
[LLG+90] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-
based cache coherence protocol for the DASH multiprocessor. In Proc. 17th International
Symp. on Computer Architecture, pages 148{159, May 1990.

[LLG+92] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lam. The Stanford DASH multiprocessor. IEEE Computer,
25(3):63{79, 1992.

[Mac94] P. D. MacKenzie. Personal communication, August 1994.

[Mas91] MasPar Computer Corporation, 749 North Mary Avenue, Sunnyvale, CA 94086. MasPar
System Overview, document 9300-0100, revision A3, March 1991.

[Mat92] Y. Matias. Highly Parallel Randomized Algorithmics. PhD thesis, Tel Aviv University,
Israel, 1992.

[MPS92] C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous algorithms for
shared memory parallel computers. SIAM Journal on Computing, 21(6):1070{1099,
1992.

[MR96] P.D. MacKenzie and V. Ramachandran. ERCW PRAMs and optical communication.
In Proc. of EURO-PAR'96, Springer LNCS, August 1996. To appear.

[MV91] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time|with
applications to parallel hashing. In Proc. 23rd ACM Symp. on Theory of Computing,
pages 307{316, May 1991.

[Nis90] N. Nishimura. Asynchronous shared memory parallel computation. In Proc. 2nd ACM
Symp. on Parallel Algorithms and Architectures, pages 76{84, July 1990.

[PN85] G. F. P�ster and V. A. Norton. \Hot spot" contention and combining in multistage
interconnection networks. IEEE Trans. on Computers, C-34(10):943{948, 1985.

[Pre92] L. Prechelt. Measurements of MasPar MP-1216A communication operations. Technical
report, Institut f�ur Programmstrukturen und Datenorganisation, Universit�at Karlsruhe,
Karlsruhe, Germany, November 1992.

[Ran89] A. G. Ranade. Fluent parallel computation. PhD thesis, Department of Computer
Science, Yale University, New Haven, CT, May 1989.

[Rei93] J. H. Reif, editor. A Synthesis of Parallel Algorithms. Morgan-Kaufmann, San Mateo,
CA, 1993.

[Sny86] L. Snyder. Type architecture, shared memory and the corollary of modest potential.
Annual Review of CS, I:289{317, 1986.

[SV94] M. Schmidt-Voigt. E�cient parallel communication with the nCUBE 2S processor.
Parallel Computing, 20(4):509{530, 1994.

[Val90a] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103{111, 1990.

[Val90b] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume A, pages 943{972. Elsevier Science Pub-
lishers B.V., Amsterdam, The Netherlands, 1990.

[Val92] L. G. Valiant. A combining mechanism for parallel computers. Technical Report TR-
24-92, Harvard University, Cambridge, Massachusetts, November 1992.

[Yao77] A.C. C. Yao. Probabilistic computations: Towards a uni�ed measure of complexity. In
Proc. 18th IEEE Symp. on Foundations of Computer Science, pages 222{227, 1977.

36

[GMR94a] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallel
algorithms. In Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, pages
236{247, June 1994.

[GMR94b] P. B. Gibbons, Y. Matias, and V. Ramachandran. The QRQW PRAM: Accounting for
contention in parallel algorithms. In Proc. 5th ACM-SIAM Symp. on Discrete Algo-
rithms, pages 638{648, January 1994.

[GMR94c] L. A. Goldberg, Y. Matias, and S. Rao. An optical simulation of shared memory. In
Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, pages 257{267, June
1994.

[GMR96] P.B. Gibbons, Y. Matias, and V. Ramachandran. The queue-read queue-write asyn-
chronous PRAM model. In Proc. of EURO-PAR'96, Springer LNCS, August 1996. To
appear. Preliminary version appears in QRQW: Accounting for Concurrency in PRAMs
and Asynchronous PRAMs, AT&T Bell Laboratories Technical Report, March 1993.

[GMR97] P. B. Gibbons, Y. Matias, and V. Ramachandran. E�cient low-contention parallel
algorithms. Journal of Computer and System Sciences, 1997. To appear. Preliminary
version appears in Proc. 6th ACM Symp. on Parallel Algorithms and Architectures, pages
236-247, June 1994.

[GMV91] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel
algorithms. In Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages
698{710, October 1991.

[Goo91] M.T. Goodrich. Using approximation algorithms to design parallel algorithms that may
ignore processor allocation. In Proc. 32nd IEEE Symp. on Foundations of Computer
Science, pages 711{722, 1991.

[Gre82] A.G. Greenberg. On the time complexity of broadcast communication schemes. In Proc.
14th ACM Symp. on Theory of Computing, pages 354{364, 1982.

[Hoe63] W. Hoe�ding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58:13{30, 1963.

[IBM94] IBM Corporation. IBM Scalable POWERparallel Systems 9076 SP2 and Enhancements
for SP1, April 1994. Hardware announcement.

[J�aJ92] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley, Reading, MA, 1992.

[KR90] R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory machines.
In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume A, pages
869{941. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[KS93] R. E. Kessler and J. L. Schwarzmeier. CRAY T3D: A new dimension for Cray research.
In Proc. 1993 IEEE Compcon Spring, pages 176{182, February 1993.

[LAB93] P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing. In Proc. 5th
ACM Symp. on Parallel Algorithms and Architectures, pages 154{163, June-July 1993.

[Lei92a] F. T. Leighton. Methods for message routing in parallel machines. In Proc. 24th ACM
Symp. on Theory of Computing, pages 77{96, May 1992. Invited paper.

[Lei92b] C. E. Leiserson et al. The network architecture of the Connection Machine CM-5. In
Proc. 4th ACM Symp. on Parallel Algorithms and Architectures, pages 272{285, June-
July 1992.

[LF80] R. E. Ladner and M. J. Fischer. Parallel pre�x computation. Journal of the ACM,
27(4):831{838, 1980.

35

[Cyp88] R. Cypher. Valiant's maximum algorithm with sequential memory accesses. Techni-
cal Report TR 88-03-08, Department of Computer Science, University of Washington,
Seattle, Washington, April 1988.

[CZ89] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model.
In Proc. 1st ACM Symp. on Parallel Algorithms and Architectures, pages 169{178, June
1989.

[DHW93] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms. In
Proc. 25th ACM Symp. on Theory of Computing, pages 174{183, May 1993.

[DK92] S. R. Dickey and R. Kenner. Hardware combining and scalability. In Proc. 4th ACM
Symp. on Parallel Algorithms and Architectures, pages 296{305, June-July 1992.

[DKN93] W. J. Dally, J. S. Keen, and M. D. Noakes. The J-Machine architecture and evaluation.
In Proc. 1993 IEEE Compcon Spring, pages 183{188, February 1993.

[DKR94] M. Dietzfelbinger, M. Kuty lowski, and R. Reischuk. Exact lower time bounds for com-
puting boolean functions on CREW PRAMs. Journal of Computer and System Sciences,
48(2):231{254, 1994.

[DS92] R. Drefenstedt and D. Schmidt. On the physical design of butter
y networks for PRAMs.
In Proc. 4th IEEE Symp. on the Frontiers of Massively Parallel Computation, pages
202{209, October 1992.

[FBR93] S. Frank, H. Burkhardt III, and J. Rothnie. The KSR1: Bridging the gap between shared
memory and MPPs. In Proc. 1993 IEEE Compcon Spring, pages 285{294, February
1993.

[FKL+92] F. Fich, M. Kowaluk, K. Lory�s, M. Kutylowski, and P. Ragde. Retrieval of scattered
information by EREW, CREW, and CRCW PRAMs. In Proc. 3rd Scandinavian Work-
shop on Algorithm Theory, Springer LNCS 621, pages 30{41, 1992.

[FMRW85] F.E. Fich, F. Meyer auf der Heide, P.L. Ragde, and A. Wigderson. One, two, three,...,
in�nity: Lower bounds for parallel computation. In Proc. 17th ACM Symp. on Theory
of Computing, pages 48{58, 1985.

[FW78] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. 10th ACM
Symp. on Theory of Computing, pages 114{118, May 1978.

[Gib89] P. B. Gibbons. A more practical PRAM model. In Proc. 1st ACM Symp. on Parallel
Algorithms and Architectures, pages 158{168, June 1989. Full version in The Asyn-
chronous PRAM: A semi-synchronous model for shared memory MIMD machines, PhD
thesis, U.C. Berkeley 1989.

[Gib93] P. B. Gibbons. Asynchronous PRAM algorithms. In J. H. Reif, editor, A Synthesis
of Parallel Algorithms, chapter 22, pages 957{997. Morgan-Kaufmann, San Mateo, CA,
1993.

[GM91] J. Gil and Y. Matias. Fast hashing on a PRAM|designing by expectation. In Proc.
2nd ACM-SIAM Symp. on Discrete Algorithms, pages 271{280, 1991.

[GM96] J. Gil and Y. Matias. An e�ective load balancing policy for geometric decaying algo-
rithms. Journal of Parallel and Distributed Computing, 1996. To appear.

[GMR93] P. B. Gibbons, Y. Matias, and V. Ramachandran. QRQW: Accounting for concurrency
in PRAMs and Asynchronous PRAMs. Technical report, AT&T Bell Laboratories,
Murray Hill, NJ, March 1993.

34

compaction, load balancing, generating a random permutation and parallel hashing. These results
and the results presented in this paper demonstrate the advantage of the qrqw over the erew. To-
gether with the penalty in running high-contention crcw or crew algorithms on existing machines,
this supports the qrqw pram as a more appropriate model for high-level algorithm design.

Finally, in related work [GMR96] we explore the properties of the asynchronous qrqw pram.

Acknowledgements

Richard Cole, Albert Greenberg, Maurice Herlihy, Honghua Yang, and the anonymous referees
provided useful comments on this work.

References

[ACC+90] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld, and B. Smith. The
Tera computer system. In Proc. 1990 International Conf. on Supercomputing, pages
1{6, June 1990.

[AKP91] F. Abolhassan, J. Keller, and W. J. Paul. On the cost-e�ectiveness of PRAMs. In
Proc. 3rd IEEE Symp. on Parallel and Distributed Processing, pages 2{9, December
1991.

[AR92] Y. Aumann and M. O. Rabin. Clock construction in fully asynchronous parallel systems
and PRAM simulation. In Proc. 33rd IEEE Symp. on Foundations of Computer Science,
pages 147{156, October 1992.

[BCH+93] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Implementa-
tion of a portable nested data-parallel language. In Proc. 4th ACM SIGPLAN Symp. on
Principles and Practices of Parallel Programming, pages 102{111, May 1993.

[Bel92] G. Bell. Ultracomputers: A tera
op before its time. Communications of the ACM,
35(8):26{47, 1992.

[BKK94] P. Beame, M. Kik, and M. Kuty lowski. Information broadcasting by exclusive-write
PRAMs. Parallel Processing Letters, 4(1&2):159{169, 1994.

[Ble89] G. E. Blelloch. Scans as primitive parallel operations. IEEE Trans. on Computers,
C-38(11):1526{1538, 1989.

[Ble93] G. E. Blelloch. Pre�x sums and their applications. In J. H. Reif, editor, A Synthesis of
Parallel Algorithms, chapter 1, pages 35{60. Morgan-Kaufmann, San Mateo, CA, 1993.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier Science
Publishing Co., Inc., New York, 1976.

[Bre74] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2):201{208, 1974.

[CDR86] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel
random access machines without simultaneous writes. SIAM Journal on Computing,
15(1):87{97, 1986.

[CKP+93] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc.
4th ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming, pages
1{12, May 1993.

33

8.2 Lower bounds for broadcasting and related problems

Beame, Kik and Kutylowski [BKK94] showed that computing the broadcasting problem on a non-
uniform erew pram with unbounded program size, an unbounded number of processors, and un-
bounded space requires
(lgn) time. The results of the previous subsection give us the following
theorem.

Theorem 8.4 Any deterministic or randomized algorithm that computes the broadcasting problem
into n memory locations on a qrqw pram with an unbounded number of processors and unbounded
space requires expected time
(lgn).

Proof. The lower bound for deterministic algorithms follows by the lower bound in [BKK94] and
Lemma 8.2 since the size of the input domain for the broadcasting problem is 2. The lower bound
for randomized algorithms follows by Lemma 8.3.

Since a crew pram can broadcast into n memory locations in constant time, Theorem 8.4
immediately implies the following separation results:

Corollary 8.5 There is an
(lgn) time separation of a (deterministic or randomized) fsimd-
crqw,crqwg pram from a (deterministic or randomized) fsimd-qrqw,qrqwg pram. The same
separation result holds of a crew pram from a Queue-Read, Exclusive-Write (qrew) pram.

The following generalization of the broadcasting problem is used in a lower bound for load
balancing given in [GMR97].

Theorem 8.6 Any deterministic or randomized algorithm that broadcasts the value of a bit to any
subset of k processors in a qrqw pram requires expected time
(lg k).

Proof. Let Algorithm A be a qrqw algorithm that succeeds in broadcasting the value of a bit
to some subset of k processors in time t. We use Algorithm A to derive a (non-uniform) qrqw
pram algorithm for the broadcasting problem into k �xed memory locations as follows. We �rst run
Algorithm A to broadcast the value of the bit to some subset of k processors. We then transmit the
value of the bit from the ith processor in the subset to the ith output memory location, 1 � i � k.
This can be performed in one step with time cost 1 since we can precompute from Algorithm A the
exact indices of the k processors to which the value of the bit will be transmitted. Thus we can solve
the broadcasting problem in t + 1 steps. It follows from Theorem 8.4 that t =
(lg k).

9 Conclusions

This paper has proposed a new model for shared memory machines, the qrqw pram model, that
takes into account the amount of contention in memory accesses. This model is motivated by the
contention characteristics of currently available commercial machines. We have presented several
results for this model, including a fast, work-preserving emulation of the qrqw pram on hypercube-
type, noncombining networks, a work-time framework and some automatic processor allocation
schemes for the model, several linear work, sub-logarithmic time algorithms for the fundamental
problems of leader election on a crqw pram and linear compaction on a qrqw pram, and some
lower bounds.

In a companion paper [GMR97], we present many new results for the qrqw pram. Among the
algorithmic results presented are low-contention, fast, work-optimal qrqw algorithms for multiple

32

selected processor at substep �i. Thus, all the read operations will be completed before the write
operation is executed; moreover, there is no additional time overhead due to the execution of the
write operations.

With this scheme, the ith step of Algorithm A is executed in �i � �0i steps by Algorithm B, thus
giving the desired result.

