t-good, then
with probability at least 1 � n�2 REFINE will return a pair (f 0; x) where either t + x � T or f 0 is
(t + x)-good.

The second property is that REFINE is unbiased. Consider the function GENERATE de�ned
below that starts with the partial input map f0 = f�, and calls REFINE until t � T to generate a
sequence of partial input maps f0 = f� � ft1 � � � � � ftj � f where (fti ; x) = REFINE(ti�1; fti�1),
ti = ti�1 +x, tj�1 < T � tj, fti is a re�nement of fti�1 , and f is an input map generated according
to the conditional distribution over D from the set of re�nements of ftj . Then we need to prove
the following lemma.

Lemma 4.1 The input map f returned by GENERATE is generated according to the distribution

D.
In the REFINE procedure we construct in this paper, all inputs are set by calls to RANDOMSET.
Consequently, by Fact 4.1, Lemma 4.1 will always hold.

Function GENERATE
Let f0 = f�
Let f = f0
Let t = 0
While t � T Do

Let (f; x) = REFINE(t; f)
Let t = t + x
Let ft = f

Let P = fpjf(p) = `�'g
Return RANDOMSET(f; P)

For concreteness, we say the partial input map ft at any time t is simply the partial input map
at the end of the last completed parallel step.

Lemma 4.2 ([17]) With probability at least 1 � n�1, for any t < T , the partial input map ft is
t-good.

Proof: Let Zt be a binary random variable which is equal to 1 if ft is t-good. Then the probability
that ft is not t-good can be bounded by

Pt
i=1 Pr(Zt = 0 j Zt�1 = 1; : : : ; Z1 = 1). By Assertion 4.1,

this is at most Tn�2 � n�1. 2
In summary, to �ll in the Random Adversary framework for a speci�c problem P , we must

specify (1) an input distribution D, (2) a de�nition for t-good, (3) a function REFINE, (4) a time
T , and (5) a proof for Assertion 4.1.

12

5 A General GSM Lower Bound

Here we prove a general lower bound that will be used in proving lower bounds on Load Balancing
and related problems.

5.1 GSM De�nitions

Recall that a big-step of a gsm takes � time. For our lower bound proofs, we may assume that
each phase of a gsm takes at least one big-step, since computation will be considered free.

Let A be any deterministic algorithm for the gsm. Let f be any input map. Trace(p; 0; f) is
de�ned to be the tuple < p >. Trace(p; t; f) (for t > 0) is de�ned to be the tuple < p; �1; : : : ; �t >
in which �j is a set of (cell, contents) pairs (if any) for each cell read by p in a gsm step ending
at big-step j, if any, and �j is the null symbol otherwise. Trace(c; t; f) is de�ned to be the tuple
< c; �t >, where �t is the contents of cell c at big-step t.

Let e be any partial input map. Let v be a processor or cell. For each possible trace x, let
S(v; t; e; x) = ff jf � e and Trace(v; t; f) = xg (i.e. S(v; t; e; x) is the set of input maps which cause
the trace x for v). Let States(v; t; e) = fS(v; t; e; x)jS(v; t; e; x) 6= ;g. Note that jStates(v; t; e)j is the
number of di�erent traces of v at big-step t with input maps re�ned from e. De�ne Know(v; t; e)
as the minimum set of inputs such that for any input maps f1 and f2 that re�ne e and have
f1(q) = f2(q) for all q 2 Know(v; t; e), Trace(v; t; f1) is the same as Trace(v; t; f2). (Intuitively,
v is not dependent on inputs outside Know(v; t; e), since these could not a�ect its trace, and v is
dependent on every input inside Know(v; t; e) by the fact that it is the minimum set of inputs which
could a�ect its trace.) Let A�Proc(i; t; e) contain each processor p in which i 2 Know(p; t; e). Let
A�Cell(i; t; e) contain each cell c in which i 2 Know(c; t; e). De�ne Cert(v; t; f) as the minimum
set of inputs (and lexicographically smallest, if there are more than one) such that for any input
map f 0 such that f(q) = f 0(q) for all q 2 Cert(v; t; f), Trace(v; t; f) is the same as Trace(v; t; f 0).
Note that when f � e, Cert(v; t; f) � Know(v; t; e), but they are not necessarily the same.

5.2 General Lower Bound

Here we will prove a general lower bound on the amount of information which can be transferred
between processors given a general random input.

Assume � < (log n)1=8 and < log n. (If not, the lower bound that we wish to prove reduces
to
(�), which is trivial to prove, since at least one read is required to solve the problem.) Assume
the set of possible values for inputs is f0; 1g. Assume jIj = n�, i.e., the number of input bits is n�,
and assume that each input bit initially a�ects exactly one cell, and each cell is initially a�ected
by at most � = � input bits. Without loss of generality, assume n is large enough so that our
analysis holds.

Consider an input probability distribution with the following properties: (1) every input map

is possible, and (2) given a partial input map which �xes any set of at most Tn
2
3 inputs, the

probability that an un�xed input is assigned a given value is at least q � (log n)�1.
We de�ne the following values for i � 0: di = �(� + 1)2i, ki = 2�(�+1)

4(i+1)
, and ri = in

2
3 .

If T � (1=8) log log n�log �
2 log(�+1) then the following is easily proved.

Fact 5.1 dT � (log n)1=8, kT � 2
p

log n, and rT � Tn
2
3 .

A partial input map f is called t-good if the following conditions are satis�ed.
(1) For each processor or cell v, deg(States(v; t; f)) � dt,

13

(2) For each processor or cell v, jStates(v; t; f)j � kt,
(3) For each processor or cell v, jKnow(v; t; f)j � kt,
(4) For each input i, jA�Proc(i; t; f)j � kt and jA�Cell(i; t; f)j � kt, and
(5) f maps at most rt inputs to something other than `�'.

One can verify that for each processor or cell v, deg(States(v; 0; f�)) � �, jStates(v; 0; f�)j � 2� ,
and jKnow(v; 0; f�)j � 2� , and for each input i, jA�Proc(i; 0; f�)j = 0 and jA�Cell(i; 0; f�)j � 2� .
Therefore the input map f� is 0-good.

We now describe algorithm REFINE which is called with a big-step t and a partial input map f ,
and which returns a pair (f 0; x) consisting of a partial input map f 0 which is a random re�nement of
f , and a lower bound x on the number of big-steps taken by the phase. Note that x will be the true
number of big-steps taken by the phase if t+x � T . The random re�nement is based on the action
of algorithm A in the phase. The intuition behind this REFINE procedure is the following. First,
in lines (4) through (10), we force some processor that possibly accesses many cells in this phase
to actually access those cells. Since each state of a processor has a reasonably high probability,
we can force this without �xing the inputs of too many processors. This gives the lower bound
on the number of big-steps in the phase. Next, in lines (12) through (21), we force some cell that
is possibly accessed by many processors, to actually be accessed by those processors, or at least
� log logn of them if there are more than � log log n that could access the cell for some input map.
Since each state of a processor has a reasonably large probability, we can force many processors
to actually access a cell without needing to consider too many cells (i.e., without �xing the inputs
that a�ect processors that possibly write to those cells) In this REFINE procedure we will force the
number of big-steps required for the phase to correspond to the \amount of information exchanged"
in the phase, without �xing too many inputs.