We now strengthen the above result for the simd-qrqw pram to work for the qrqw pram with
only a constant factor increase in the running time of the simulating erew pram algorithm.

Lemma 8.2 Let T be the running time for an algorithm A that solves a problem P with input
domain of size 2 on a qrqw pram. Then, there exists an algorithm B that solves P in time O(T)
on an erew pram, using the same number of processors and the same working space. Algorithm B
is non-uniform and its description is of size O(T) memory locations per processor.

Proof. We show how to handle the read steps of Algorithm A; write steps are treated similarly.
Consider the ith read step in Algorithm A on input b. Let the time cost of this step be ti. Let Rk

be the set of reads for processor pk, and let Mj be the set of read requests for memory location mj

in step i on input b. Note that ti is the maximum cardinality of the sets Rk;Mj, over all processor
and memory indices k; j.

We construct a bipartite graph Bi;b = (P;M;Ei;b), where P contains a vertex for each processor,
M contains a vertex for each memory location, and there is an edge (pk;mj) 2 Ei;b if and only if
processor pk reads memory location mj in step i on input b.

The maximum degree of any vertex in the graph Bi;b is ti. Since Bi;b is bipartite it has a proper
edge coloring with ti colors (Theorem 6.1 in [BM76]), i.e. a mapping c : Ei;b ! f1; 2; : : : ; tig such
that for any pair of edges e; f incident on the same vertex, c(e) 6= c(f). Thus for a given input b
we can serialize the ith step of Algorithm A into ti exclusive read substeps by performing the read
corresponding to the edges colored l in the lth substep.

Since the input domain is of size 2, b can take on only two values, say 0 and 1, and each
processor can be in at most two di�erent states at a given time step, no matter what the input is.
In Algorithm B for each step, we run the serialization of the step on input b = 0 followed by the
serialization of the step on input b = 1. If processor pk is in a state that corresponds only to input
b̂ 2 f0; 1g then it performs the read only in the serialization for b = b̂. If pk is in the same state
whether b = 0 or b = 1, then pk performs the read only in the serialization for b = 1. This results in
a (non-uniform) erew pram algorithm that performs the same computation as Algorithm A, using
the same number of processors and the same working space, and runs in time O(T). The length of
the program is the length of the serialization, which is O(T).

There was no attempt to minimize the constants in the above algorithm. Techniques similar to
those applied in the proof of Lemma 8.1 can be used here to reduce the constants.

We now show that randomization cannot help too much when the input domain is small.

Lemma 8.3 Let Td be a lower bound on the time required by a deterministic algorithm to solve a
problem P with input taken from a domain of size jIj. Then, for any randomized algorithm that
solves P , the expected running time Tr on any input is bounded by Tr � Td=jIj.

Proof. Let Ta be the average running time for the uniform input distribution, minimized over
all possible deterministic algorithms, to solve P . Clearly, since the number of possible inputs is jIj,
Ta � Td=jIj. Further, by a classic result of Yao [Yao77], Tr � Ta. (Yao's result is more general; for
a short proof of this claim see [FMRW85].) Therefore, Tr � Ta � Td=jIj.

31

programs for di�erent input sizes, and the program for a given input size i cannot be generated
easily simply by specifying the value of i. Most algorithms used in practice are uniform (i.e., not
non-uniform), in which a single program works for all input sizes. A non-uniform algorithm is not
desirable from a practical point of view, since the time bound for the algorithm is not guaranteed
to be achieved on a given input unless we have already generated the program for that input size.
However, the lower bound of [BKK94] holds for both uniform and non-uniform algorithms (as is the
case with most lower bounds), and hence our simulation result gives the desired lower bound for the
simd-qrqw pram and the qrqw pram.

8.1 Constant size input domain problems

We �rst deal with the simd-qrqw pram. We show that any simd-qrqw pram algorithm for a
problem de�ned on a domain with only two values that runs in time T can be converted into an
erew pram algorithm that also runs in time T . The erew pram may be non-uniform and may
have a description that is of unbounded size. For an exact de�nition of the model see [CDR86].

Lemma 8.1 Let T be the running time for an algorithm A that solves a problem P with input
domain of size 2 on a simd-qrqw pram. Then, there exists an algorithm B that solves P in time T
on an erew pram, using the same number of processors and the same working space. Algorithm B
is non-uniform and its description is of size O(T) memory locations per processor.

Proof. Assume, without loss of generality, that the input domain is f0; 1g. The lemma is proved
by constructing the erew pram AlgorithmB from Algorithm A. Consider the ith step in Algorithm
A, and let �i(b) be the maximum contention in this step on input b. Let �0i = minf�i(0); �i(1)g
(if minf�i(0); �i(1)g = 0 then �0i = 1). Step i will be implemented in Algorithm B in at most
�0i substeps, as described below. Therefore, the running time of algorithm B is at most

P
i �

0
i =P

i minf�i(0); �i(1)g � T . We describe �rst the construction for the read step.

Let �i;j;b be the set of processors that read from memory cell j in step i on input b 2 f0; 1g.
Let �i;j = �i;j;0 \ �i;j;1. For processors in each set �i;j;b n �i;j, we can prepare a priori copies of
the contents of memory cell j, c(i; b), so that they can do the read operation from their appropriate
copies without con
ict, as described below.

For processors in each set �i;j, we serialize their computation by providing an a priori ranking
from [1::j�i;jj] to all the processors in �i;j, and scheduling the processors according to their ranks.
The program for Algorithm B includes for each processor a sequence hi;M (i; b); r(i; b); �i; c(i; b)i,
i = 1; : : : ; T , b 2 f0; 1g, where M (i; b) is the memory cell from which the processor reads in step i on
input b; r(i; b) is the rank of the processor at step i if the processor is in �i;M(i;b), and is null otherwise;
c(i; b) is the contents at step i of memory cell M (i; b) if the processor is in �i;M(i;b);b n�i;M(i;b), and
is null otherwise; and �i = maxj j�i;jj. (Note that the processor does not need to know the value
of b. If, however, M (i; 0) 6= M (i; 1) or r(i; 0) 6= r(i; 1) then it implicitly knows the value of b at
this stage; this knowledge can be made explicit by replacing the quintuple above by the sextuple
hi;M (i; b); r(i; b); �i; c(i; b); b0i where b0 2 f0; 1; �g.) This sequence can be speci�ed in O(T) memory
locations, and is non-uniform. In step i, each processor whose r(i; b) is not null will execute its read
operation from memory location M (i; b) in substep r(i; b). Each processor whose r(i; b) is null will
read c(i; b). After a total of �i substeps, all processors proceed to step i + 1.

It remains to show how to handle the write steps. Consider a memory location j in step i, and
let �i;j , �i;j;0, and �i;j;1 be de�ned as for the read step. On input b, it is su�cient to select a
priori one processor from �i;j;b that will do the write step to location j. If �i;j is not empty then
one of the processors in �i;j will be arbitrarily selected. If �i;j is empty, one of the processors in
�i;j;b will be arbitrarily selected, unless it is empty. The write operation will be executed by the

30

Step 2 can be done in O(lg r) time. Step 3 applies Observation 7.4, and runs in O(lgm0) time,
which is O(

p
lgn) time. For step 4, for each j, the current value of nj, as well as the index of the

�rst unclaimed output cell in subarray j, can be broadcast in O(lg lgn) time; the transferring takes
constant time.

As for step 5, there are two types of unsuccessful items. As argued above, w.h.p., there are at
most c1 lgn claimed cells in a subarray. It follows that the probability that an item is unsuccessful

in step 1 is less than (r � c1 lgn=m0)r = (1=2c2
p
lgn)

p
lgn < 1=nc2. Moreover, it follows that, w.h.p.,

no cells are marked unsuccessful in step 4. So w.h.p., all cells are successful in the �rst pass of the
algorithm.

Theorem 7.6 There is a Las Vegas simd-qrqw pram algorithm for linear compaction that runs
in O(

p
lgn) time with O(n) work w.h.p.

Proof. We describe the algorithm for n=
p

lgn processors. Let an item denote a nonempty input
cell. Note that we make no assumption on the distribution of the items within the input array.

1. View the n input cells as partitioned into subarrays of size 2 lg2 n. Assign 2 lg1:5 n processors
per subarray. In parallel for all subarrays compact the items in each subarray, using parallel
pre�x.

2. For subarrays with at most 2 lgn items, we assign
p

lgn processors per item, and apply
Lemma 7.5.

3. For subarrays with more than 2 lgn items, we view the items as partitioned into blocks of size
lgn. There are at most 2 lgn such blocks in a subarray, so we assign

p
lgn processors per

block. Viewing each block as a \super-item", apply Lemma 7.5 to compact the super-items
into an array of size O(k= lgn). Then we transfer the items in each block to the output array
of size O(k), in the obvious way.

Each of steps 1{3 takes O(
p

lgn) time w.h.p.

8 Broadcasting

Given b 2 f0; 1g in a single memory location, the broadcasting problem is to copy b into n �xed
memory locations. There is a simple linear work, O(lgn) time erew pram algorithm for this
problem. In this section we show that this algorithm is the best possible even for the (randomized)
qrqw pram by providing an
(lgn) lower bound on the expected running time of any deterministic
or randomized qrqw pram algorithm for this problem.

Our lower bound exploits the fact that the input domain for the broadcasting problem has only
two values. We show that for any problem with an input domain of size 2, a simd-qrqw pram

algorithm is no faster than the best erew pram algorithm for the problem, and even a qrqw

pram algorithm is at most two times faster than the best erew pram algorithm for the problem.
We also show that a randomized algorithm for the problem is at most two times faster than the
best deterministic algorithm for the problem. These results, in turn, imply our lower bound for
broadcasting and related problems due to a lower bound for broadcasting on the erew pram given
by [BKK94].

Our simulation of the simd-qrqw pram and the qrqw pram on the erew pram results in a
non-uniform algorithm on the erew pram. An algorithm is non-uniform if it consists of di�erent

29

(using Wyllie's pointer jumping approach [KR90]) and transfer the elements to their location in the
output array.

Note that the input array need not be initialized: since we have an active processor for each
distinguished element, we can detect distinguished elements by a change in the value of a memory
cell.

To prove our simd-qrqw pram result, we start by proving the following lemma, which shows
how to achieve the desired time bound. However, the algorithm performs superlinear work when k
is large. We then show how to use this lemma to obtain a linear work algorithm with the same time
bound.

Lemma 7.5 There is a Las Vegas simd-qrqw pram algorithm for linear compaction that runs in
O(
p

lgn) time w.h.p. if
p

lgn processors are assigned to each nonempty cell.

Proof. Let an item denote a nonempty input cell. Let r =
p

lgn, the number of processors

assigned to each item. Let A be an auxiliary array of size m = c1rk2c2
p
lg n, for constants c1 � 2,

c2 � 1 determined by the analysis. View the array A as partitioned into k= lgn subarrays of size

m0 = c1r2
c2
p

lgn lgn.

1. For each item, select a subarray of A uniformly at random. Each processor assigned to the
item selects a cell in that subarray uniformly at random and tries to claim that cell.

2. At this point, between zero and r cells of A have been claimed on behalf of each item. Denote
an item successful if at least one cell of A has been claimed on its behalf. For each successful
item, select one of its cells in A, and mark the rest as unclaimed.

3. In parallel for all subarrays, compact the claimed cells within each subarray using Observa-
tion 7.4. We compact within subarrays here since, for large k, compacting all of A is too
slow.

4. View the output array as partitioned into k= lgn subarrays of size c1 lgn. For each j, if there
are nj unclaimed cells in subarray j of the output, then the contents of (up to) nj claimed cells
in subarray j of A are transferred to output subarray j. (In the �rst pass of the algorithm,
nj = c1 lgn, but in any subsequent pass, nj may be smaller.) If there are more than nj claimed
cells in a subarray j, then for i > nj , the item associated with the ith claimed cell in subarray
j of A is denoted unsuccessful.

5. For each unsuccessful item, each of its r processors returns to step 1.

Since the processors assigned to an item repeat the algorithm until at least one of them has
successfully claimed an output cell, this is a Las Vegas algorithm. (Note that processors may
complete their participation in the algorithm at di�erent times, not knowing when all processors
have terminated.) Let Xj be the number of items selecting subarray j of A in step 1. Then
E[Xj] = k=dk= lgne � lgn. By Cherno� bounds, for c1 � 2 de�ned above,

PrfXj � c1 lgng � e(1�1=c1�ln c1)c1 lgn < e=cc1 lgn1 < 1=nc1 :

After step 2, there is at most one claimed cell for each item, so w.h.p., there are at most c1 lgn
claimed cells in a subarray. A processor tries to claim a cell in step 1 by �rst writing its index to the
cell, then reading the cell: if it reads its index, it has claimed the cell, and it writes the contents of
its input cell to the claimed cell. For each subarray j, let Yj;i be the number of processors selecting

cell i of subarray j of A in step 1. Then E[Yj;i] � r � c1 lgn=m0 � 1=2c2
p
lgn. It follows from

Observation 6.1 that the time for step 1 is O(
p

lgn) w.h.p.

28

7 Linear compaction

Consider an array of size n with k nonempty cells, with k known, but the positions of the k nonempty
cells not known. The k-compaction problem is to move the contents of the nonempty cells to the �rst
k locations of the array. The linear compaction problem is to move the contents of the nonempty
cells to an output array of O(k) cells. The best known erew pram algorithms for both problems
take �(lgn) time, using parallel pre�x sums [LF80]. Even for the case k = 2, there is a randomized

(
p

lgn) expected time lower bound for the erew pram ([Mac94], following [FKL+92]), and a
deterministic lower bound of
(lg lgn) for an n-processor crew pram [FKL+92].

The simple deterministic simd-erqw pram algorithm for leader election discussed in Section 6.1
can be trivially extended to the k-compaction problem as follows:

Observation 7.1 There is a deterministic simd-erqw pram algorithm for the k-compaction prob-
lem that runs in O(k2) time with O(n) work.

Proof. The input is partitioned into subarrays of k2 cells. Each of the n=k2 processors reads the
cells in its subarray and creates a linked list of the items in its nonempty cells. Since there are
only k nonempty cells, no processor can have more than k items in its linked list. The algorithm
proceeds in k rounds, in which processors attempt to place each item on their list. At round i, each
processor with an unplaced item writes its index to cell i of the array. A designated processor then
reads the cell, and if the index found is j, it signals processor j (by writing to a cell designated for
j), which then transfers the contents of its current item to the cell and continues to the next round
with its next unplaced item (if any). All other processors continue with the same item as before.
The contention in round i is at most k � i + 1, so the algorithm runs in O(k2) time.

By taking k = 2, and recalling the lower bounds mentioned earlier for the erew and crew

pram, we obtain the following two results, which are cited in Table 1 and Table 2 in Section 2:

Corollary 7.2 There is an
(
p

lgn) time separation of a (deterministic or randomized) simd-erqw
pram from a (deterministic or randomized) erew pram.

Corollary 7.3 There is a separation of
(lg lgn) time with n processors of a deterministic
fqr,simd-qr,simd-crgqw pram from a deterministic fqr,simd-qr,crgew pram.

In the remainder of this section, we develop a simd-qrqw pram algorithm for the linear com-
paction problem that runs in O(

p
lgn) time with linear work w.h.p. Within our algorithm, we will

employ the following well-known technique for k-compaction, which runs in O(lgn) time using only
k processors on an erew pram.

Observation 7.4 The k-compaction problem with one processor assigned to each nonempty cell can
be solved by an erew pram algorithm in O(lgn) time.

Proof. View the n elements as leaves of a full binary tree. At the ith step we work at level i above
the leaves, and inductively, for each node v at this level, we have the solution (in the form of a linked
list) for the leaves in the subtrees rooted at the two children of v. To combine these solutions at v we
only need to make the last distinguished element in the subtree of the left child of v as the successor
of the �rst distinguished element in the right subtree of v. This can be performed by a constant
time erew computation. Finally we perform list ranking on the linked list of distinguished elements

27

contains its index (i.e. no other processor overwrote it), then it writes its index to cell i0 of
A0, i0 = i mod s lg lgn, and then reads that cell. If the cell contains its index, then it writes
its index to cell i00 of A00, i00 = i0 mod lg lgn, and then reads that cell. If the cell contains its
index, then it writes a 1 into memory cell x.

3. Each processor reads x. If x = 0, repeat steps 2 and 3 with p = ps. If p � 1, repeat one last
time with p = 1 and then stop.

Note that x is set to 1 only if there is a processor with a 1. Conversely, each processor whose input
bit is 1 either writes a 1 into x, writes its index in a cell of A in the iteration that x is set to 1, or
stops when x = 1; hence the algorithm always outputs the correct answer. There are O(lgn= lg s)
iterations. If no processor writes to A in an iteration, then the iteration takes O(1) time. Else there
is one last iteration in which writes to A, A0, A00, and x occur.

We now analyze the contention of these last four write steps. Let pj be the probability used at
iteration j; i.e. pj = sj+1=n. Let k be the number of (original) input bits that are `1'. Since we have
a write step, 1 � k � n. Let t � 0 be an integer such that n=st � k > n=st+1. Consider iteration
t + 1, if it occurs. The probability that no processor writes is at most

(1 � pt+1)k lg lgn < (1=e)pt+1k lg lgn

= (1=e)ks
t+2 lg lgn=n

< (1=e)s lg lgn < (1=e)c lgn

= (1=e)c
0� ln n = 1=nc

0

;

for some constant c0. Hence, if k > 0, there will be no iteration t + 2 w.h.p.

Let W be the number of active processors at iteration t + 1, if it occurs. Then

E[W] = pt+1k lg lgn = st+2k lg lgn=n:

By the choice of t, s � st+1k=n > 1, and hence s2 lg lgn � E[W] > s lg lgn. Let Xi be the number
of writers to cell i of A in iteration t + 1. Then

E[Xi] = E[W]=s2 lg lgn � 1:

By Observation 6.1, and since there are s2 lg lgn = o(n) cells, the maximum contention for this write
is O(lgn= lg lgn) w.h.p.

This bounds as well the contention of any iteration less than t + 1 in which a write to A occurs
(and hence is the last iteration). Since there is at most one winner from each cell of A and exactly
s cells of A that map to one cell of A0, the maximum contention to a cell of A0 is s. Likewise, the
maximum contention to a cell of A00 is s and the maximum contention to cell x is lg lgn.

It follows that the overall running time is O(lgn= lg lgn) w.h.p.

Finally, in order to make the algorithm work-optimal, we should achieve the same time bound
using only n � lg lgn= lgn processors. For this we use an initial computation phase in which we reduce
the size of the input from n to n= lgn. For this we divide the processors into n= lgn groups of lg lgn
processors, and assign to each group the simple task of �nding the or of a block of lgn input bits in
O(lgn= lg lgn) time. We then apply the algorithm described above to the reduced array of n= lgn
bits. This gives us the desired work-optimal randomized algorithm for the or function on n bits in
O(lgn= lg lgn) time w.h.p.

We note that the only large concurrent-read in the previous algorithm is the reading of x in step
3 of the algorithm.

Corollary 6.9 There is an
(lg lgn) time separation of a randomized simd-crqw pram from a
randomized crew pram.

26

It follows that c can be chosen so that there is at least one writer w.h.p.

Given an upper bound on k. We next consider the case where we only have an upper bound,
kmax, on the number of input bits that are 1; the results we obtain are not quite as good as when k

is known to within a factor of 2
p
lgn, but better than the case when no bound on k (other than n)

is known. The algorithm is a straightforward modi�cation of the previous algorithm (Theorem 6.6).

Theorem 6.7 Consider the problem of electing a leader bit from among k out of n bits that are 1,
given an upper bound, kmax, on k. There is a Las Vegas simd-erqw pram algorithm that runs in
O(lgkmax +

p
lgn) time with O(n) work w.h.p.

Proof. We describe the algorithm for n=(lg kmax+
p

lgn) processors. The input bits are partitioned
among the processors such that each processor is assigned lg kmax +

p
lgn bits. If kmax =
(n�) for

some constant 0 < � � 1, apply the erew parallel pre�x algorithm, as mentioned in Section 6.1, to

obtain the stated bounds. Otherwise, let A be an array of size m = kmax � 2
p

lgn, initialized to all
zeros (note that m = O(n)). Each processor selects a leader from among its input bits that are 1, if
any. Then each processor with a leader writes to a cell of A selected uniformly at random. Finally,
m of the processors participate to select a nonzero index from among those written to A. The �rst
and third steps take O(lg kmax +

p
lgn) time. In the second step, the expected contention to a cell

i in A is at most 1=2
p
lgn. It follows from Observation 6.1 that the maximum contention over all

cells of A is O(
p

lgn) w.h.p.

6.3 A general randomized algorithm

It is shown in [DKR94] that the or function on n bits requires
(lgn) time on a randomized crew

pram. (This lower bound is for randomized algorithms that have zero probability of a concurrent
write, and correctly compute the or with probability bounded away from 1/2.) In contrast to this
lower bound, we show in this subsection that a randomized simd-crqw pram can compute the or
function on n bits in O(lgn= lg lgn) time and linear work w.h.p.

Theorem 6.8 There is a Las Vegas simd-crqw pram algorithm for the leader election problem
(and the or function) that runs in O(lgn= lg lgn) time and linear work w.h.p.

Proof. We �rst show the time bound using n lg lgn processors. We describe the algorithm for the
or function, which can be trivially modi�ed to solve the leader election problem. Since the number,
k, of contending 1-bits is unknown, we will search for the true value of k. We take larger and larger
samples until we either �nd a sample that contains at least one input bit that is 1, or learn that all
input bits are 0. We must ensure that w.h.p., there will be at least one writer (with a 1) prior to
the iteration in which there are too many writers (i.e. the iteration where the contention would not
be O(lgn= lg lgn)). The new algorithmic result below is a technique for amplifying probabilities on
the simd-qrqw model so that this occurs.

1. Let s = c lgn= lg lgn, with c � 1 a constant determined by the analysis. Let A be an array of
s2 lg lgn memory cells, A0 be an array of s lg lgn memory cells, and A00 be an array of lg lgn
memory cells, each initialized to all zeros. The output is to be written in memory cell x. We
assign lg lgn processors to each input bit. Each processor reads its input bit. Let p = s2=n.

2. Each processor with input bit 1 is active with probability p. Each such active processor writes
its index to some cell i of A chosen uniformly at random, and then reads that cell. If the cell

25

runs in O(1) expected time and O(n) expected work, and probability of failure less than 1=e. There
is a (randomized) Las Vegas simd-crqw pram algorithm that runs in O(1) expected time and O(n)
expected work.

Proof. The index of each bit whose value is 1 is written into the output cell with probability
1=k. This has constant expected contention, and the probability that no value is written is (1 �
1=k)k < 1=e. To obtain a Las Vegas algorithm, the write step is repeated until there is at least
one writer. Termination is detected by using the concurrent-read capability. The expected time is
O(1 + 1=e + 1=e2 + 1=e3 + : : :) which is O(1).

The expected time for this algorithm is constant; however, we are interested in high probability
results. The next two theorems deal with high probability randomized algorithms for the case when
a good estimate for k is known, and the case when a good upper bound for the value of k is known.

Given a good estimate for k. In the following, we describe a fast leader election algorithm when

the number of bits competing for leadership is known to within a multiplicative factor of 2
p
lgn.

Theorem 6.6 Consider the problem of electing a leader bit from among the k out of n bits that

are 1. Let k̂ be known to be within a factor of 2
p
lgn of k, i.e. k̂=2

p
lgn � k � k̂2

p
lg n. There is a

Monte Carlo simd-erqw pram algorithm that, w.h.p., elects a leader in O(
p

lgn) time with O(n)

work. On the simd-crqw pram, or if k̂ � 2
p

lgn, the same bounds can be obtained for a Las Vegas
algorithm.

Proof. We describe the algorithm for n=
p

lgn processors. Let p = min(1; 2c
p
lgn=k̂), for a constant

c � 1, to be determined by the analysis. Let A be an array of size m = 2(c+2)
p
lgn, initialized to

all zeros. The input bits are partitioned among the processors such that each processor is assignedp
lgn bits.

Step 1. Each processor selects a leader from among its input bits that are 1, if any.

Step 2. Each processor with a leader writes, with probability p, the index of the leader bit to a cell
of A selected uniformly at random.

Step 3. m of the processors participate to select a nonzero index from among those written to A.

If k̂ � 2
p
lgn then p = 1 and this is a Las Vegas algorithm. Else a Las Vegas algorithm is obtained

by repeating steps 2 and 3 until there is a nonzero index in A. Termination is detected by using the
concurrent-read capability.

Step 1 takes O(
p

lgn) time. Since m = 2O(
p

lgn), an erew binary fanin approach can be used
to obtain the same time bounds for step 3. For step 2, we will show that the contention is O(

p
lgn)

w.h.p. Let Xi be the number of writers to cell i of A. Then

E[Xi] � kp=m � k2c
p
lgn=k̂m � k=k̂22

p
lg n � 1=2

p
lgn :

It follows from Observation 6.1 that the maximum contention over all cells of A is O(
p

lgn) w.h.p.

It remains to show that w.h.p., there is at least one writer to A (assuming that k > 0). If

k̂ � 2c
p
lgn, then p = 1 and hence there will be one writer to A for each processor that has an input

bit that is 1. Else k̂ > 2c
p
lgn, and the probability that there are no writers to A is at most

(1 � p)k=
p
lgn = ((1� 1=(1=p))1=p)pk=

p
lgn < (1=e)pk=

p
lgn;

= (1=e)(k=k̂)2
c

p
lg n=

p
lgn � (1=e)2

(c�1)
p

lgn=
p
lgn:

24

We can derive an
(lgn= lg lgn) lower bound for the or function using a lower bound result
of Dietzfelbinger, Kutylowski and Reischuk [DKR94] for the few-write pram. Recall that the few-
write pram models are parameterized by the number of concurrent writes to a location permitted
in a unit-time step. (Exceeding this number is not permitted.) Let the �-write pram denote the
few-write pram model that permits concurrent writing of up to � writes to a location, as well as
unlimited concurrent reading. We begin by proving a more general result for emulating the crqw

on the few-write pram, and then provide the or lower bound.

Observation 6.2 A p-processor crqw pram deterministic algorithm running in time t can be
emulated on a p-processor t-write pram in time O(t).

Proof. Since the crqw algorithm runs in time at most t on all inputs, then the maximum write
contention is at most t on all inputs. Hence the t-write pram can be used to emulate each write
substep, and the emulation proceeds as was done for the crcw (Observation 2.2).

Theorem 6.3 Any deterministic algorithm for computing the or function on a crqw pram with
arbitrarily many processors requires
(lgn= lg lgn) time.

Proof. Dietzfelbinger, Kutylowski and Reischuk [DKR94] proved an
(lgn= lg�) lower bound for
the or function on the �-write pram. Let T be the time for the or function on the crqw pram.
Then by Observation 6.2, the or function can be computed on the T -write pram in O(T) time. Thus
T =
(lgn= lgT), and hence T lgT =
(lgn). Now if T = o(lgn= lg lgn), then lgT = o(lg lgn),
contradicting T lgT =
(lgn). Thus T =
(lgn= lg lgn).

Since the ercw pram can compute the or function in constant time, Theorem 6.3 implies the
following separation result:

Corollary 6.4 There is an
(lgn= lg lgn) time separation of a deterministic fer,qr,crgcw pram

from a deterministic fer,qr,crgqw pram.

Cook, Dwork and Reischuk [CDR86] proved that any deterministic algorithm for computing the
or function on a crew pram with arbitrarily many processors requires
(lgn) time. Dietzfelbinger,
Kutylowski and Reischuk [DKR94] later proved a similar lower bound for randomized crew pram

algorithms. The di�culty in extending either of these results to the crqw pram is that in the
crqw pram, the running time of a step may be di�erent on di�erent inputs. Thus in a crqw write
step with contention k for a given input I, the lower bound argument of [CDR86, DKR94] will allow
processors to gain knowledge about input I as a function of the maximum contention, K, for the
step over all inputs, and K could be much larger than k.

6.2 Randomized algorithms for special cases

In this subsection, we present a series of randomized leader election algorithms, under various sce-
narios. First, consider the leader election problem when the value of k is known. On the simd-qrqw
pram, a simple, fast, randomized algorithm for this problem is to have the k processors whose input
bits are 1 write to the output cell with probability 1=k. This runs in constant time on the simd-

qrqw, and, as a low-contention algorithm, will run fast in practice. The failure probability can be
reduced by repeating the algorithm.

Observation 6.5 Consider the problem of electing a leader bit from among the k out of n bits that
are 1, where k is known. There is a (randomized) Monte Carlo simd-erqw pram algorithm that

23

6 Leader election and computing the OR

Given a Boolean array of n bits, the or function is the problem of determining if there is a bit with
value 1 among the n input bits. The leader election problem is the problem of electing a leader bit
from among the k out of n bits that are 1 (k unknown). The output is the index in [1::n] of the bit,
if k > 0, or 0, if k = 0. This generalizes the or function, as long as k = 0 is possible.