We de�ne MaxCell(t; e) as the cell with the maximum possible contention at big-step t for any
input map which re�nes e. We de�ne MaxRWC(c; t; e) as the maximum possible contention at c at
big-step t for any input map which re�nes e. We de�ne MaxCertCell(c; t; e) as the lexicographically
smallest input map f � e which causes the maximum possible contention at c at big-step t. We
de�ne MaxProc(t; e) as the processor with the maximum possible number of reads or writes at
big-step t for any input map which re�nes e. We de�ne MaxRWP(p; t; e) as the maximum possible
number of reads or writes p makes at big-step t for any input map which re�nes e. We de�ne
MaxCertRWP(p; t; e) as the lexicographically smallest input map f � e which causes p to read or
write MaxRWP(p; t; e) cells at big-step t. Let ACCESS(c; t; e) be the set of processors that read
from or write to cell c at big-step t for any input map which re�nes e.

Function REFINE(t; f)
(1) Let e = f
(2) Let Done = FALSE
(3) Let MaxCountRW = 0
(4) While not Done
(5) Let p = MaxProc(t; e)
(6) Let h = MaxCertRWP(p; t; e)
(7) Let e = RANDOMSET(Cert(p; t; h); e)
(8) If for all i 2 Cert(p; t; h), h(i) = e(i)
(9) Let MaxCountRW = MaxRWP(p; t; e)
(10) Let Done = TRUE
(11) Let Done = FALSE
(12) While not Done
(13) Let c = MaxCell(t; e)

14

(14) Let h = MaxCertCell(c; t; e)
(15) Let W = ACCESS(c; t; h)
(16) Choose W 0 �W such that jW 0j = minfjW j; � log log ng
(17) Let V =

S
p2W 0 Cert(p; t; h)

(18) Let e = RANDOMSET(V; e)
(19) If for all i 2 V , h(i) = e(i)
(20) Let MaxContention = jW 0j
(21) Let Done = TRUE
(22) Let f 0 = e
(23) Return (f 0;maxfdMaxContention=�e; dMaxCountRW=�eg

Claim 5.1 If f is t-good and REFINE(t; f) returns (f 0; x), then either x � log logn and is a

lower bound for the number of big-steps required for the phase, or x is the exact number of big-steps

required for the phase.

Proof: Lines (4) through (10) set MaxCountRW to the (exact) maximum number of cells read or
written to by a processor during this step.

If the maximum contention is less than � log logn, lines (12) through (21) set MaxContention
to the (exact) maximum contention at any cell. Then x is the maximum of dMaxCountRW=�e and
dMaxContention=�e, which is the exact time required for the step. Otherwise (i.e., if the maximum
contention is at least � log logn), the MaxContention will be � log log n and x will be the maximum
of MaxCountRW and log logn, which is at least log log n and a lower bound on the time required
for the step. 2

Lemma 5.1 If f is t-good and REFINE(t; f) returns (f 0; x), then either t + x > T or

(1) For each processor or cell v, deg(States(v; t + x; f 0)) � dt+x,
(2) For each processor or cell v, jStates(v; t + x; f 0)j � kt+x,
(3) For each processor or cell v, jKnow(v; t + x; f 0)j � kt+x, and
(4) For each input i where f 0(i) = `�', jA�Proc(i; t+x; f 0)j � kt+x and jA�Cell(i; t+x; f 0)j � kt+x.

Proof: Assume that t + x � T , and thus x < log log n.
The bounds we show below follow from the fact that for x � 1, �x+ 1 � (�+ 1)x. It is possible

to have x = 0, and it is easy to check that our bounds hold in that case also. An additional note
is that there are at most �xk2t processors that possibly read (equivalently, possibly write to) any
given cell for any input map that re�nes f 0. Otherwise, there would be �x+ 1 processors that were
a�ected by totally disjoint sets of inputs that all possibly read (possibly write to) that cell, and
thus some re�nement of f 0 would force all �x + 1 processors to read (write to) that cell. This is
impossible by Claim 5.1. For a read step, the trace of processor v depends on its original trace � ,
plus the traces of the y � �x cells c1; : : : ; cy that it read, �1; : : : ; �y. Say the new trace is � 0. Then
S(v; t + x; f 0; � 0) = S(v; t; f; �) \ S(c1; t; f; �1) \ � � � \ S(cy; t; f; �y), and

deg(�(S(v; t + x; f 0; � 0)))

= deg(�(S(v; t; f; �)) �
yY

i=1

�(S(c1; t; f; �i)))

� deg(�(S(v; t + x; f; � 0))) +
yX

i=1

deg(�(S(c1; t; f; �i))):

15

By induction, each term is at most dt, and this implies that deg(States(v; t+x; f 0)) � (�x+ 1)dt �
dt+x.

Processor v reads one of at most kt sets of at most �x cells at step t, each one being in one of
at most kt states. Thus jStates(v; t + x; f 0)j � k�x+1t � 2�(�+1)

4(t+x+1)
= kt+x.

The inputs that a�ect processor v are the kt that originally a�ect it plus the kt that a�ect each
of the �xkt possible cells it reads. Thus jKnow(v; t+ x; f 0)j � kt + �xktkt � 2�(�+1)

4(t+x+1)
= kt+x.

An input a�ects all the processors it originally a�ects, plus all the processors that possibly read
from the cells that it a�ects. Thus jA�Proc(v; t + x; f 0)j � kt + �xk2t kt � 2�(�+1)

4(t+x+1)
= kt+x.

Say the trace of cell v after the step is � , and let h 2 S(v; t+x; f 0; �). Let G = fS(p; t; f 0; ��)j�� =
Trace(p; t; h0) and p writes to v at time t on input map h0 � f 0g. We consider two cases.

Case 1 h 2 S for some S 2 G. Let P = fp : p writes to c on input map hg. For p 2 P , say
h 2 S(p; t; f 0; ��p) 2 G, and let S�

p = S(p; t; f 0; ��p). Let G0 = fS(p0; t; f 0; � 0) 2 Gjp0 62 Pg.
Then S(v; t + x; f 0; �) =

TfS�
p : p 2 Pg \TfSjS 2 G0g. By the inclusion-exclusion principle,

�(
\
fSjS 2 G0g) =

X
(�1)A

Y
S2A

�(S);

where the sum is over all A � G0. Further, since at most �x processors write to v, for all
h0 2 TfS�

p : p 2 Pg, at most �x�jP j many S 2 G contain h0. Thus
Q

p2P �(S�
p)�QS2A �S = 0

if jP j+ jAj � �x. Thus

deg(�(S(v; t + x; f 0; �)))

� deg(
Y
p2P

�(S�
p)
X

(�1)A
Y
S2A

�S)

� maxf
X
p2P

deg(�(S�
p) +

X
S2A

deg(�S)g;

where the sum in the �rst inequality and the max in the second inequality is taken over all
A where jAj � �x� jP j. By induction, each term is at most dt, so deg(States(v; t+ x; f 0)) �
�xdt � dt+x.

Case 2 h 62 S for any S 2 G. By a similar argument, deg(States(v; t+x; f 0)) � deg(States(v; t; f))+
�xdt � (�x + 1)dt � dt+x.

Cell v is possibly written to by at most �xk2t processors, and thus it could either be in the
state it was originally or in one of the kt states of the processors that possibly write to it. Thus
jStates(v; t + x; f 0)j � kt + �xk2t kt � 2�(�+1)

4(t+x+1)
= kt+x.

The inputs that a�ect a cell v are the at most kt that originally a�ect it plus the kt that
a�ect each of the at most �xk2t processors that possibly write to it. Thus jKnow(v; t + x; f 0)j �
kt + �xk2t kt � 2�(�+1)

4(t+x+1)
= kt+x.