In this section we present several randomized and deterministic algorithms for solving these
problems on queue-write prams. Our main result is a randomized algorithm for the two problems
on the crqw pram that performs linear work and runs in O(lgn= lg lgn) time with high probability.
This result is somewhat surprising since it improves on the best possible time bound (which is
�(lgn)) for any deterministic or randomized crew pram algorithm for the two problems.

Most of the randomized algorithms we present are of the Las Vegas type, while a few are of the
Monte Carlo type. A Las Vegas algorithm is a randomized algorithm that always outputs a correct
answer, and obtains the stated bounds with some stated probability. A Monte Carlo algorithm, in
contrast, is a randomized algorithm that outputs a correct answer with some stated probability. In
the analysis of some of our randomized algorithms, we apply the following Cherno� bound:

PrfX � �E[X]g � e(1�1=��ln �)�E[X] ; for all � > 1 ;

and in particular, its following corollary:

Observation 6.1 Let X be a binomial random variable. For all f = O(lgn), if E[X] � 1=2f , then
X = O(lgn=f) w.h.p. Furthermore, if E[X] � 1 then X = O(lgn= lg lgn) w.h.p.

Proof. Let � = c lgn=(fE[X]), for a constant c > maxf2; f= lgng to be determined. Then
� > 1=E[X] � 2f , since �E[X] = c lgn=f > 1. By the Cherno� bound,

PrfX � c lgn=fg � e(1�1=��ln �)�(c=f) lgn < e�(c=2f) ln � lgn

= e�(c=2f) lg ��ln n = 1=n(c=2f) lg � < 1=nc=2 :

Hence for any � > 1, there exists a constant c = maxf2�; f= lgng such that PrfX � c lgn=fg < 1=n�.

If E[X] � 1, we take � = c lgn=(lg lgnE[X]), for a constant c > 2 to be determined. Then
lg� � lg lgn� lg lg lgn � 2 lg lgn=3. By the Cherno� bound,

PrfX � c lgn= lg lgng � e(1�1=��ln �)�(c= lg lgn) lgn < e�(c=2 lg lg n) ln � lgn

= e�(c=2 lg lgn) lg ��ln n = 1=n(c=2 lg lgn) lg � � 1=nc=3 :

Hence for any � > 1, there exists a constant c = 3� such that PrfX � c lgn= lg lgng < 1=n�.

6.1 Deterministic algorithms

By having each processor whose input bit is 1 write the index of the bit in the output memory cell,
we obtain a simple deterministic simd-erqw pram algorithm for leader election (and similarly for
the or function) that runs in maxf1; kg time using n processors, where k is the number of input
bits that are 1 (k unknown). This is a fast algorithm if we know in advance that the value of k
is small. However, for the general leader election problem, a better algorithm is the natural erew
pram algorithm for leader election which uses a parallel pre�x algorithm to compute the location
of the �rst 1 in the input; this takes �(lgn) time and �(n) work.

22

the theorem holds for this augmented problem. Clearly, this implies that the bound holds for the
original problem.

As indicated earlier we assume that the memory has been randomly hashed onto the p= lg p
components of the BSP. Consider a �xed component C. As in [Val90a], we de�ne a random variable

xj; 1 � j � d0, where xj = qj=ki if mj is hashed onto C and zero otherwise. Let X =
Pd0

j=1 xj. We
note that xj = qj=ki with probability lg p=p, and ki �X is the number of messages sent to C in the
ith step. Then

E(xj) = qj lgp=(pki); 1 � j � d0 :

Let � be the mean of the expectations of the xj:

� =
d0X

j=1

(qj lg p)=(pkid
0) = vi

0 lg p=(pkid
0) = (� + 1)pki lg p=(pkid

0) :

So � = (� + 1) lg p=d0. By Hoe�ding's inequality [Hoe63],

Pr(X > (� + z)d0) � e�z
2d0=3� ;

provided z < min(�; 1� �). Let z = �=2. Then

Pr(X > 3�d0=2) � e��d
0=12 = e�(�+1) lg p=12 = 1=p�(�) :

Let t = O(pr), and let c > 0 be an arbitrary constant. By choosing � su�ciently large, we have that
the probability that any component receives more than 3�d0ki=2 = �(ki lg p) messages in the ith
qrqw step is less than 1=pr+c.

Each bsp component emulates lg p qrqw pram processors. It sends O(ki lgp) \read" messages
and receives O(ki lg p) (w.h.p.) such messages. In the next superstep, it sends O(ki lg p) (w.h.p.)
\read reply" messages and receives O(ki lg p) such replies. Finally, in the next superstep, it performs
O(ki lg p) local ram operations, sends O(ki lg p) \write" messages, and receives O(ki lg p) (w.h.p.)
such messages, updating the values of the appropriate locations. Since the periodicity L is �(lg p)
and the gap g is constant, the time taken to complete the ith step on the bsp is O(ki lg p) w.h.p.

Thus, with probability greater than (1� 1=pc) the bsp completes the emulation of the O(t) time
augmented qrqw computation in O(

Pm
i=1 ki lg p) time, where m is the number of steps in the qrqw

computation, i.e. the bsp completes the emulation in O(t lgp) time w.h.p.

Note that unlike Valiant's emulation of the erew pram on standard bsp, the emulation above
may result in a rather uneven distribution of messages among the components whenever there is
an uneven distribution of contention among the locations. This raises concerns regarding possible
contention in routing the messages between the components. However, the (standard) bsp model
ignores all issues of routing other than the number of messages sent and received at each component,
and hence the proof of Theorem 5.1 addresses only these same routing issues.

Further issues in routing do arise in emulating the pram or bsp on models such as the multiport
hypercube. Valiant de�nes the slackness of a parallel algorithm being emulated to be the ratio of
the number of virtual processors in the algorithm to the number of \physical" processors in the
emulating model. In [Val90a], Valiant showed that a p-component standard bsp algorithm with
slackness at least lg p and running in time t can be emulated on a p-node multiport hypercube in
O(t) time w.h.p. Since the slackness in the emulation in Theorem 5.1 is lgp, we have the following:

Theorem 5.2 A p-processor qrqw algorithm (or simd-qrqw pram algorithm) running in time t
can be emulated on a (p= lg p)-node multiport hypercube in O(t lg p) time w.h.p.

Thus the uneven distribution of messages that may result from emulating a qrqw pram algo-
rithm on the standard bsp does not prevent a fast, work-preserving emulation of the qrqw pram

on the multiport hypercube.

21

each component sends messages, receives messages, and performs local ram steps. Operations at
a component (message initiations, message receipts, ram operations) are assumed to take constant
time. No assumption is made about the relative delivery times of messages within a superstep, and
local operations may only use data values locally available to the component prior to the start of
the superstep. If the operations in a superstep, including message deliveries, do not complete in L
time units, additional intervals of L time units are allocated to the superstep until it completes.

The bsp model has been advocated as one that forms a bridge between software and hardware
in parallel machines; that is, between abstract models for algorithm design and realistic parallel
machines. This approach is supported in [Val90a, Val90b] by providing a fast, work-preserving
emulation of the standard bsp model on hypercube-type non-combining networks on the one hand,
and a fast, work-preserving emulation of the erew pram on the standard bsp on the other hand.
In particular, it is shown that the erew pram can be emulated in a work-preserving manner with
logarithmic slowdown on the standard bsp, while the standard bsp can be emulated in a work-
preserving manner with constant slowdown on, e.g., the multiport hypercube. In the multiport
hypercube on p nodes, each node can receive a message on each of its lg p incoming wires and
route them along the appropriate outgoing wires in constant time, subject to the constraint that at
most one message can be sent along each outgoing wire. These emulations show that the choice of
L = �(lg p) and g = �(1) used in the standard bsp is su�cient to hide the latency, synchronization,
and memory granularity overheads occurring in the emulations.

Valiant [Val90a] shows that a v-processor pram step with contention � can be simulated on a
p-processor standard bsp in O(v=p + � lg p) time w.h.p. It follows readily from this result that a
p-processor simd-qrqw pram algorithm running in time t can be emulated on a (p= lgp)-component
standard bsp model in O(t lgp) time w.h.p.

In this section we show that the more powerful qrqw pram can also be emulated in a work-
preserving manner with only logarithmic slowdown on the standard bsp as well as on hypercube-type
networks. The proof of this result is complicated by the fact that a qrqw step with time cost k
may have up to 2kp reads and writes, whereas in the previous emulation results, the pram step
being emulated had at most 2p reads and writes, independent of k. As in the previous emulations
of pram models on the standard bsp given in [Val90a], we apply a random hash function to map
the pram shared memory onto the bsp components; this function is assumed to map each shared
memory location to a component chosen uniformly and independently at random.

Theorem 5.1 A p-processor qrqw pram algorithm (or simd-qrqw pram algorithm) running in
time t, where t is polynomial in p, can be emulated on a (p= lgp)-component standard bsp model in
O(t lgp) time w.h.p.

Proof. As stated above we apply a hash function that maps the qrqw pram shared memory to the
bsp components such that each shared memory location is mapped on to a bsp component chosen
uniformly and independently at random. We �rst show that for each qrqw step with time cost k,
the number of memory requests mapped to any bsp component is O(k lg p) with high probability.
Then we use this claim to argue that the time to emulate the step on the bsp is O(k lgp) w.h.p.,
and hence the time to emulate all the qrqw steps is O(t lg p) w.h.p.

Consider the ith step of the qrqw pram algorithm, with time cost ki. For simplicity of expo-
sition, we assume that each processor has exactly ki shared memory accesses, where an access is
either a read or a write. Let m1; : : : ;md be the di�erent memory locations accessed in this step, and
let qj be the number of accesses to location mj , 1 � j � d. For the purpose of this analysis we add
�pki memory accesses to this step, for a constant � � 23, consisting of accesses with contention ki
to locations md+1; : : : ;md0 , where d0 = d+ �p. With this addition, the ith step has vi0 = (� + 1)pki
concurrent accesses to d0 di�erent memory locations, and the maximum contention is ki. We set

qj = ki for d + 1 � j � d0 and note that v0 =
Pd0

j=1 qj. We now show that the bound stated in

20

Proof. Let B be a predicted spawning algorithm in a crcw work-time presentation to which
AlgorithmA corresponds. Then, the running time of AlgorithmB is t0. A work-preserving scheduling
scheme SB that can adapt Algorithm B into a p-processor crcw pram algorithm B0 is given
in [Mat92]. The scheduling scheme SB consists of applying an algorithm for a linear compaction
problem of size p a constant number of times after each parallel step. The time overhead of SB is
therefore O(t0 � T 0lc(n)).

Consider a scheduling scheme SA, corresponding to SB, which adapts Algorithm A to a p-
processor qrqw pram algorithm A0. The scheduling scheme SA consists of applying an algorithm
for a linear compaction problem of size p a constant number of times after each parallel step. The
time overhead incurred by SA is thus tA = O(t0 � Tlc(n)) and the work overhead is wA = p � tA.
Hence by Lemma 4.2 algorithm A0 runs in time O(n=p) on a p-processor qrqw pram provided
p = O(n=(t + t0 � Tlc(n))).

If AlgorithmB is not predicted then, as in the case of the task-decaying algorithm of Theorem 4.6,
each application of the linear compaction algorithm must be followed by a detection of whether or
not there was a successful termination. Similar arguments to the above imply that the corresponding
algorithmA can be adapted to a p-processor qrqw pram algorithm running in timeO(n=p) provided
p = O(n=(t + t0 � Tlcd(n))), and to a p-processor crqw pram algorithm running in time O(n=p)
provided p = O(n=(t + t0 � T 00lcd(n))).

Corollary 4.9 Algorithm A in Theorem 4.8 can be implemented to run in time O(n=p) w.h.p. on
a p-processor qrqw pram when p = O(n=(t + t0 � lgn)) and on a p-processor crqw pram when
p = O(n=(t+ t0 � lgn= lg lgn)). If Algorithm A is predicted then it can be implemented to run in time
O(n=p) w.h.p. on a p-processor qrqw pram when p = O(n=(t + t0 � plgn)).

The spawning model can be further generalized to include a start operation in which one task
may spawn n new tasks to begin in the next time step. This extended model is called v-pram in
[Goo91] where it was suggested. It was shown in [Goo91] that the work-preserving scheme for the
spawning model can be extended to the v-pram model as well, with the same overhead. Accordingly,
Theorem 4.8 and Corollary 4.9 apply to the v-pram model.

A more general type of spawning algorithm, the L-spawning algorithm, is studied in [GMR97]. In
the L-spawning model, each task can spawn up to L�1 additional tasks at each step. It is shown in
[GMR97] that an L-spawning algorithm with time t, work n, and t0 parallel steps can be implemented
on a p-processor qrqw pram to run in timeO(n=p) w.h.p. when p = O(n=(t+t0

p
lgn lg lgL+t0 lgL)).

This implementation applies a more general load balancing algorithm given in [GMR97].

5 Realization on feasible networks

The Bulk-Synchronous Parallel (bsp) model was introduced by Valiant [Val90a, Val90b] as a model
of parallel computation that takes into account overheads incurred by latency, synchronization and
memory granularity. It consists of components that can perform local ram computations and com-
municate with one another through a router which delivers messages between pairs of components.
Messages to a component are serviced one-at-a-time. The bsp provides facilities for synchronizing
the components at regular intervals. There are three parameters to the model: p, the number of
components, periodicity L, the number of time units between synchronizations, and throughput g, a
measure of the bandwidth limitations of the router. A particular case studied by Valiant is one that
sets g to be a constant and L to be �(lg p), and has each synchronization involve all the components;
we denote this the standard bsp model.

A standard bsp computation consists of a sequence of supersteps, with each superstep separated
from the next by a global synchronization point among all the components. In each superstep,

19

Proof. Let B be a predicted task-decaying algorithm in a crcw work-time presentation to which
Algorithm A corresponds. A work-preserving scheduling scheme SB that can adapt Algorithm B
into a p-processor crcw pram algorithm B0 is given in [MV91]. The scheduling scheme SB is
based on several applications of an algorithm for the linear compaction problem of size p. The
analysis in [MV91] is based on showing that the cost of all but lg(n=p) applications of the linear
compaction algorithm can be amortized against the execution of Algorithm B, with only a constant
factor overhead. Hence the time overhead of SB is tB = O(T 0lc(n) lg(n=p)). As for the geometric
decaying-algorithm, the time overhead can be shown to be tB = O(T 0lc(n) lg(T 0lc(n))).