An input a�ects all the cells it originally a�ects, plus the �xkt cells possibly written to by each
processor thatit a�ects. Thus jA�Cell(v; t + x; f 0)j � kt + �xktkt � 2�(�+1)

4(t+x+1)
= kt+x. 2

Lemma 5.2 If f is t-good and REFINE(t; f) is successful and returns (f 0; x), then either t+x > T
or f 0 is (t + x)-good.

Proof: This follows from Lemma 5.1, the de�nition of successful, and the de�nition of t-good. 2

Claim 5.2 If f is t-good then the probability of a processor or cell being in any given state at time

t < T is at least q
p

log n.

16

Proof: Consider a processor or cell v, a state of v, and an input map h � f which causes the trace
corresponding to that state. By setting each input i 2 Cert(v; t; h) to h(i), the state would occur.
The probability of this state occurring is at least q� where � = jCert(v; t; h)j. But by Fact 2.3,
jCert(v; t; h)j � (deg(States(v; t; f)))4 � d4t �

p
log n. 2

We say that REFINE(t; f) is successful if it calls RANDOMSET with at most n
2
3 inputs.

Lemma 5.3 If f is t-good then REFINE(t; f) is successful with probability at least 1 � n�2.

Proof: Consider the While loop at lines (4) through (10). Since by Claim 5.2, the probability of

a processor being in any state is at least q
p

log n � 2� log
2
3 n, the probability of executing this loop

more than
p
n times is at most

(1 � 2� log
2
3 n)

p
n � n�3:

Then since Cert(p; t; h) � p
log n for any input map h, the probability of more than

p
n logn inputs

being set is at most n�3.
Now consider the While loop at lines (12) through (21). We argue that the probability of not

�nishing at one of the �rst
p
n iterations of this loop is at most n�3.

For any iteration of this While loop, the probability of �nishing is the probability that at most
(� log logn) maxpfjCert(p; t; f�)jg inputs are set according to f�. The probability of this is at least

q(� log log n)
p

log n � 2� log
2
3 n. Thus the probability of not �nishing in any of the �rst

p
n iterations

is less than (1 � 2� log
2
3 n)

p
n � n�3.

Note that if we do �nish in the �rst
p
n iterations, we set at most

p
n(�

p
log n log log n) inputs.

In total, REFINE(t; f) fails with probability at most n�3 + n�3 � n�2. 2

Lemma 5.4 If t < T and REFINE is called with parameters (t; f), where f is t-good, then with

probability at least 1� n�2 REFINE will return a pair (f 0; x) where either t+ x � T or the partial

input map f 0 is (t + x)-good.

Proof: This follows from Lemma 5.3 and Lemma 5.2. 2

Corollary 5.1 With probability at least 1 � n�1, for any processor or cell v, and any t � T ,

deg(States(v; t; ft)) � dT � (log n)1=8; jKnow(v; t; ft)j � kT � 2
p

log n; for any unset input i and

any time t � T , jA�Proc(i; t; ft)j � kT � 2
p

log n, jA�Cell(i; t; ft)j � kT � 2
p

log n; and the number

of inputs set by RANDOMSET is at most rT � Tn
2
3 .

6 Load Balancing

Consider the following variant of the load-balancing problem:
Chromatic Load Balancing (CLB) Let m � 1, and let Q be a set of 8m colors. Assume that
there is an input array of size n � 4m, holding n groups of 4m objects each, and each group of
objects is randomly assigned a color from Q. Then the chromatic load-balancing problem is to
choose any color and distribute all objects of that color into an n �m array, holding n groups of
m objects each. (The groups in the output need not respect the input grouping.)

We will prove a lower bound for the CLB problem and then use this lower bound to establish
lower bounds for Load Balancing, LAC (Linear Approximate Compaction) and Padded Sort.

17

6.1 Chromatic Load Balancing Lower Bound Proof

Without loss of generality, we will assume the objects are tagged with their original group (row)
number and their original rank (column) (1 to 4m) within that group.
Enhanced Chromatic Load Balancing (ECLB) The enhanced chromatic load-balancing prob-
lem is the same as the CLB problem with the added requirement that for each cell in the input
array, there must be a pointer to the destination row (group number) of the object in the output
array.

Claim 6.1 Given a solution to the CLB problem, one can construct a solution to the ECLB problem

on a gsm in m additional steps.

Proof: Assign one processor per destination row (of the CLB solution) to step through the at most
m objects assigned to that group. For each object with tag (group,rank), have the processor write
that destination in the input array at location (group,rank). 2

Lemma 6.1 Any deterministic algorithm which solves the ECLB problem with probability at least
1
4 on a gsm requires

(1=8) log log n�log 8m
2 log(�+1) big-steps.

Proof: Consider a deterministic algorithm that allegedly solves the ECLB problem with probability
at least 1

4 in t < T big-steps. From Corollary 5.1, assuming � = 8m, with probability at least

1 � n�1, for any processor or cell v, deg(States(v; t; ft)) � dt � (log n)1=8; jKnow(v; t; ft)j � kt �
2
p

log n; for any unset input i jA�Cell(i; t; ft)j � kt � 2
p

log n; and the number of inputs bits set by

RANDOMSET is at most Tn
2
3 For now, we assume all these conditions hold.

We call RANDOMSET to set the input bits associated with any color that has at least one
input bit set. Notice that at most Tn

2
3 � � n

4 colors will be �xed. For the remainder of the analysis,
we will discuss colors instead of bits.

Let f(q) � ft be the input map where f(q)(i) = q whenever ft(i) = `�', i.e., f(q) designates the
color q for each group with an unset color. (The fact that f(q) is not a relevant input map does
not matter in the argument that follows.) Consider an input cell c whose group color has not been
�xed by the Random Adversary. Consider the contents of c (the pointer to the location in the
output array) assuming that the input map f which was re�ned from ft assigned the color q to all
inputs in Cert(c; t; f(q)). Do this for all input cells whose inputs have not been �xed. This de�nes
a potential pointer map F . Then F is a function with a domain of size at least (3n=4)(4m) = 3nm
and a range of size at most n. By a simple counting argument, we can �nd n

2 disjoint sets of m+ 1
input cells, each of which point to the same destination group.

Let S be one of the disjoint sets of input cells that we have just found. Each of the m + 1
cells c 2 S has Cert(c; t; f(q)) � (dt)

4 � p
log n, and thus at most 2(m + 1)

p
log n inputs a�ect

the contents of these cells, assuming those inputs are all set to q. Each of these inputs i has

A�Cell(i; t; ft) � kt � 2
p

log n, so at most (m + 1)(2
p

logn)2
p

log n cells are a�ected by the same
inputs that a�ect the cells in S. Thus from the n

2 disjoint sets of m + 1 input cells which are

mapped by F to the same output cell, we can �nd a subset of B = n2=3 sets whose cell contents
are completely independent. Number these sets from 1 to B.

Claim 6.2 With high probability, at least one of the B sets uses the same pointers as F .

Proof: We can see that the probability of all cells in one of these sets using the pointers from
F is at least the probability that f(i) = q for all i 2 Cert(c; t; f(q)) for each c in the set. Even

18

conditioned on any values of inputs from the other B�1 pairs and the inputs �xed by the Random

Adversary, the probability of this event is at least (8m)�2
p

log n. (Note that the number of inputs

we are conditioning on is at most (B � 1)2
p

log n + 1
16n

2
3 log logn � n

2 log log n .)
The probability that this does not happen for any of the B pairs is at most

(1 � (2m)�2
p

log n)B � e�B(2m)�2
p

log n � e�
p
n;

for su�ciently large n. Thus, with very high probability, at least one set of input cells will be
mapped to the same output cell. 2

By Claim 6.2, with very high probability the mapping provided by the algorithm at this point
will not be a valid solution to ECLB, and this is true for any choice of q. This is assuming that
the conditions implied by Corollary 5.1 hold, and that the number of items is at most n

m . But
these conditions hold with probability at least 1� 2n�1. Thus with high probability, the mapping
provided by the algorithm at this point will not be a valid solution to ECLB. This proves the
lemma. 2

Lemma 6.2 A deterministic algorithm which solves the CLB problem with probability at least 1
4

on a gsm requires
(�((1=8) log log n�log 8m
2 log(�+1) �m) time.

Proof: Given a deterministic algorithm that solves the CLB problem with probability at least
1
4 in (1=8) log log n�log 8m

2 log(�+1) � m big-steps, From Claim 6.1 we could solve the ECLB problem with

probability at least 1
4 in (1=8) log log n�log 8m

2 log(�+1) big-steps. This is impossible by Lemma 6.1. The
lemma follows from the fact that each big-step takes � time. 2

6.2 Applications of the Chromatic Load Balancing Lower Bound

We apply the lower bound obtained in the previous section to the following problems.
Load Balancing Given h objects distributed among n processors, redistribute the objects so that
each processor gets O(1 + h=n) objects.
Padded Sort (or Padded U [0; 1] Sort) Given n values taken from a uniform distribution over
the unit interval [0; 1], arrange them in sorted order in an array of size n + o(n), with the value
NULL in all un�lled locations.
Linear Approximate Compaction (LAC or h-LAC) Given an array of n cells with at most h
containing one item each and all others being empty, insert the items into an array of size O(h).

Theorem 6.1 Solving the Load Balancing problem, the LAC problem, or the Padded Sort problem

with probability at least 1
2 requires �((1=8) log log n�log 2 log � �O(m)) time on a Randomized gsm.

Proof: Load balancing: Assume there is an algorithm that solves Load Balancing with proba-
bility at least 1

2 on the qsm in expected time t. Then by Yao's Theorem, for any input distribution,
there is a deterministic algorithm which solves Load Balancing over that distribution with the same
probability in time t. Consider the Chromatic Load-Balancing problem (with m = log log log logn)
and choose one of the 8m colors. Let D be the input distribution of the objects of that color, and
let A be the algorithm given by Yao's theorem for distribution D. We can then solve the Chromatic
Load-Balancing problem using the following procedure. First run A for the objects of the chosen
color, with each processor taking the objects of a single row. Without loss of generality, for some
constant C assume A assigns at most C(1 + h=n) objects to each processor, when h objects are

19

given as input. Also assume n is large enough so that 2C < m. If at most m objects are assigned
to each processor then one can easily assign each processor's objects to a destination group.

On average, there will be 4nm=8m objects of the chosen color, and with very high probability,
there will be at most n objects of that color. If there are at most n objects of that color, at
most 2C of them will be assigned to any one processor by A. Thus the Chromatic Load-Balancing
problem can be solved with probability at least 1

4 in the same asymptotic time as A. By Lemma 6.1,

t = �((1=8) log log n�log 8m
2 log � �O(m)).

LAC: Assume there is an algorithm that solves LAC with probability at least 1
2 on the qsm

in time t. Then by Yao's Theorem, for any input distribution, there is a deterministic algorithm
which solves Compaction over that distribution in expected time t. Consider the Chromatic Load-
Balancing problem (with m = log log log logn) and choose one of the 8m colors. Consider an item
to be a group of objects of that color, and let D be the input distribution of the items. Let A
be the algorithm given by Yao's theorem for distribution D. We can then solve the Chromatic
Load-Balancing problem using the following procedure. First run A with h = n=4m. Without loss
of generality, for some constant C assume A inserts the items into an array of size Ch, when h
is the parameter given in the de�nition of Compaction and the input consists of at most h items.
Also assume n is large enough so that C < m. If A succeeds, then one can easily assign each item
to 4 destination groups (i.e. m objects to each destination group), and this solves the Chromatic
Load-Balancing problem.

On average, there will be n=8m items, and with very high probability, there will be at most
n=4m items. If there are at most n=4m items, then A will succeed. Thus the Chromatic Load-
Balancing problem can be solved with probability at least 1

4 in the same asymptotic time as A. By

Lemma 6.1, t = �((1=8) log log n�log 8m
2 log � �O(m)).

Padded Sort: (We actually prove that this lower bound holds for sorting into any array of
size linear in n, not just n + o(n).) We can reduce the Chromatic Load-Balancing problem (with
m = log log log log n) to the Padded-Sort problem with no asymptotic increase in running time
as follows. Assign the colors individual integers from 0 to 8m � 1. For each group with color i,
uniformly choose a random real number from the range (i=8m; (i + 1)=8m]. Thus each group will
be assigned a number from (0; 1] and these will be uniformly distributed. Now assume we have a
Padded-Sort algorithm which will place these numbers in sorted order into an array A of size kn
for some constant k. Run this Padded-Sort algorithm. If a group was placed at location i in array
A, place each of the 4m objects in the group into an array B of size 4mkn at locations 4mi to
4m(i + 1) � 1. Then each processor j is assigned the tasks at locations `n + j, for 0 � ` < 4mk.
If the Padded Sort is successful, there is a color whose objects are mapped to at most 3kn=8
consecutive positions in B. For this color, each processor is assigned at most 3k=8 < m objects,
and this solves the Chromatic Load-Balancing problem. By Lemma 6.1, Padded Sort requires
�((1=8) log log n�log 8m

2 log � �O(m)) time. 2

Corollary 6.1 Solving the Load Balancing problem, the LAC problem, or the Padded Sort problem

with probability at least 1
2 requires
((g log log n)= log g) time on a Randomized qsm,
(g log logn)

time on a Randomized s-qsm, and
((L log logn)= log(L=g)) time on a Randomized bsp if p =

(n=(log n)1=8��) for some constant � > 0.

Corollary 6.2 Let n=p � �. Solving the Load Balancing problem, the LAC problem, or the Padded

Sort problem with probability at least 1
2 requires (1=8) log log n�log

2 log(�n=�p) �O(m) rounds on a Randomized

gsm.

20

Theorem 6.2 Let n > p. Solving the Load Balancing problem, the LAC problem, or the Padded-

Sort problem with probability at least 1
2 requires
((log� n� log�(n=p))+ log log n

log(gn=p)) rounds on a Ran-

domized qsm,
(log log nlog(n=p)) rounds on a Randomized s-qsm, and and
((log log n)= log(maxfL=g; n=pg))
rounds on a Randomized bsp if p =
(n=(log n)1=8��) for some constant � > 0.

Proof Sketch: The �rst part of the lower bound for the qsm follows from the lower bound of
[15] by assuming that a processor can read or write to n=p cells in any given state in a single step.
(Note that the contention does not a�ect that lower bound, since it is for the CRCW PRAM, which
allows any amount of contention.) The other parts of the lower bounds follow from Corollary 6.2.
2

6.3 Another Lower Bound for Compaction on the gsm

Here we relax the de�nition of a round on the gsm. Given a time bound h we shall denote by
gsm(h) a gsm in which a round will be a phase that takes O(�h=�) time, instead of a round being
a phase which takes O(�n=�p) time. This de�nition of round will hold for gsm(h) regardless of the
number of processors p being used. Note that in a round, a single processor can perform at most
O(�h=�) reads and writes, and a cell can be read from or written to by at most O(�h=�) processors.
(The results below implicitly assume the constant in the O() notation is 1, but modifying them for
any constant is straightforward.)