Consider a scheduling scheme SA, corresponding to SB, which adapts Algorithm A to a p-
processor qrqw pram algorithm A0. An amortization argument similar to the one used for SB
implies that the cost of all but lg(n=p) applications of the linear compaction algorithm can be
amortized against the execution of Algorithm A, with only a constant factor overhead. The time
overhead of SA is therefore tA = O(Tlc(n) lg(n=p)), and hence tA = O(Tlc(n) lg(Tlc(n))), and the
work overhead is p � tA. Hence for p = O(n=(Tlc(n) lg(Tlc(n))) this schedule has a work overhead of
O(n). By Lemma 4.2 the scheduling scheme SA maps A into a p-processor qrqw pram in O(n=p)
time provided p = O(n=(t + Tlc(n) lg(Tlc(n)))).

If Algorithm B is not predicted then each application of the linear compaction algorithm must
be followed by a detection of whether or not there was a successful termination. In such case,
the underestimation is by at most a factor of 2. Similar arguments to the above imply that the
corresponding algorithm A can be adapted to a qrqw pram algorithm with running time O(n=p)
provided p � n=(t + Tlcd(n) lg(Tlcd(n))) and to a crqw pram algorithm with running time O(n=p)
provided p � n=(t + T 00lcd(n) lg(T 00lcd(n)))

By the result stated above we have:

Corollary 4.7 Algorithm A in Theorem 4.6 can be implemented to run in time O(n=p) w.h.p. on
a p-processor qrqw pram when p = O(n=(t + lgn lg lgn)) and on a p-processor crqw pram when
p = O(n=(t+ lgn)). If Algorithm A is predicted then it can be implemented on a p-processor qrqw
pram t run in time O(n=p) w.h.p. when p = O(n=(t +

p
lgn lg lgn)).

Spawning algorithms. A spawning algorithm starts with a collection of unit tasks, and at each
step of the algorithm, each task can

i. progress to the next step of the algorithm;

ii: progress to the next step of the algorithm and spawn another new task; or

iii: not progress to the next step and die.

The total number of tasks in a spawning algorithm may increase or decrease in each step. Thus,
the spawning model generalizes the model for task-decaying algorithms. As in the task-decaying
model, a spawning algorithm is predicted if an approximate bound on the sequence of work loads
fwig is known in advance; speci�cally, if a sequence fw0

ig is given such that for all i, w0
i � wi andP

i w
0
i = O(

P
iwi).

Theorem 4.8 Let A be a spawning algorithm in a qrqw work-time presentation running in time t
and work n, and let t0 be the number of parallel steps in A. Then Algorithm A can be implemented
to run in time O(n=p) on a p-processor qrqw pram when p = O(n=(t + t0 � Tlcd(n))) and on a p-
processor crqw pram when p = O(n=(t+ t0 � T 00lcd(n))). If Algorithm A is also predicted then it can
be implemented to run in time O(n=p) on a p-processor qrqw pram when p = O(n=(t+t0 �Tlc(n))).

18

qrqw pram, it is best to use a �(lgn) time erew pram algorithm for pre�x sums [LF80]. Hence,
Tlcd(n) = �(lgn). Performing a broadcast on the simd-crqw pram is trivial in constant time. In
Section 6 (Theorem 6.8) we show that the or problem can be solved by a simd-crqw pram in time
O(lgn= lg lgn) and linear work w.h.p. Hence, T 00lcd(n) = O(lgn= lg lgn) w.h.p.

Task-decaying algorithms. A task-decaying algorithm (or simply a decaying algorithm) is one
that starts with a collection of unit tasks. Each of these tasks progresses for a certain number of
steps of the algorithm, and then dies. A task is said to be a live task until it dies. No other tasks
are created during the course of the algorithm. The work load wi is the number of live tasks at step
i of the algorithm.

Geometric-decaying algorithms: A decaying algorithm in either the qrqw or the crcw work-time
presentation is geometric-decaying if the sequence of work loads fwig is upper bounded by a de-
creasing geometric series. Typically the work w of such algorithms is O(n) where n is the problem
size. Let A and B be the class of geometric-decaying algorithms in the qrqw and crcw work-time
presentations respectively. Using techniques from [GM91, GM96, MV91] and Lemma 4.2 we have:

Theorem 4.4 Let A be a geometric-decaying algorithm in a qrqw work-time presentation with
time t and work n. Then Algorithm A can be implemented on a p-processor qrqw pram to run in
time O(n=p) when p = O(n=(t + Tlc(n) lg(Tlc(n)))).

Proof. Let B be a geometric decaying algorithm in the crcw work-time presentation to which
Algorithm A corresponds. A work-preserving scheduling scheme SB that can adapt Algorithm B
into a p-processor crcw pram algorithm B0 is given in [MV91]. The scheduling scheme SB consists
of lg(n=p) applications of an algorithm for linear compaction problem of size p. On the qrqw pram

we will use a scheduling scheme SA corresponding to SB. When mapping into a p-processor qrqw
pram, scheduling scheme SA will consist of lg(n=p) applications of a qrqw pram algorithm for
linear compaction problem of size p. The time overhead incurred by scheduling scheme SA is tA =
O(Tlc(p) lg(n=p)), and the work overhead is p � tA. We observe, as in [MV91], that if Tlc(p) lg(n=p) �
n=p, then lg(n=p) = O(lg(Tlc(n))), and hence for p � n=(Tlc(p) lg(Tlc(n))), scheduling scheme SA
has a work overhead of O(n). Therefore, by Lemma 4.2, SA maps algorithm A into a p-processor
qrqw pram algorithm A0 to run in time O(n=p) provided p = O(n=(t + Tlc(p) lg(Tlc(n))).

By Theorem 7.6 we obtain

Corollary 4.5 Algorithm A in Theorem 4.4 can be implemented on a p-processor qrqw pram to
run in time O(n=p) w.h.p. when p = O(n=(t +

p
lgn lg lgn)).

General task-decaying algorithms: Recall that in a task-decaying algorithm in either the qrqw or
the crcwwork-time presentation, the sequence of work loads fwig is a monotonically non-increasing
series. Thus, task-decaying algorithms generalize geometric-decaying algorithms. A task-decaying
algorithm is predicted if an approximate bound on the sequence of work loads fwig is known in
advance; speci�cally, if a sequence fw0

ig is given such that for all i, w0
i � wi and

P
iw

0
i = O(

P
iwi).

Let A and B be the class of general task-decaying algorithms in the qrqw and crcw work-time
presentations respectively.

Theorem 4.6 Let A be a task-decaying algorithm in a qrqw work-time presentation with time
t and work n. Then Algorithm A can be implemented to run in time O(n=p) on a p-processor
qrqw pram when p = O(n=(t + Tlcd(n) lg(Tlcd(n)))) and on a p-processor crqw pram when
p = O(n=(t+ T 00lcd(n) lg(T 00lcd(n)))). If Algorithm A is also predicted then it can be implemented on a
p-processor qrqw pram to run in time O(n=p) when p = O(n=(t + Tlc(n) lg(Tlc(n)))).

17

algorithm B to run in time t0 + tB + (w + wB)=p. Thus p � (t0 + tB + (w + wB)=p) = O(w) for some
value of p, since SB is work-preserving. This implies that wB = O(w), and hence wA = O(w).

Now let SA map algorithm A into a qrqw pram algorithm A0 with q � w=(t + tA) processors.
Then algorithm A0 will run in time � = t+ tA + (w + wA)=q on the q-processor qrqw pram which
gives the desired work preserving schedule since

q � � = q � (t + tA) + w + wA � w + w + O(w) = O(w):

Note that we can always transform a crcw pram scheduling scheme into an equivalent qrqw
pram scheduling scheme simply by viewing the overhead of the crcw scheduling scheme in the
work-time framework and interpreting it as a (possibly slower) qrqw scheduling scheme with the
same work overhead. This leads to the following corollary to the above lemma.

Corollary 4.3 Let B be a class of algorithms given in a crcw work-time presentation and let A be
a class of algorithms in the qrqw work-time presentation corresponding to B. Let SB be a crcw

scheduling scheme for B and let SA be the equivalent qrqw scheduling scheme for A. If SB is
work-preserving on the crcw pram then SA is work-preserving on the qrqw pram.

The above corollary shows that it is always possible to derive a work-preserving qrqw scheduling
scheme for a class of qrqw work-time algorithms corresponding to a class of crcw work-time
algorithms that have a work-preserving schedule. However, such a qrqw scheduling scheme can
be very slow. In particular if the algorithm for the crcw scheduling scheme has a read or write
with concurrency �(wB), where wB is the work overhead of the crcw scheduling scheme, then the
work-preserving qrqw scheduling scheme degenerates into a sequential algorithm. A more useful
way to apply Lemma 4.2 is to substitute a fast work-preserving qrqw pram algorithm for the qrqw
scheduling scheme in place of the crcw scheduling scheme.

In what follows, we give three examples of general classes of algorithms for which automatic
processor allocation techniques can be applied to advantage: geometric-decaying algorithms, general
task-decaying algorithms, and spawning algorithms. Processor allocation is done by a scheduling
scheme that uses an algorithm for linear (approximate) compaction. The linear compaction problem
generalizes the 2-compaction problem, as follows: Given k nonempty cells at unknown positions in
an array of size n, with k known, move the contents of the nonempty cells to an output array of
O(k) cells. The linear compaction problem can be solved by a randomized crcw pram algorithm in
time T 0lc(n) = O(lg� n) time and linear work w.h.p. [GMV91]. In Section 7 (Theorem 7.6) we show
that the linear compaction problem can be solved by a randomized simd-qrqw pram algorithm in
time Tlc(n) = O(

p
lgn) and linear work w.h.p.

Sometimes the linear compaction algorithm is used under the assumption that the number of non-
empty cells is at most k. An unsuccessful termination of the algorithm is used to determine that the
input consists of more than k non-empty cells. To make such determination possible, it is necessary
to employ an algorithm for computing the or function, as well as an algorithm for the broadcasting
problem. Furthermore, recall that a subtle property of the qrqw models is that unsuccessful steps
may turn out to be overly expensive if they incur (unexpected) high contention. (This is a rather
signi�cant technical issue in the algorithms of Section 6.) We assume here that the number of non-
empty cells never exceeds �k for some constant � > 0, where k is the estimated upper bound. In
such cases, the running time of the linear compaction algorithm of Theorem 7.6 will increase by at
most a constant factor. Let Tlcd(n) be the running time of a linear compaction algorithm followed
by a determination of whether the algorithm was successful or not on an n-processor qrqw pram,
and let T 00lcd(n) be the corresponding running time on a crqw pram.

In Section 8 we show that on the qrqw pram broadcasting requires
(lgn) expected time.
Therefore when it is necessary to determine if a run of linear compaction was unsuccessful on the

16

Thus Brent's scheduling principle can indeed be extended to the qrqw work-time framework.

4.2 Automatic processor allocation

The mechanism of translating an algorithm from a work-time presentation into a pram description
is not addressed by Theorem 4.1, which assumes processor allocation is free. If the pram model is
extended to include a unit time scan operation [Ble89], as may be appropriate for some machines
such as the CM-5, then the processor allocation issue can be resolved with only small overhead.
The rest of this section deals with the standard pram models that do not incorporate the scan

operation.

Traditionally, the processor allocation needed to implement Brent's scheduling principle has been
devised in an ad-hoc manner. However, it is known that in several common situations an e�cient
automatic implementation is feasible, especially on the crcw, often using linear compaction and
load balancing algorithms as essential tools (see [Mat92] and references therein). In this section, we
adapt these techniques to the qrqw pram model.

Rather than tracing the details of each technique, it would be helpful to show that in general the
contention parameter on the qrqw does not change the validity of these crcw techniques. Indeed,
the fact that time evaluation and work evaluation are done independently in the qrqw work-time
presentation suggests that scheduling techniques on the crcw pram should be useful for the qrqw
pram as well. Next we elaborate on this issue.

Let A be a class of algorithms given in the qrqw work-time presentation. A qrqw scheduling
scheme SA for A is a scheme that maps any algorithm A in A into a qrqw pram algorithm. If
algorithm A has work-time bounds of w and t, then SA will convert A into a p-processor qrqw

pram algorithm for some suitable number of processors p that runs in time � = t+ tA+ (w+wA)=p
and work � � p, where tA and wA are the overhead in time and work for the scheduling scheme SA.
The scheduling scheme SA is work preserving if � � p = O(w).

Similar de�nitions hold for a scheduling scheme for a class of crcw pram algorithms given in
the work-time presentation.

Consider a class of algorithms B given in a crcw work-time presentation, and let SB be a
scheduling scheme that adapts each algorithm B in B into a crcw pram algorithm B0. Let A
be the class of algorithms in the qrqw work-time presentation corresponding to B. That is, each
algorithmA in A is identical to an algorithmB in B except that the time of each parallel step is taken
to be the maximum contention of that step. Thus algorithms A and B perform the same amount
of work, though the running time of algorithm A could be larger. Let SA be a scheduling scheme
on a qrqw pram corresponding to the crcw pram scheduling scheme SB. That is, the scheduling
scheme SA adapts each algorithm A in A into a qrqw pram algorithm A0 which, except for the
scheduling overhead, is identical in execution (but not necessarily in time complexity) to the crcw
pram algorithm B0 derived by SB from the algorithm B in B to which algorithm A corresponds.

Lemma 4.2 Let wA; tA and wB; tB be the work-time overhead of SA and SB respectively. If SB is
work-preserving on the crcw pram and wA = O(wB) then SA is work-preserving on the qrqw

pram. In particular, an algorithm A in A with work-time bounds of w and t will run optimally on
a qrqw pram in time O(w=q) using q processors when q � w=(t + tA).

Proof. Let A correspond to a crcw work-time algorithm B in B that runs in time t0 with work
w0. Note that t � t0 and w = w0 since A corresponds to B. On a p-processor crcw pram, SB maps

15

contention. By focusing on locations, the qrqw model is independent of the particular layout
of memory on the machine, e.g. the number of memory modules. Moreover, it is more relevant
to cache-only memory architectures (coma), such as the KSR1, that dynamically map memory
locations to processors as the computation proceeds. Location contention is also a relevant metric
for cache coherence overhead, since the number of invalidates or updates that must be sent on a
write is often proportional to the number of processors concurrently accessing the location being
written [LLG+90]. The qrqw models, like the standard pram and other similar models, are true
shared memory models, providing a simple view of the shared memory as a collection of independent
cells.