Theorem 6.3 Solving ((�h=�) + 1)-LAC with a destination array of size d on a gsm(h) requires

(
p

log(n=(d))= log(�h=�)) rounds.

Proof: This proof is similar to the proof of Theorem 3.2. Consider a gsm(h) that solves the
((�h=�) + 1)-LAC problem over the input set I = fx0; : : : ; xn�1g. We prove by induction on t,

that at the end of round t, there is a set of inputs Vt � I such that (1) jVtj � n=

(4�h=�)2t(t+1) ,

(2) each processor and cell depends on at most one variable from Vt, (3) each variable in Vt
a�ects at most (4�h=�)2t processors and at most (4�h=�)2t cells. These conditions hold for V0 =
fx0; x ; x2 ; : : : ; xn�g.

Assume that these properties hold for step t. Let Gt = (Vt; E) be the directed graph with
(xi; xj) 2 E if, at the beginning of step t + 1, there exists a processor P that depends on xi and a
cell C that depends on xj such that P reads from C during step t + 1 for some value of xi. Note
that 2(�h=�) + 1 processors cannot all read from the same cell during step t + 1. Otherwise we
could set the values of (�h=�) + 1 variables so that more than �h=� read from a particular cell.
The indegree of any node xj 2 Vt is at most 2(�h=�)(4�h=�)2t . The outdegree of any node xi 2 Vt
is at most 2(�h=�)(4�h=�)4t .

A graph G = (V;E) of degree at most k has an independent set of cardinality at least jV j=(k+1).
Since Gt has degree at most [2(�h=�) + 2(�h=�)](4�h=�)2t < (4�h=�)2t+1, it has an independent
set V 0

t+1 � Vt such that jV 0
t+1j � jVtj=(4�h=�)2t+1 .

After the read phase, each processor depends on at most one variable in V 0
t+1. Also each variable

in V 0
t+1 a�ects at most (4�h=�)2t + 2(�h=�)(4�h=�)2t � (4�h=�)2t+1 processors.
Now consider the write phase of step t + 1. Let G0

t+1 = (V 0
t+1; E

0) be the directed graph with
(xi; xj) 2 E if, before the write phase of step t + 1, there exists a processor P that depends on xi
and a cell C that depends on xj such that P writes to C during step t + 1 for some value of xi.
Note that 2(�h=�) + 1 processors cannot all write to the same cell during step t+ 1. Otherwise we
could set the values of (�h=�) + 1 variables so that more than �h=� write to a particular cell. The

21

indegree of any node xj 2 Vt is at most 2(�h=�)(4�h=�)2t+1 . The outdegree of any node xi 2 Vt is
at most 2(�h=�)(4�h=�)2t+1 .

Since G0
t+1 has degree at most [2(�h=�) + 2(�h=�)](4�h=�)2t+1 < (4�h=�)2t+2, it has an inde-

pendent set Vt+1 � V 0
t+1 such that jVt+1j � jV 0

t+1j=(4�h=�)2(t+1) .
Obviously, each processor depends on at most one variable in Vt+1. Also each variable in Vt+1

a�ects at most (4�h=�)2t+1 + 2(�h=�)(4�h=�)2t+1 � (4�h=�)2(t+1) cells.

jVt+1j � jVtj
(4�h=�)2(t+1)

� (n=)=(4�h=�)t(t+1)

(4�h=�)2(t+1)
=

n=

(4�h=�)(t+1)(t+2)
:

Since jVtj � (n=)=(4�h=�)t(t+1) , it follows that for any x > 0, Vt � x, as long as
t � plog(n=x)=(log(4�h=�)) � 1. When x = d + 1, for any output that the algorithm pro-
duces in the output cells (at most d of them), we can set the marked elements (bits) in Vt
such that the algorithm errs. Thus, any algorithm solving ((�h=�) + 1)-LAC requires more thanp

log(n=((d + 1)))= log(4�h=�) � 1 =
(
p

log(n=(d))= log(�h=�)) rounds. 2

Corollary 6.3 Solving ((gn=p) + 1)-LAC on a qsm requires
(
p

logn= log(gn=p)) rounds. Solv-

ing ((n=p) + 1)-LAC on an s-qsm requires
(
p

log n= log(n=p)) rounds, and on a bsp requires

(
p

log p= log(n=p)) rounds.

We now prove a lower bound on the time needed by deterministic algorithms to solve LAC.

Lemma 6.3 Solving LAC on a gsm requires
(�
p

log(n=)=(log log(n=) + log �))g time.

Proof: Let r = n= and let � =
p

log r=(log log r + log�). For h = �� we show that solving
((�h=�) + 1)-LAC requires
(��) time.

Consider any algorithm that solves ((�h=�) + 1)-compaction. If the number of read-writes
performed by any processor in a phase is more than �� or the maximum contention at any memory
location in a phase is more than �� , then the time bound will exceed �� , i.e., exceed �h=�.
Otherwise, each phase takes no more than �h=� time, hence by Theorem 6.3 the algorithm must
execute
(

p
log r= log(�h=�)) rounds, i.e.,
(

p
log r=(log log r + log�)) rounds. Since each round

takes at least � time, the desired lower bound follows. 2

Corollary 6.4 Solving LAC with a deterministic algorithm requires
(g
q

log n
log log n+log g) time on a

qsm,
(g
q

log n
log log n) time on an s-qsm, and
(L

q
log p

log log p+log(L=g)) time on a p-processor bsp.

We now prove lower bounds on the number of rounds needed by randomized algorithms.

Corollary 6.5 If (�h=�) = 2o(log
1=3 n=d), solving ((�h=�) + 1)-LAC with a destination array of

size d with probability greater than 1
2(1 + �) on a Randomized gsm(h) requires

(
p

log(n=d)= log(�h=�)) rounds, for any constant � > 0.

Proof: We note that Theorem 10 from [14] also applies to rounds on the gsm. Assume there is a
randomized algorithm for ((�h=�)+1)-LAC that runs in time T . Since there are n(�h=�)+1 possible
input con�gurations, there is a deterministic algorithm that runs in time T + log logn(�h=�)+1 =
T + log((�h=�) + 1) + log log n. Then as long as log(�h=�) = o(

p
log(n=d)= log h), or (�h=�) =

2o(log
1=3 n=d), the asymptotic lower bound for deterministic algorithms holds for randomized algo-

rithms as well. 2

22

Corollary 6.6 If (n=p) = 2o(log
1=3 n=d), and � is any positive constant, solving ((gn=p) + 1)-LAC

with probability greater than 1
2(1 + �) on a Randomized qsm requires
(

p
logn= log(gn=p)) rounds;

solving ((n=p) + 1)-LAC with probability greater than 1
2 (1 + �) on a Randomized s-qsm requires

(
p

log n= log(n=p)) rounds, and on a Randomized bsp requires
(
p

log p= log(n=p)) rounds.

7 The OR Lower Bound

In Section 4 we give a description of the standard Random Adversary Technique. Here we show
how to modify the technique, which will allow us to prove a lower bound for OR.

7.1 Modi�ed Random Adversary

First we need some de�nitions. Let P be a problem and I the set of inputs to P . Let Q be the set
of possible values to which each input could be set. De�ne a partial input map to be a function f
from I to ff�g [Qg. Here `�' will denote a \blank" or \unset" input. A partial input map is an
input map if no inputs are mapped to `�'. Let f� denote the partial input map which maps every
input to `�'.