4 Adding contention to the work-time framework

In the work-time presentation, a parallel algorithm is described in terms of a sequence of steps,
where each step may include any number of concurrent read, compute, or write operations [J�aJ92].
In this context, the work is the total number of operations, and the time is the number of steps.
This is sometimes the most natural way to express a parallel algorithm, and forms the basis of many
data parallel languages (e.g. Nesl [BCH+93]). For standard pram models, Brent's scheduling
principle [Bre74] can often be applied to obtain an e�cient O(work=p + time) time algorithm for a
p-processor pram.

4.1 The QRQW work-time framework

We show here that the work-time paradigm can be used to advantage for the qrqw pram. It
is extended into a qrqw work-time presentation by adding at each parallel step i the additional
parameter ki, the maximum contention at this step. Given an algorithm A in the qrqw work-time
presentation, de�ne the work to be the total number of operations6 and the time to be the sum over
all steps of the maximum contention ki of each step (as in the simd-qrqw pram model). We note
that one of the useful features of the traditional work-time presentation is that the time evaluation
is independent of the work evaluation. Perhaps somewhat surprisingly, in the qrqw work-time
presentation, too, the time evaluation (which is based on the contention at each step) is independent
of the work evaluation: there is no bene�t or loss in having steps with high contention also have high
work, as long as the total contention and work remain the same. An algorithm given in the qrqw
work-time presentation can be transformed into an e�cient qrqw pram algorithm, as follows:

Theorem 4.1 Assume processor allocation is free. Any algorithm in the qrqw work-time presen-
tation with x operations and time t (where t is the sum of the maximum contention at each step)
runs in at most x=p + t time on a p-processor qrqw pram.

Proof. Let the number of parallel steps in the algorithm be r. Let xi be the number of operations
in the ith parallel step, and let ki � 1 be the maximum contention in the ith parallel step, 1 �
i � r. Hence t =

Pr
i=1 ki. We map the operations in the ith step uniformly onto the p qrqw

pram processors. Thus each qrqw pram processor will receive at most ni = dxi=pe operations.
The maximum contention at any memory location remains the same as in the original work-time
algorithm, i.e. at most ki. Hence the time cost for the ith step on a p processor qrqw pram is
maxfni; kig. The overall algorithm, therefore, takes time

rX

i=1

maxfdxi=pe; kig �
rX

i=1

((xi=p) + ki) = x=p + t:

6This contrasts with the work in a qrqw pram or simd-qrqw algorithm, which is the processor-time product.

14

MasPar running times (in milliseconds)

contention 1024 processors 16384 processors
in step write read write read

1 0.563 0.518 7.321 6.849

2 0.595 0.554 7.435 6.957

4 0.755 0.703 7.415 6.944

8 1.414 1.332 7.449 6.976

16 2.765 2.589 7.870 7.369

32 5.445 5.090 10.283 9.636

64 10.784 10.116 15.354 14.391

128 21.503 20.167 25.952 24.329

256 42.922 40.271 47.127 44.205

512 85.761 80.459 89.746 84.194

1024 171.441 160.846 175.485 164.635

2048 | | 346.781 325.357

4096 | | 689.218 646.656

8192 | | 1374.849 1289.970

16384 | | 2744.192 2574.748

0

2

4

6

8

0 2 4 6 8 10

write time, 1024 procs
read time, 1024 procs

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

write time, 16384 procs
read time, 16384 procs

Figure 2: Performance measurements on the MasPar MP-1 for a read or write step, under increasing
contention to a location: Top, timing measurements. Bottom, plot of the measurements on a log-
log scale, showing the running time (y-coordinate) as a function of the contention in the step (x-
coordinate). Results for 210 and 214 processors are shown. In the base experiment (contention 1,
x-coordinate 0), each processor reads (writes) according to a random permutation. In the general
experiment (contention 2i, x-coordinate i), the �rst 2i processors read (write) the same location M ,
while the remaining processors read (write) according to the original random permutation. Shown
are the cumulative times of repeating the experiment on 20 di�erent random permutations. In the
plots, the y-coordinate depicts the base 2 logarithm of the number of milliseconds needed.

The experiments show that high contention steps are several orders of magnitude slower than
random permutations, and moreover, that doubling the contention nearly doubles the running time, at
least for medium to high contention steps. The dependence of the running time on the contention is
more dramatic in the experiments with 1024 processors than with 16,384 processors, for the following
reason. In the 16,384 processor MasPar MP-1, each global router port is shared by 16 processors,
creating an additional serial bottleneck. The experiments with 1024 processors use only one processor
per port, thereby avoiding this serial bottleneck.

13

the contention. In contrast, the crcw contention rule would predict that the overall time would not
change with the contention. The di�erences between the left and right plots in the �gure demonstrate
that charging k for contention k, as in the simd-qrqw rule, becomes an accurate re
ection of the
running time only when each processor has its own global router port; otherwise, a more complicated
metric would be more accurate. Note that the MasPar MP-2, the successor of the MP-1, provides
additional router ports, to help alleviate the bottleneck in the MP-1 caused by having one port
for every 16 processors. Thus we would expect the MP-2 to behave more like the plot on the left,
i.e. more according to the simd-qrqw rule.

3.4 Related work

In an early related work, Greenberg [Gre82] considered broadcast communication schemes, such as
the Ethernet, that have queues for submitted messages. More recently, Cypher [Cyp88] analyzed
the performance of a maximum-�nding algorithm under assumptions similar to the simd-qrqw

pram. Dietzfelbinger, Kutylowski and Reischuk [DKR94] de�ned the few-write pram, that permits
one-step concurrent writing of up to � writes, where � is a parameter of the model, as well as
unlimited concurrent reading. Valiant [Val90a] introduced the bsp model (see Section 5), and studied
a specialization of the model with logarithmic periodicity and constant throughput, which we call
here the standard bsp model. In [Val90a] it is shown that a v-processor pram step with contention
� can be simulated on a p-processor standard bsp in O(v=p + � lg p) time w.h.p. A large number of
papers have studied the Distributed Memory Machine, in which the shared memory is partitioned
into modules such that at most one memory location within each module can be accessed at a time.
Concurrent reads and writes may or may not be allowed depending on the model. (See [Lei92a,
Val90b] and the references therein.) An early example is the CTA (or Candidate Type Architecture)
machine model proposed by Snyder [Sny86] which consists of a set of processors connected by a
sparse communication network of unspeci�ed topology and linked to a controller. The CTA is
parametrized by the number of processors and the latency of interprocessor communication. Aumann
and Rabin [AR92] showed that a pram algorithm can be simulated on a very general asynchronous
parallel system that permits O(lgn) contention to a location in unit time.

There have been several recent papers presenting independent work in related areas. Culler
et al. [CKP+93] proposed the LogP model, a lower-level message-passing model in which there is
limited communication bandwidth: a processor can send or receive at most one message every g
cycles, where g is a parameter of the model. There is also a limit on the number of messages in
the network at the same time. The LogP model permits general asynchronous algorithms. Liu,
Aiello and Bhatt [LAB93] studied a message-passing model in which messages destined for the same
processor are serviced one-at-a-time in an arbitrary order. Their model permits general asynchronous
algorithms, but each processor can have at most one message outstanding at a time. Dwork, Herlihy
and Waarts [DHW93] de�ned an asynchronous shared memory model with a stall metric: If several
processes have reads or writes pending to a location, v, and one of them receives a response, then all
the others incur a stall. Hence the charge for contention is linear in the contention, with requests to
a location being serviced one-at-a-time. Their model permits general asynchronous algorithms, but
each processor can have at most one read or write outstanding at a time. Unlike their model, the
qrqw models capture directly how the contention delays the overall running time of the algorithm,
and are proposed as alternatives to other pram models for high-level algorithm design. Unlike each
of these models, the qrqw pram does not explicitly limit the number of outstanding requests. The
simd-qrqw pram, on the other hand, has the same restriction as the Liu et al. and Dwork et al.
models, namely, one request per processor.

In contrast to many of the models mentioned above, the qrqw model focuses on the contention
to locations, rather than to memory modules or processors. Any algorithm with high location
contention will perform poorly on machines with non-combining networks, regardless of the number
of memory modules; any lower bound on location contention is a lower bound on memory module

12

Contention Rules of Some Existing Multiprocessors

Cray T3D [KS93] $ A qrqw

IBM SP2 [IBM94] $ A qrqw

Intel Paragon [Bel92] $ A qrqw

Kendall Square KSR1 [FBR93] $ A crqw

MasPar MP-1 [Mas91], MP-2 $
global router S qrqw

xnet S limited crew

nCUBE 2S [SV94] $ A qrqw

Thinking Machines CM-5 [Lei92b] $
data network A qrqw

control network S fast scan ops
Bus-based machines $ A limited crqw

Fluent [Ran89, AKP91] P S crcw

MIT J-Machine [DKN93] P A qrqw

Stanford DASH [LLG+92] P A qrqw

Tera Computer [ACC+90] P A qrqw

Table 3: Contention rules of some existing multiprocessors. We have included message-passing
machines, as well as shared memory ones, since they are often used to run (slightly modi�ed versions
of) shared memory algorithms or programs. The second column indicates commercial product ($) or
working prototype (P). The third column indicates synchronous (S) or asynchronous (A) machines.
In the last column, ER or EW denotes that programs for the machine are forbidden from having
multiple requests for a location. QR or QW denotes that multiple requests to a location may be
issued, and requests are generally serviced one-at-a-time. CR or CW denotes that multiple requests
to a location may be issued, and requests are combined in the network.

A few entries do not quite �t the taxonomy and require further explanation. In the xnet of the
MP-1 and MP-2, processors are limited to reading or writing values stored at nodes a given distance
away in a given compass direction; each processor may broadcast a value to all intermediate nodes
on the path. The control network of the CM-5 provides fast scan primitives [Ble89]; such primitives
provide concurrent reading and writing and more (only) for well-structured sets of requests that �t
the segmented-scan paradigm [Ble93]. In bus-based machines, the bus typically services only one
shared memory location at a time; all processors requesting to read the location can be serviced at
the same time without penalty. Finally, a number of these machines provide caches that permit fast
concurrent re-reading of shared memory locations: once a set of processors have read a location,
they may subsequently re-read the location without incurring a penalty for contention, as long as no
processor has written to the location in the meantime.

11

indicated by the crcw model.

Hardware approaches for executing high contention crcw steps without hot spots incorporate
combining logic into the interconnection network. Ranade's work [Ran89] shows that any crcw step
can be simulated on certain hypercube-based networks in the same asymptotic time as an erew step,
and development of machines based on his technique have been reported (e.g. [AKP91, DS92]). It
is an open question whether the system cost of supporting crcw e�ciently in hardware is justi�ed,
particularly on mimd machines, and work continues in this area (e.g. [DK92]). Existing commercial
machines are primarily designed to process low contention steps e�ciently; high contention steps
are slow operations.

Note that the weaknesses of the exclusive and concurrent contention rules apply independently
to reading and writing. Thus hybrids such as the crew pram or the ercw pram are too strict for
writing (reading, respectively) and may be too powerful for reading (writing, respectively).

3.3 Most existing machines are QRQW

Table 3 classi�es some existing multiprocessors according to the concurrent read and write capa-
bilities of their interprocessor communication. As seen from the table, the contention rule for most
of these machines, including the CRAY T3D, IBM SP2, Intel Paragon, MIT J-Machine, nCUBE 2S,
Stanford DASH, and Tera Computer, is well-approximated by the qrqw rule. For the synchronous
MasPar MP-1 and MP-2, the contention rule is well-approximated by the simd-qrqw rule.

For the Kendall Square KSR1, the contention rule is well-approximated by the crqw rule.
The Thinking Machines CM-5 provides a second network that can be used to perform fast scan
operations [Ble89]. An appropriate model for this machine would be a qrqw model with unit-time
scan operations.

Note that each of the asynchronous machines (marked A in Table 3) allow for general asyn-
chronous algorithms. Thus their contention rule in its full generality is well-approximated by the
asynchronous queue contention rule provided by the qrqw asynchronous pram [GMR96] (except
for the KSR1, which is well-approximated by an asynchronous crqw contention rule). On the other
hand, their contention rule with respect to bulk-synchronous algorithms is well-approximated by the
(bulk-synchronous) queue contention rule provided by the simpler qrqw or crqw pram.

A number of these machines, such as Stanford DASH, provide caches local to each processor;
on reading a shared memory location, a copy is stored in the processor's cache for future reuse.
Multiple processors with cached copies of a location may then request to read the location, and will
be serviced in parallel from their local caches. To maintain a single consistent value for a location,
these machines typically invalidate all cached copies of the location before permitting a processor
to write to the location. This fast concurrent re-reading of memory locations is not modeled in
the qrqw models, due to the following. If the contents of a shared memory location is stored in a
private memory location when �rst read by a processor, then there is no need to issue a subsequent
shared memory read for this location unless some other processor may have changed the value: the
private copy may be used instead. Moreover, if some other processor did change the value, then fast
re-reading is not possible and there will be a penalty for high contention with or without the caches.
Thus fast re-reading of memory locations seems to have only a secondary e�ect on the contention
encountered in parallel algorithms, and hence has been omitted from the model, for simplicity.

We have conducted experiments to measure the e�ect of contention on a 16,384 processor MasPar
MP-1. The results of these experiments are given in Figure 2. The experiments show that the simd-
qrqw rule is a far more accurate re
ection of running time on the MasPar MP-1 than a crcw

contention rule. Indeed, the overall time for the read (write) step is dominated by the cost of
contention at a fairly small value for the contention, and then the time grows nearly linearly with

10

simpler and more e�cient algorithms for many basic problems. By charging for contention, it re
ects
the realities of machines with non-combining networks, i.e. most current commercial and research
machines. In the remainder of this section, we elaborate on these points, and then compare the
qrqw models to related work. We begin with a critique of the exclusive and concurrent rules.

3.1 EREW is too strict

The exclusive contention rule is almost universally considered by pram proponents to be a realistic
rule for parallel machines. In the erew pram, it is forbidden to have two or more processors attempt
to read or write the same location in the same step. We know of no existing shared memory parallel
machine with this restriction on its global communication. Moreover, the exclusive rule leads to
unnecessarily slow algorithms. A simple example is the 2-compaction problem, in which there are
two nonempty cells at unknown positions in an array of size n, and the contents of these cells must
be moved to the �rst two locations of the array. An erew pram requires
(

p
lgn) time to solve

the 2-compaction problem; an n-processor crew pram requires
(lg lgn) time [FKL+92]. However,
as shown in Section 7, there is a trivial constant time n-processor qrqw pram algorithm for this
problem.