Instead of having the Random Adversary proceed through the given deterministic algorithm
phase by phase, �xing some of the inputs, the Random Adversary will be proceeding phase by
phase, restricting the set of possible input maps (but not �xing any inputs). Only at the last phase
will the Random Adversary be randomly �xing inputs. Formally, we let F be a set of input maps
and we say F 0 re�nes F if F 0 � F .

We will use a function RANDOMFIX which will be called with a set of input maps and which
returns an input map according to the distribution D restricted to those input maps.

We will also have a RANDOMRESTRICT procedure which is called with a set of input maps
F and a subset F 0 � F . According to the distribution D, it returns either F n F 0 or F 0

Given an algorithm A, we construct a REFINE procedure that will tell the Random Adversary
how to restrict the input maps at each step. Formally, REFINE(t;F) takes a number of big-steps t
and a set of input maps F and returns a triple (F 0; x; d) consisting of a new set of input maps F 0

that re�nes F , a lower bound x on the number of big-steps required for the next phase, and a
boolean variable d indicating TRUE if the input map is fully de�ned. The de�nition of t-goodness
will refer to a set of input maps, rather than partial input maps. Then for some target probability
Z, we need to prove the following.

Lemma 7.1 With probability Z, for every step (0 � t � T), Ft (the restricted set of input maps

at step t) is t-good.

7.2 GSM De�nitions

Let G be any set of input maps. Let v be a processor or cell. De�ne Know(v; t;G) as the minimum set
of inputs such that for any input maps f1 and f2 in G and have f1(q) = f2(q) for all q 2 Know(v; t;G),
Trace(v; t; f1) is the same as Trace(v; t; f2). (Intuitively, v is not dependent on inputs outside
Know(v; t;G), since these could not a�ect its trace, and v is dependent on every input inside
Know(v; t;G) by the fact that it is the minimum set of inputs which could a�ect its trace.) Let
A�Proc(i; t;G) contain each processor p in which i 2 Know(p; t;G). Let A�Cell(i; t;G) contain each
cell c in which i 2 Know(c; t;G).

23

7.3 The Lower Bound

We will prove a general lower bound on the amount of information which can be transferred
between processors given a random input of a special form. Assume jIj = n (i.e., the number
of inputs is n). Without loss of generality, assume n is large enough so that our analysis holds.

Assume the set of possible values for inputs Q = f0; 1g. Let d0 = log
(3
4
log��+1(n=))

�+1 (n=), and let

di+1 = (� + 1)(�+1)
di for i � 1. Let Hi be the distribution of input maps in which each set of

inputs associated with a cell is set to 1 with probability 1=di. The probability distribution D used
in our lower bound is as follows. The input map consisting of all zeros is chosen with probability
1
2 . For i 2 f0; 14 log��+1(n=)g, with probability 2= log��+1(n=), the distribution Hi is used.

If T � 1
4 log��+1(n=) then the following is easily proved.

Fact 7.1 dT � log log(n=).

A set of input maps F is called t-good if the following conditions are satis�ed.
(1) For each processor or cell v, jKnow(v; t;F)j � dt,
(2) For each input i, jA�Proc(i; t;F)j � dt and jA�Cell(i; t;F)j � dt.

For each processor or cell v, jKnow(v; 0;F�)j � 1, and for each input i, jA�Proc(i; 0;F�)j � 1
and jA�Cell(i; 0;F�)j � 1, so the set of input maps F� is 0-good.

We now describe algorithm REFINE which is called with a time t and a set of input maps F , and
which returns a triple (F 0; x; d) consisting of a partial input map F 0 which is a random re�nement
of F , a lower bound x on the time of the step taken, and a boolean variable d indicating TRUE if
the input map is fully de�ned. The random re�nement is based on the action of algorithm A on
the step.

The intuition behind this REFINE procedure is the following. First, in lines (3) through (13),
we test to see if the expected time of this step will be large because of a processor accessing many
cells, or a cell being accessed by many processors. If this is the case, then when we �x all inputs,
the expected time of the algorithm is high. Next, in lines (15) through (19), we test whether the
input has many ones. If so, we \give up". If not, then we continue. In summary, we force the
algorithm to restrict the information exchange (size of reads and writes) at early steps because of
the possibility of large numbers of ones. Gradually however, the algorithm can ascertain that the
number of ones is smaller, and thus increase the size of its reads and writes (while maintaining
small probabilities of congestion).

We de�ne MaxCell(t;G) as the cell with the maximum possible contention at big-step t for any
input map in G. We de�ne MaxRWC(c; t;G) as the maximum possible contention at c at big-step
t for any input map in G. We de�ne MaxProc(t;G) as the processor with the maximum possible
number of reads or writes at big-step t for any input map in G. We de�ne MaxRWP(p; t;G) as the
maximum possible number of reads or writes p makes at big-step t for any input map in G. Let
ACCESS(c; t;G) be the set of processors that read from or write to cell c at big-step t for any input
map in G.

Function REFINE(t;F)
(1) Let Done = FALSE
(2) Let p = MaxProc(t;F)

(3) If MaxRWP(p; t;F) � �ddt+2t log��+1(n=)

(4) Let F 0 = fRANDOMFIX(F ; I)g
(5) Let p = MaxProc(t;F 0)
(6) Let MaxContention = dMaxRWP(p; t;F 0)=�e

24

(7) Let Done = TRUE
(8) Else

(9) If maxc ACCESS(c; t;F) � �ddt+2t log��+1(n=)

(10) Let F 0 = fRANDOMFIX(F ; I)g
(11) Let c = MaxCell(t;F 0)
(12) Let MaxContention = dMaxRWC(c; t;F 0)=�e
(13) Let Done = TRUE
(14) Else
(15) Let F 0 = RANDOMRESTRICT(F ;Ht)
(16) If F 0 = Ht

(17) Let F 0 = fRANDOMFIX(F 0; I)g
(18) Let Done = TRUE
(19) Let MaxContention = 1
(20) Return (F 0;MaxContention;Done)

Lemma 7.2 If F is t-good and REFINE(t;F) returns (F 0; 1;FALSE), then (1) For each processor

or cell v, jKnow(v; t + 1;F 0)j � dt+1, and (2) For each input i, jA�Proc(i; t + 1;F 0)j � dt+1 and
jA�Cell(i; t + 1;F 0)j � dt+1.

Proof: The inputs that a�ect processor v are the dt that originally a�ect it plus the dt that
a�ect each of the 2dt�ddt+2t log��+1(n=) possible cells it reads. Thus jKnow(v; t + 1;F 0)j � dt +

2dt�ddt+3t log��+1(n=) � dt+1.
An input a�ects all the processors it originally a�ects, plus all the processors that possibly read

from the cells that it a�ects. Thus jA�Proc(v; t + 1;F 0)j � dt + �ddt+2t (log��+1(n=))dt � dt+1.
The inputs that a�ect a cell v are the at most dt that originally a�ect it plus the dt that a�ect

each of the at most �ddt+2t log��+1(n=) processors that possibly write to it. Thus jKnow(v; t +

1;F 0)j � dt + �ddt+2t (log��+1(n=))dt � dt+1.