The exclusive contention rule eliminates many randomized algorithmic techniques. Random-
ization used to determine where a processor should read or write (e.g. random sampling, random
hashing) cannot avoid some small likelihood of concurrent reading or writing, and hence cannot
be incorporated directly into erew algorithms.4 Likewise, most asynchronous algorithms cannot
avoid scenarios in which concurrent reading or writing occur. Hence existing asynchronous pram
models (e.g. [CZ89, Gib89, Nis90, MPS92]) do not enforce the exclusive rule, assuming instead a
crcw cost measure.5

3.2 CRCW may be too powerful

At the other extreme, the concurrent contention rule may be too powerful. In the crcw pram, each
step takes unit time, independent of the amount of contention in the step. Thus no distinction is made
between low contention and high contention algorithms. On parallel machines with non-combining
networks, high contention read steps or write steps can be quite slow, as each of the requests for a
highly contended location is serviced one-by-one, creating a serial bottleneck or \hot spot" [PN85].
Moreover, intermediate nodes on the path to the contended destination become congested as well, so
a single hot spot can even delay requests destined for other nodes in the network. If all p processors
request the same location, a common occurrence in crcw pram algorithms, a direct implementation
of the algorithm can incur a p-fold loss in speedup due to contention, sometimes becoming no better
than a sequential algorithm.

An active area of research is how to execute a crcw step that includes high contention reads or
writes without creating hot spots. Software approaches, e.g. using sorting [Val90a], may incur an
overhead considered unacceptable in practice, even on machines that support them. This is arguably
true of the MasPar MP-1, for example, where the concurrent-write primitive provided for the MP-1
is around 20 times slower than writing according to a random permutation [Pre92]. As indicated in
Section 1, the asymptotically best work-preserving emulation known for simulating the crcw pram

on machines with non-combining networks su�ers polynomial slowdown [Val90a, Val92]. Thus, the
running time on the parallel machine will be a polynomial factor slower than the running time

4These techniques can be incorporated into crcw algorithms, and emulated on the erew, but at logarithmic cost
in time and work.

5An exception is the erew variant of Gibbons' asynchronous pram model [Gib89], which permits contention in
synchronization primitives, at a cost, but enforces the exclusive rule on reads and writes occurring between synchro-
nization points.

9

CRCW
. &

crqw qrcw

. & . &
crew QRQW ercw

& . & .
qrew erqw

& .
EREW

Figure 1: The relative power of various pram concurrency rules. The same relationships hold for the
simd versions of the queue models. For concurrent write, we assume an arbitrary processor succeeds
in writing. In this �gure an arrow denotes that the pram model, M1, at the tail of the arrow can
simulate the pram model, M2, at its head with at most a small constant loss in performance (and
possibly some improvement), i.e. M2 � M1. Our results characterize more precisely the relative
power of some of the concurrency rules.

simulate the simd version with no loss. Figure 1 depicts the relative power of the various models
immediately apparent from the de�nitions, extending the results in Observation 2.2 to the hybrid
models. Likewise, Table 2 presents additional separation results for the hybrid models.

3 Why QRQW?

The pram model was introduced in 1978 [FW78], with the crew contention rule. Since that time,
a variety of contention rules have been proposed and studied, with the most-widely studied being
the erew, crew and crcw rules. Variants of the crcw pram such as arbitrary, collision,
common, priority, robust, and tolerant have been proposed and studied (see e.g., [Mat92] for
de�nitions); these di�er in their write-con
ict rules. Given the plethora of contention rules already
in the literature, it is reasonable to ask if there is a need for yet another contention rule, and in
particular, whether the qrqw pram is an important new pram model.

The qrqw pram is a fundamental departure from standard pram models because it is the
�rst pram model to properly account for contention, as re
ected in most current commercial and
research machines. By permitting contention, it re
ects the realities of current machines, and enables

Separation Results for Hybrid Models

stronger model weaker model time separation problem reference

fdet.,rand.g erqw fdet.,rand.g erew
(
p

lgn) 2-compaction x7
det. fqr,crgqw det. fqr,crgew
(lg lgn) 2-compaction x7

(with n procs)

rand. crqw rand. crew
(lg lgn) or function x6.3
det. fer,qr,crgcw det. fer,qr,crgqw
(lgn= lg lgn) or function x6.1

det. crfew,qwg det. qrfew,qwg
(lgn) broadcasting x8
rand. crfew,qwg rand. qrfew,qwg
(lgn) broadcasting

Table 2: Separation results for the hybrid queue models, including both deterministic time (det.) and
randomized expected time or w.h.p. time (rand.). All results listed above hold for the simd versions
as well.

8

QRQW Separation Results

stronger model weaker model time separation problem reference

fdet.,rand.g simd-qrqw fdet.,rand.g erew
(
p

lgn) 2-compaction x7
det. crcw det. qrqw
(lgn= lg lgn) or function x6.1

fdet.,rand.g crcw fdet.,rand.g qrqw
(lgn) broadcasting x8

Table 1: Results on problems inducing a separation of the qrqw from the erew model and the
crcw from the qrqw model, including both deterministic time (det.) and randomized expected or
w.h.p. time (rand.).

Observation 2.2 erew pram � simd-qrqw pram � qrqw pram � crcw pram

Proof. By straightforward emulation. For the crcw emulating a qrqw step of time cost t: (1)
for j = 1; : : : ;maxifrig, perform the jth read operation (if any) at each processor in one step using
cr, then (2) for j = 1; : : : ;maxifcig, perform the jth compute operation (if any) at each processor,
then (3) for j = 1; : : : ;maxifwig, perform the jth write operation (if any) at each processor in one
step using cw. This takes time maxifrig+ maxifcig+ maxifwig � 3t.

Let M1 and M2 be two models such that M1 � M2. A computational problem P induces a
separation of O(f(n)) time with q(n) processors of M2 from M1 if there exists a function t(n) such
that, on inputs of length n, P can be solved on M2 in time O(t(n)) with q(n) processors, but P
requires
(t(n) � f(n)) on M1 if only q(n) processors are available. We say that there is a separation
of f(n) time with q(n) processors of M2 from M1 if there exists a problem that induces such a
separation. Most of the separation results we derive in this paper hold for any q(n) =
(n); in such
cases we omit q(n) when stating the result.

Results on problems inducing a separation of the qrqw from the erew model and the crcw

from the qrqw model appear in Table 1.

2.4 A family of queue models

The de�nitions of simd-qrqw pram and qrqw pram can be generalized so that the charge for
maximum contention � is f(�), a non-decreasing function of �. When f(�) = 1 for all �, both
models are equivalent to the crcw pram. Likewise, when f(1) = 1 and f(�) = 1 for � � 2, both
models are equivalent to the erew pram. Note that the distinction between the simd-qrqw pram

and the qrqw pram arises only when f(�) > 1 and is �nite for some �.

Another possible cost function is f(�) = lg�; such a function may occur in a hypothetical variant
of combining networks, but it is not known to be relevant to any existing machines (there are no
known techniques for achieving this cost function for an arbitrary set of readers/writers). The
log cost function may prove to be relevant to future machines that employ an optical crossbar to
interconnect the processors [GMR94c, MR96]. However, in this paper, we will focus our attention
on the cost function, f(�) = �, that re
ects the realities of proven technologies. (For some machines
that do not handle contention well, super-linear functions such as f(�) = � lg� may be appropriate;
such cost functions are not considered in this paper.) Other possible variants of the model permit
write-con
ict rules other than arbitrary; however, we note that the arbitrary rule re
ects the realities
of most current commercial and research machines.

As the queue rule can be applied independently to reads or writes, we can also consider models
such as the simd-crqw or crqw pram. For each such hybrid model, the pram version can trivially

7

source of overhead on existing machines, and hence one may wish to include this additional metric
when analyzing algorithms on the qrqw models.

2.3 Relations between models

The primary advantage of the qrqw pram model over the simd-qrqw pram model is that the
qrqw permits processors each to perform a series of reads and writes in a step while incurring
only a single penalty for the contention of these reads and writes. In the simd-qrqw, a penalty is
charged after each read or write in the series; often the resulting aggregate charge for contention
is far greater than the single charge under the qrqw model. On the other hand, by adding more
processors to the simd-qrqw, we can match the time bounds (but not the work bounds) obtained
for the qrqw:

Observation 2.1 A p-processor qrqw pram algorithm running in time t can be emulated on a
pt-processor simd-qrqw pram in time O(t).

Proof. For each qrqw processor i 2 [1::p], we assign a team, Ti, of t simd-qrqw processors, with
each team having a leader, li. Each leader li maintains the entire local state of qrqw processor i
during the emulation. For each team Ti, we have an auxiliary array, Ai, of size t for communications
between li and each member of its team. Consider the jth step of a qrqw pram algorithm, with
time cost tj and maximum contention kj � tj. For each qrqw processor i, let ri, ci, and wi be
the number of reads, ram operations, and writes performed by processor i this step. Processor i
is emulated as follows: (1) The leader li writes the ri locations to be read to Ai, one location per
cell. (2) Each member of Ti reads its cell in Ai, reads the designated location (if any) in the shared
memory, and then writes the value read to its cell in Ai. (3) The leader li reads the values in Ai,
performs the ci ram operations, and then writes the wi locations and values to be written to Ai,
one per cell. Finally, (4) each member of Ti reads its cell in Ai, and then writes the designated
value to the designated location (if any) in the shared memory. Step 1 takes O(ri) time, step 2 takes
O(kj) time, step 3 takes O(ri + ci + wi) time, and step 4 takes O(kj) time. Thus the overall time
to emulate the jth qrqw step is O(tj), and the observation follows.

Note that in fact only p � � processors are needed in the above emulation, where � � t is the
maximum time for any one step of the qrqw pram algorithm.

The simd-qrqw pram model permits each processor to have at most one shared memory request
outstanding at a time, as in the standard pram model. This places an upper bound on the number
of requests that must be handled by the interconnection network of the parallel machine. For most
mimd machines, permitting only one request per processor is arti�cially restrictive, and the qrqw

pram model has no such restriction. On the other hand, since there is no bound in the qrqw pram

on the number of outstanding requests, there is a danger that qrqw pram algorithms will
ood
the network with requests beyond its capacity to e�ciently process them. One approach towards
alleviating this potentially serious problem is to divide steps with many shared memory requests
into a sequence of steps with fewer requests per step. In general one could indicate, for each qrqw

pram algorithm, the maximum number of requests in any one step of the algorithm. Then when
implementing the algorithm on a given parallel machine, this number could be compared with the
maximum e�ective network capacity of the machine to determine if the memory requests can be
e�ciently processed by the network.

Let M1 and M2 be two models. We de�ne M1 �M2 to denote that any one step of M1 with time
cost t � 1 can be emulated in O(t) time on M2 using the same number of processors. For concurrent
and queue writes we assume throughout this paper that an arbitrary processor succeeds in the write;
however, the relations stated below hold as long as both machines use the same write-con
ict rule.

6

3. Write substep: Each processor i writes to wi shared memory locations (where the locations and
values written are known at the beginning of the substep).

Concurrent reads and writes to the same location are permitted in a step. In the case of multiple
writers to a location x, an arbitrary write to x succeeds in writing the value present in x at the end
of the step.

De�nition 2.4 Consider a qrqw pram step with maximum contention �, and let m = maxifri; ci;
wig for the step, i.e. the maximum over all processors i of its number of reads, computes, and writes.
Then the time cost for the step is maxfm;�g. The time of a qrqw pram algorithm is the sum
of the time costs for its steps. The work of a qrqw pram algorithm is its processor-time product.

This cost measure models, for example, a mimd machine such as the Tera Computer [ACC+90],
in which each processor can have multiple reads/writes in progress at a time, and reads/writes to
a location queue up and are serviced one at a time. Neither the erew pram nor the crcw pram

model allows a processor to have multiple reads/writes in progress at a time, as this generalization
is unnecessary when reads/writes complete in unit time. This feature, which distinguishes the
qrqw pram from the simd-qrqw pram as well as the erew pram and crcw pram, enables the
processors to do useful work while awaiting the completion of reads/writes that encounter contention.
Nevertheless, as we show below, the crcw pram can simulate the qrqw pram to within constant
factors.

The restriction that the processors in a read substep know, at the beginning of the substep, the
locations to be read re
ects the intended emulation of the qrqw pram model on a mimd machine
in which the reads are issued in a pipelined manner, to amortize against the delay (latency) on such
machines in reading the shared memory. Likewise writes in a write substep are to be pipelined in
the intended emulation. On the other hand, each of the local operations performed in a compute
substep can depend on compute operations in the same substep; since these operations are assumed
to take constant time in the intended emulation, there is no need for pipelining (to within constant
factors). The emulation inserts a barrier synchronization among all the processors between every
read and write substeps, so that the processors notify each other when it is safe to proceed with the
next substep. This synchronization is accounted for in the emulation. A formal description of the
intended emulation and its performance appears in Section 5.

On existing parallel machines, there are a number of factors that determine the time to process
shared memory read and write requests, including contention in the interconnection network and
at the memory modules. Often, reads and writes to distinct shared memory locations may delay
one another. Moreover, issued memory requests cannot be withdrawn. To re
ect these realities of
existing machines, the qrqw pram (as well as the simd-qrqw pram) does not permit processors
to make inferences on the contention encountered based on the delays incurred. In addition, issued
memory requests may not be withdrawn, and an algorithm has not completed until all issued memory
requests have been processed. In this way, the qrqw models, although explicitly accounting only
for the delays resulting from multiple requests to the same locations, can be e�ciently emulated on
models that account for these additional concerns, as shown in Section 5.

As with the simd-qrqw pram, the work is not the number of operations since operations
encountering non-constant contention may be charged non-constant time. (In fact, the only situation
where the work is a good re
ection of the number of operations is when pipelining is extensively
employed, i.e. when the average over i of (ri + ci + wi) is
(�).)

Also, as with the simd-qrqw pram, there is no explicit metric for the number of steps in an
algorithm. As we show in Section 5, there is no need for such a metric in the context of the intended
emulation. On the other hand, the synchronization at the end of each bulk-synchronous step is a

5

the asynchronous nature of mimd machines to be exploited, at the cost of more complexity in the
model.