An input a�ects all the cells it originally a�ects, plus the 2dt�ddt+2t log��+1(n=) cells possibly

written to by each processor that it a�ects. Thus jA�Cell(v; t+1;F 0)j � dt+2dt�ddt+2t log��+1(n=)dt �
dt+1. 2

Lemma 7.3 If f is t-good and REFINE(t;F) returns (F 0; 1;FALSE), then F 0 is (t + 1)-good.

Proof: Follows from Lemma 7.2, and the de�nition of t-good. 2

Lemma 7.4 Say REFINE(t;F) is called t0 times with input parameters (0;F�) through (t0�1;Ft0).
Then the probability that line (17) executes is at most 2t0= log��+1(n=).

Proof: The probability of an input map from Ht being chosen is 2= log��+1(n=). 2

Lemma 7.5 If F is t-good and line (4) or (10) of REFINE(t;F) is executed, then (F 0; x;TRUE)
is returned with the expected value of x � log��+1(n=).

Proof: Assuming Ht is chosen, for line (4) the probability of setting the processor's inputs such
that it writes to the �ddt+2t log��+1(n=) cells is at least d�dtt . Overall, for line (4), the expected
number of cells written to is expected to be at least log��+1(n=).

Note: for any processor P , at most d2t processors are a�ected by inputs which a�ect P . Say a
set S of processors are independent if the sets of inputs a�ecting each processor in S are disjoint.

25

Now for line (10) consider the �ddt+2t (log��+1(n=))=d2t independent processors that write to the cell.

Assuming Ht is chosen, on average at least �ddt+2t (log��+1(n=))=d2t d
dt
t = � log��+1(n=) write to

the cell. Overall, for line (10), the expected number of processors that write to the cell is expected
to be at least � log��+1(n=). 2

Theorem 7.1 For any constant � > 0 solving OR with probability greater than 1
2(1 + �) requires

(�(log�(n=) � log� �)) expected time on a Randomized gsm.

Proof: By Theorem 2.1, we simply need to show that any deterministic algorithm solving OR
with the desired probability over the given distribution requires
(�(log�(n=)� log� �)) expected
time. This follows easily once we show that solving OR with the desired probability requires

(log��+1(n=)) big-steps. (We use the fact that log� n � log�z+1 n + log� z + 2, for z � 1 [15].)

Let T = �
20 log��+1(n=). From Lemma 7.5, If line (4) or (10) is ever executed, then the

expected time is
(� log��+1(n=)). Now assume neither line (4) nor (10) are executed. WLOG we
can assume that if line (17) was executed, or if any input a�ecting the output cell is 1, then the
output cell contains 1. Otherwise, all inputs a�ecting the output cell are 0, and since the algorithm
is deterministic, the output cell is �xed. If it is �xed to 1, then the output cell is always 1, and
the algorithm succeeds with probability at most 1

2 . Otherwise, we bound the probability of success
as follows. Let A be the event that the algorithm is successful in computing OR at time T . Let
B1 be the event that the input is all zeros. Let B2 be the event that the input is chosen from one
of the distributions fH0; : : : ;HT g. Let B3 be the event that the input is chosen from one of the
distributions fHT+1; : : : ;Hlog��+1(n=)=4�1g. Then

Pr(A) = Pr(AjB1) Pr(B1) + Pr(AjB2) Pr(B2) + Pr(AjB3) Pr(B3):

Note Pr(B1) � 1
2 and Pr(B2) � �

10 + 1
log��+1(n=)

. Also, by Lemma 7.3, the number of inputs that

a�ect the output cell is dT , and conditioned on B3, the probability of any of those inputs being one
is at most edT =dT+1. Thus Pr(AjB3) � edT

dT+1
� 1

log��+1(n=)
. Then

Pr(A) � 1

2
+

�

10
+

2

log��+1(n=)
� 1

2
(1 + �):

2

Corollary 7.1 For any constant � > 0, solving OR with probability greater than 1
2(1 + �) requires

(g(log� n�log� g)) expected time on a Randomized qsm,
(g log� n) expected time on a Randomized
s-qsm, and
(L(log�(minfn; pg) � log�(L=g))) expected time on a Randomized bsp.

For deterministic algorithms we can obtain a stronger lower bound.

Theorem 7.2 Computing the OR of n bits with a deterministic algorithm requires

(� � (log(n=)=(log log(n=) + log�))) time on a gsm.

Proof: Since the input is spread over at least r = n= cells, the computation takes at least as much
time as that needed to compute the OR of r inputs. The proof bounds the degrees of functions
describing the states of processors and contents of memory cells at each step. Since the degree of
the function representing the OR of r bits is r, the computation cannot terminate with the correct
value as long as the degrees of all functions describing the contents of memory cells are less than r.

Let � = log r= log log r. We assume that in each step, mrw � �� and � � �� , since otherwise
T > � log r= log log r and we are done. Thus, using an analysis as in [6] for the `Few Write' PRAM,
after l steps the degree of the processor/memory functions is at most (��)cl, for a suitable constant
c. At termination we need (��)cl � n, i.e., l =
(log r=(log log r + log �)). 2

26

Corollary 7.2 Computing the OR of n bits with a deterministic algorithm requires

(g logn=(log log n + log g)) time on a qsm,
(g log n= log logn) time on an s-qsm, and

(L log q=(log log q + log(L=g)) time on a p-processor bsp, where q = minfn; pg.

Theorem 7.3 Assuming n=p � �, for any constant � > 0 solving OR with probability greater than
1
2(1 + �) requires
(log(n=)

log(�n=�p)) rounds on a Randomized gsm (with n=p � �).

Proof: The proof for the lower bound for randomized algorithms follows as in the case of the proof
for Theorem 7.2 by noting that each phase must take time �n=�p, hence, as in the analysis in the
proof of Theorem 7.2, after l phases the degrees are bounded by ((��)(n=(p�))2)cl = (�n=�p)cl, for
a suitable constant c. Let r = n=. At termination, r � (�n=�p)cl, hence the number of rounds
l =
(log r= log(�n=�p)).

We now apply the Random-Adversary Technique, using the input distribution given for the
lower bound on OR in [16] to obtain the same lower bound for randomized algorithms. 2

Corollary 7.3 Assuming n � p, for any constant � > 0 solving OR with probability greater than
1
2(1 + �) requires
(log n

log(gn=p)) rounds on a Randomized qsm,
(log n
log(n=p)) rounds on a Randomized

s-qsm, and
(log p
log(n=p)) rounds on a Randomized bsp.

8 Upper Bounds (sketches)

Parity. On a qsm Parity can be computed in O(g log n= log log g), by emulating the depth 2
unbounded fan-in circuit for parity. This is close to our deterministic lower bound (which has
a log g term in the denominator instead of the log log g term in our upper bound). If unit-time
concurrent reads are allowed, the resulting algorithm runs in time O(g log n= log g), which matches
the lower bound (derived for qsm with unit-time concurrent reads) in Theorem 3.1. On the s-
qsm the straightforward algorithm gives the tight upper bound of O(g logn). On a bsp with p
processors, p � n, we can compute parity in O(L log n=(logL=g)).

On the s-qsm and the bsp we can match the lower bounds on number of rounds needed for
randomized algorithms by simple deterministic algorithms. The algorithm has the same upper
bound for rounds on the qsm, and this matches the lower bound if g = O((n=p)1��) or p =
O(n= log�(n)), for some � > 0.

Linear approximate compaction. On the qsm this can be computed in time O(
p
g log n +

g log log n) w.h.p. It is interesting to note that the second term in this expression comes close
to matching our time lower bound for qsm. On the s-qsm the same algorithm runs in time
O(g

p
logn). On the bsp this algorithm runs in time O(

p
Lg log n= log(L=g) +L log logn= log(L=g))

w.h.p. (provided the number of elements being compacted is O(n=(log n2log n=(n=p))). All of these
results are obtained by an adaptation of the qrqw algorithm in [9].