In order to preserve the simplicity of the simd-qrqw pram and qrqw pram models, neither
model incorporates the cost of synchronizing after a step. We note, however, that our result on a
work-preserving emulation of both models on a bsp shows that the cost of synchronization can be
hidden (up to a constant factor) by using a target machine with a somewhat smaller number of
processors.

The complexity metric for the qrqw models will use the notion of maximum contention, de�ned
as follows.

De�nition 2.1 Consider a single step of a pram, consisting of a read substep, a compute substep,
and a write substep. The maximum contention of the step is the maximum, over all locations
x, of the number of processors reading x or the number of processors writing x. For simplicity in
handling a corner case, a step with no reads or writes is de�ned to have maximum contention `one'.

2.1 The SIMD-QRQW PRAM model

De�nition 2.2 The SIMD-QRQW PRAM model is a (synchronous) pram in which concurrent
reads and writes to the same location are permitted, and the time cost for a step with maximum
contention � is �. If there are multiple writers to a location x in a step, an arbitrary write to x
succeeds in writing the value present in x at the end of the step. The time of a simd-qrqw pram

algorithm is the sum of the time costs for its steps. The work is its processor-time product.

This cost measure models, for example, a simd machine such as the MasPar MP-1 [Mas91] or
MP-2, in which each processor can have at most one read/write in progress at a time, reads/writes
to a location queue up and are serviced one at a time, and all processors await the completion
of the slowest read/write in the step before continuing to the next step. Existing simd machines
provide for the required synchronization of all processors at each step, regardless of the varying
contention encountered by the individual processors. Unlike previous pram models, the work is
not the number of operations, because with the simd-qrqw time metric, operations encountering
non-constant contention are charged non-constant time.

If a pram model is to be used to design bulk-synchronous algorithms on mimd machines, then
the simd-qrqw pram is unnecessarily restrictive. A better model for this scenario is the qrqw

pram, de�ned next.

2.2 The QRQW PRAM model

De�nition 2.3 The QRQW PRAM model consists of a number of processors, each with its own
private memory, communicating by reading and writing locations in a shared memory. Processors
execute a sequence of synchronous steps, each consisting of the following three substeps:

1. Read substep: Each processor i reads ri shared memory locations, where the locations are known
at the beginning of the substep.

2. Compute substep: Each processor i performs ci ram operations involving only its private state
and private memory.3

3As in the existing pram models, each processor is assumed to be a sequential random access machine. See,
e.g. [Rei93]. For the qrqw pram, a processormay performmultiple ram operations in a compute substep, e.g. summing
ci numbers stored in its private memory, and is charged accordingly.

4

Important technical issues arise in designing algorithms for the queue models, that are present in
neither the concurrent nor the exclusive pram models. For example, much of the e�ort in designing
algorithms for the qrqw is in estimating the maximumcontention in a step; our algorithms for leader
election illustrate this point. In the qrqw, one high contention step can dominate the running time
of the algorithm: we cannot a�ord to underestimate the contention signi�cantly.

In a companion paper [GMR97], we present a number of other algorithmic results for the qrqw
pram. Our algorithmic results include linear work, logarithmic or sublogarithmic time randomized
qrqw algorithms for the fundamental problems of multiple compaction, load balancing, generating
a random permutation, parallel hashing, and sorting from U (0; 1). These algorithms improve upon
the best known erew algorithms for these problems, while avoiding the high-contention steps typical
of crcw algorithms. Additionally, we present new algorithms for integer sorting and general sorting.

Most of the results in [GMR97], and some of the results in this paper, are obtained \with high
probability". A probabilistic event occurs with high probability (w.h.p.), if, for any prespeci�ed
constant � > 0, it occurs with probability 1� 1=n�, where n is the size of the input. Thus, we say a
randomized algorithm runs in O(f(n)) time w.h.p. if for every prespeci�ed constant � > 0, there is
a constant c such that for all n � 1, the algorithm runs in c � f(n) steps or less with probability at
least 1� 1=n�.

The rest of this paper is organized as follows. Section 2 de�nes the qrqw pram and simd-

qrqw pram models. Section 3 gives further motivation for the queue models, and comparison
with related work. Section 4 describes the extension of the work-time framework to the qrqw

models. Section 5 presents our results for realizing the qrqw pram on feasible networks. Section 6
gives upper and lower bounds for computing the or and leader election under various scenarios.
Section 7 presents our linear work, sublogarithmic time algorithm for linear compaction on a simd-

qrqw pram. Section 8 presents tight
(lgn) expected time lower bounds on the qrqw pram for
broadcasting and related problems. Concluding remarks appear in Section 9.

The results in this paper appeared in preliminary form in [GMR93, GMR94a, GMR94b].

2 The queue models

This section de�nes our two queue-read queue-write (qrqw) models:

� The simd-qrqw pram, for algorithms running on simd machines.

� The qrqw pram, for bulk-synchronous algorithms2 running on mimd machines.

In both of the qrqw models, the time cost for reading or writing a shared location, x, is propor-
tional to the number of processors concurrently reading or writing x. This cost measure models
machines in which accesses to a location queue up and are serviced one at a time, i.e. most current
commercial and research machines. The simd-qrqw models machines in which processors syn-
chronize at every step, awaiting for all the queues to clear. The qrqw models machines in which
processors synchronize less frequently, awaiting for all the queues to clear only at synchronization
points. In a subsequent paper [GMR96] we de�ne the qrqw asynchronous pram model, for
general asynchronous algorithms running on mimd machines (see also [GMR93]). This model has
an asynchronous queue contention rule in which processors read and write locations at their own
pace, without waiting for the queues encountered by other processors to clear. This model allows

2In a bulk-synchronous algorithm [Val90a, Gib89, Gib93], synchronization among the processors is limited to global
synchronization barriers involving all the processors; between such barriers, processors execute asynchronously using
shared memory values written prior to the preceding barrier.

3

The qrqw pram, like the other pram models mentioned above, abstracts away many features
of real machines, including the latency or delay in accessing the shared memory, the cost of synchro-
nizing the processors, and the fact that memory is partitioned into modules that service requests
serially. A model that incorporates these features is the Bulk-Synchronous Parallel (bsp) model of
Valiant [Val90a]. In its general form this model is parameterized by its number of processing/memory
components p, throughput g, and periodicity L. A particular case studied by Valiant sets g to be a
constant and L to be �(lg p); we denote this the standard bsp model. We show in this paper that the
qrqw pram can be e�ectively emulated on the standard bsp model: A p-processor qrqw pram al-
gorithm running in time t can be emulated on a p= lgp-processor standard bsp in O(t lgp) time with
high probability. It follows by Valiant's simulation of the standard bsp on hypercubes that the qrqw
pram can be emulated in a work-preserving manner on parallel machines with hypercube-type, non-
combining networks with only logarithmic slowdown, even when latency, memory granularity, and
synchronization overheads are taken into account. This matches the best known emulation for the
erew pram on these networks given in [Val90a]. In contrast, work-preserving emulations for the
crcw pram on such networks are only known with polynomial slowdown (i.e. O(p�) slowdown, for
a constant � > 0).

Note that the standard �(lg p) time emulation of crcw on erew (see, e.g. [KR90]) is not
work-preserving, in that the erew performs �(lg p) times more work than the crcw it emulates.
Since we consider work-preserving speed-ups to be the primary goal in parallel algorithms, with
fast running times the secondary goal, this emulation is unacceptable: The �(lg p) overhead in work
ensures that the algorithms will not exhibit linear or near-linear speedups. Similarly, the best known
emulations for the crew pram (or ercw pram) on the erew pram (or standard bsp or hypercube)
require logarithmic work overhead for logarithmic slowdown or, alternatively, polynomial slowdown
for constant work overhead.

Since the qrqw pram is strictly more powerful than the erew pram, e�ectively emulated on
hypercube-type non-combining networks (unlike the crcw, crew, or ercw pram models), and a
better match for real machines, we advocate the qrqw pram with its queue contention rule as a
more appropriate model for high-level algorithm design than a pram with either the exclusive or
concurrent contention rules. The queue contention rule can also be incorporated into lower-level
shared memory models, trading model simplicity for additional accuracy in modeling the cost of
communication (e.g. explicitly modeling the communication bandwidth). In this initial paper on the
queue contention rule, we restrict our focus to high-level algorithm design on pram models.

In addition to the qrqw pram model, we de�ne in this paper the simd-qrqw pram model, a
strictly weaker model suitable for simd machines, in which all processors execute in lock-step and
each processor can have at most one read/write in progress at a time. In a subsequent paper [GMR96]
we de�ne the qrqw asynchronous pram model, for general asynchronous algorithms running on
mimd machines (see also [GMR93]).

We present several algorithms and a lower bound for leader election and for computing the
or function. The lower bound is
(lgn= lg lgn) time for the deterministic computation of the or

function on a concurrent-read, queue-write (crqw) pram with arbitrarily many processors. The
algorithms for both problems take linear work, O(lgn= lg lgn) time with high probability. In con-
trast, the or function requires
(lgn) expected time on a randomized crew pram with arbitrarily
many processors ([DKR94], following [CDR86]). Also presented is a linear work, O(

p
lgn) time

w.h.p. algorithm for the linear compaction problem. This problem has applications to automatic
processor allocation for algorithms that are given in the qrqw work-time presentation. In contrast,
the best linear compaction algorithm known on the erew pram is the logarithmic time pre�x sums
algorithm [LF80]. On the other hand, for the problem of broadcasting the value of a bit to n pro-
cessors, we show that we can do no better on the qrqw pram than the simple �(lgn) time erew
pram algorithm. Speci�cally, we show a tight
(lgn) expected time lower bound for the qrqw

pram.

2

1 Introduction

The Parallel Random Access Machine (pram) model of computation is the most-widely used model
for the design and analysis of parallel algorithms (see, e.g. [KR90, J�aJ92, Rei93]). The pram model
consists of a number of processors operating in lock-step and communicating by reading and writing
locations in a shared memory. Existing pram models can be distinguished by their rules regarding
contention for shared memory locations. These rules are generally classi�ed into two groups:

� Exclusive read/write: Each location can be read or written by at most one processor in each
unit-time pram step.

� Concurrent read/write: Each location can be read or written by any number of processors
in each unit-time pram step. For concurrent writing, the value written depends on the write-
con
ict rule of the model, e.g. in the arbitrary concurrent-write pram, an arbitrary processor
succeeds in writing its value.

These two rules can be applied independently to reads and writes; the resulting models are denoted
in the literature as the erew, crew, ercw, and crcw pram models.

In this paper, we argue that neither the exclusive nor the concurrent rules accurately re
ect
the contention capabilities of most commercial and research machines, and propose a new pram

contention rule, the queue rule, that permits concurrent reading and writing, but at an appropriate
cost:

� Queue read/write: Each location can be read or written by any number of processors in each
step. Concurrent reads or writes to a location are serviced one-at-a-time.

Thus the worst case time to read or write a location is linear in the number of concurrent readers
or writers to the same location.

The queue rule more accurately re
ects the contention properties of machines with simple, non-
combining interconnection networks1 than either the exclusive or concurrent rules. The exclusive rule
is too strict, and the concurrent rule ignores the large performance penalty of high contention steps.
Indeed, for most existing machines, including the CRAY T3D, IBM SP2, Intel Paragon, MasPar
MP-2 (global router), MIT J-Machine, nCUBE 2S, Stanford DASH, Tera Computer, and Thinking
Machines CM-5 (data network), the contention properties of the machine are well-approximated by
the queue-read, queue-write rule. For the Kendall Square KSR1, the contention properties can be
approximated by the concurrent-read, queue-write rule. Further details are in Section 3.

This paper de�nes the queue-read, queue-write (qrqw) pram model, a variation on the standard
pram that employs the queue rule for both reading and writing. In addition, the processors are
permitted to each have multiple reads or writes in progress at a time. We show that the power of
the qrqw pram model falls strictly between the crcw and erew models. We show separation
results between the models by considering the 2-compaction problem, the broadcasting problem,
and the problem of computing the or function. To illustrate some of the techniques used to de-
sign low-contention algorithms that improve upon the best known zero-contention algorithms, we
consider algorithms for two fundamental problems, leader election and linear compaction, under
various scenarios. Finally, this paper extends the work-time framework for parallel algorithms (see,
e.g. [J�aJ92]) into a qrqw work-time framework that considers the contention at each step, and
relates the qrqw pram model to the qrqw work-time framework.

1In a combining network, when two messages destined for the same memory locationmeet at an intermediate node
in the network, the messages are \combined" so that only one message continues towards the destination. For example,
if two writes meet, then only a single write is sent on. In a non-combining network, messages are not combined, so
that all messages destined for the same memory location are delivered to the home node for that location.

1

To appear in SIAM JOURNAL ON COMPUTING. Copyright SIAM

The Queue-Read Queue-Write PRAM Model:

Accounting for Contention in Parallel Algorithms

Phillip B. Gibbons

Bell Laboratories

600 Mountain Avenue

Murray Hill NJ 07974

Yossi Matias

Bell Laboratories

600 Mountain Avenue

Murray Hill NJ 07974

Vijaya Ramachandran�

Dept. of Computer Sciences

University of Texas at Austin

Austin TX 78712

December 20, 1996

Abstract

This paper introduces the queue-read, queue-write (qrqw) parallel random access
machine (pram) model, which permits concurrent reading and writing to shared mem-
ory locations, but at a cost proportional to the number of readers/writers to any one
memory location in a given step. Prior to this work there were no formal complexity
models that accounted for the contention to memory locations, despite its large impact
on the performance of parallel programs. The qrqw pram model re
ects the contention
properties of most commercially available parallel machines more accurately than either
the well-studied crcw pram or erew pram models: the crcw model does not ade-
quately penalize algorithms with high contention to shared memory locations, while the
erew model is too strict in its insistence on zero contention at each step.

The qrqw pram is strictly more powerful than the erew pram. This paper shows
a separation of

p
lgn between the two models, and presents faster and more e�cient

qrqw algorithms for several basic problems, such as linear compaction, leader elec-
tion, and processor allocation. Furthermore, we present a work-preserving emulation of
the qrqw pram with only logarithmic slowdown on Valiant's bsp model, and hence
on hypercube-type non-combining networks, even when latency, synchronization, and
memory granularity overheads are taken into account. This matches the best known
emulation result for the erew pram, and considerably improves upon the best known
e�cient emulation for the crcw pram on such networks. Finally, the paper presents
several lower bound results for this model, including lower bounds on the time required
for broadcasting and for leader election.

�Supported in part by NSF grant CCR-90-23059 and Texas Advanced Research Projects Grants 003658480 and
003658386.