The best algorithm that we know (deterministic or randomized) that computes in rounds is
the simple algorithm based on computing pre�x sums. This algorithm has the same performance
as the algorithms that compute parity in rounds. Note that if we relax the de�nition of a round
in a randomized algorithm to be a computation that terminates in O(gn=p) time w.h.p., then we
can design algorithms (by adapting the algorithm in [10]) that beat our lower bounds (which were
derived under the restriction that a round must terminate in O(gn=p) time).

27

OR. On the qsm and the s-qsm the OR can be computed deterministically in O((g= log g) log n)
time and O(g logn) time, respectively, with simple algorithms. Both results are a factor of log logn
away from the lower bound. No better randomized algorithm is known in either model, unless unit-
time concurrent reads are allowed, in which case, the OR can be computed with high probability
on both models in O(g logn= log log n) time (by an adaptation of a qrqw algorithm given in [9]).
This is still much larger than our corresponding lower bounds. On the bsp one can compute the
OR in O(L log n= log(L=g)) [12].

On all three models we can match the lower bound on number of rounds for randomized algo-
rithms by simple deterministic algorithms.

References

[1] M. Adler, P. Gibbons, Y. Matias, V. Ramachandran. Modeling parallel bandwidth: Local vs.
global restrictions. Proc. ACM Symp. on Parallel Algorithms and Architectures, pp. 94{105,
1997; Algorithmica, to appear.

[2] M. Ajtai and M. Ben-Or. A Theorem on Probabilistic Constant Depth Computations. Proc.

16th ACM Symp. on Theory of Computing, pp. 471{474, 1984.

[3] P. Beame, J. Hastad. Optimal bounds for decision problems on the CRCW PRAM. JACM,
vol. 36, pages 643{670, 1989.

[4] C. Berge. Graphs and Hypergraphs. North-Holland, Amsterdam, 1976.

[5] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. 4th ACM

SIGPLAN Symp. on Princ. and Prac. of Para. Prog., 1993.

[6] M. Dietzfelbinger, M. Kuty lowski, and R. Reischuk. Exact lower time bounds for computing
boolean functions on CREW PRAMs. J. Comput. System Sci., 48:231{254, 1994.

[7] F. Fich, M. Kowaluk, M. Kuty lowski, K. Lory�s, and P. Ragde. Retrieval of scattered informa-
tion by EREW, CREW, and CRCW PRAMs. In Proc. 3rd Scand. Workshop on Alg. Theory,
pages 30{41. Lec. Notes in Comp. Sci., Vol. 621, 1992.

[8] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallel algorithms.
In JCSS, vol. 53, pp. 395{416, 1996 (Special Issue for SPAA'94.

[9] P. B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting for con-
tention in parallel algorithms. In 5th ACM-SIAM Symp. on Disc. Alg., pages 638{648, 1994,
SICOMP, to appear.

[10] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a shared-memory model serve as a
bridging model for parallel computation? In ACM Symp. on Parallel Algorithms and Archi-
tectures, pages 72{83, 1997.

[11] M. Goodrich. Communication-e�cient parallel sorting. Proc. STOC, pages 247{256, 1996.

[12] B. H. H. Juurlink and H. A. G. Wijsho�. Communication primitives for BSP computers. IPL,
vol. 58, pages 303{310, 1996.

28

[13] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A: Algorithms

and Complexity, chapter 17, pages 869{941. MIT Press/Elsevier, 1990.

[14] M. Kutylowski and K. Lorys. Limitations of the QRQW and EREW PRAM models. In Proc.

Foundations of Software Technology and Theoretical Computer Science (FST&TCS), 1996.

[15] P. D. MacKenzie. Load balancing requires
(log� n) expected time. In 3rd ACM-SIAM Symp.

on Disc. Alg., pages 94{99, 1992.

[16] P. D. MacKenzie. Lower Bounds for Randomized Exclusive-Write PRAMs. In Proc. 7th ACM

Symp. on Para. Alg. and Arch., 254{263, 1995,

[17] P. D. MacKenzie. A lower bound for the QRQW PRAM. In Proc. 7th IEEE Symp. on Para.

and Distr. Proc., pages 231{237, 1995.

[18] P. D. MacKenzie. An improved lower bound for the QRQW PRAM. In Workshop on Ran-

domized Parallel Computing, IPPS, Hawaii, April 1996.

[19] P. D. MacKenzie and V. Ramachandran. Computational Bounds for Fundamental Problems on
General-Purpose Parallel Models. Proc. 1998 ACM Symp. on Parallel Algs. and Architectures,
June-July 1998, to appear.

[20] N. Nisan. CREW PRAMs and decision trees. SIAM J. Comput., 20:999{1007, 1991.

[21] V. Ramachandran. A general purpose shared-memory model for parallel computation. Proc.
IMA Workshop on Parallel Algorithms, Springer Verlag, to appear.

[22] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.
In Proc. 19th ACM Symp. on Theory of Computing, pages 77{82, 1987.

[23] M. Szegedy. Algebraic methods in lower bounds for computational models with limited commu-

nication. PhD thesis, University of Chicago, 1989.

[24] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103{111, 1990.

[25] A. Yao. Probabilistic computations: Towards a uni�ed measure of complexity. In Proc. 18th

Symp. on Found. of Comp. Sci., pages 222{227, 1977.

29

Time Lower Bounds for qsm (unlimited no. of procs. unless speci�ed otherwise)

problem Deterministic time l.b. Randomized time l.b.
n = size of input)

Linear approximate
(g
q

log n
log log n+log g)
(g log log nlog g),

compaction
(g log� n) with n proc.

OR
((g log n
log log n+log g))
(g(log� n� log� g))

Parity and
(g log nlog g);
(g log n
log log n+min(log log g;log log p)) with p procs.;

related problems �(g log nlog g) with concur. reads
(g log n
log log n) if p polynomial in n

Time Lower Bounds for s-qsm (unlimited no. of procs. unless speci�ed otherwise)

problem (n = size of input) Deterministic time l.b. Randomized time l.b.

Linear approximate compaction
(g
q

log n
log log n)
(g log log n)

OR
(g log n
log log n)
(g log� n)

Parity and related problems �(g logn)
(g log n
log log n)

Time Lower Bounds for bsp with p Processors (q = minfn; pg)
problem Deterministic time l.b. Randomized time l.b.
n = size of input)

Linear approximate
(L
q

log q
log log q+log(L=g))
(L log log n= log(L=g))

compaction for p =
(n=(log n)1=8��)
OR
(L log q

log log q+log(L=g))
(L(log� q � log�(L=g)))

Parity and related problems �(L log q
log(L=g))
(L

q
log q

log log q+log(L=g))

Number of Rounds for p-processor Algorithms (p � n)

problem qsm s-qsm bsp

(n = size of input) lower bound lower bound lower bound

Linear approx. compaction
((log� n� log�(n=p)) +
q

log n
log(gn=p))
(

q
log n

log(n=p))
(
q

log n
log(n=p))

OR �(log n
log(ng=p)) �(log n

log(n=p)) �(log n
log(n=p))

Parity and related problems
(log n
log(n=p)+minflog g; log log pg) �(log n

log(n=p)) �(log n
log(n=p))

Table 1: A � in an entry in any of the tables indicates that the bound is tight.

30

