
External-Memory Exact and Approximate All-Pairs Shortest-Paths in
Undirected Graphs *

R e z a u l A l a m C h o w d h u r y V i j a y a R a m a c h a n d r a n

A b s t r a c t

We present several new external-memory algorithms
for finding all-pairs shortest paths in a V-node, E-
edge undirected graph. For all-pairs shortest paths and
diameter in unweighted undirected graphs we present
cache-oblivious algorithnls with O(V. ~ log.~ ~) I/Os,
where B is the block-size and M is the size of internal
memory. For weighted tmdirected graphs we present
a cache-aware APSP algorithm that performs O(V.

(V / ~ + ~ log ~)) I/Os. We also present efficient cache-

aware algorithms that find paths between all pairs of
vertices in an unweighted graph with lengths within a
small additive constant of the shortest path length.

All of our results improve earlier results known for
these problems. For approximate APSP we provide
the first nontrivial results. Our diameter result uses
C9(V + E) extra space, and all of our other algorithms
use O(V 2) space.

1 I n t r o d u c t i o n

1.1 T h e A P S P P r o b l e m . The all-pairs shortest
paths (APSP) problem is one of the nlost flmdamen-
tal and important combinatorial optimization problems
fl'om both a theoretical and a practical point of view.
Given a (directed or undirected) graph G with vertex
set V[G], edge set E[G], and a non-negative real-valued
weight function w over E[G], the APSP problem seeks
to find a path of mininmm total edge-weight between
every pair of vertices in V[G]. For any pair of vertices
u ,v C V, the path from u to v having the minimmn
total edge-weight is called the shortest path fl'om u to v,
and the sum of all edge-weights along that path is the
shortest distance from u to v. The diameter of G is the
longest shortest distance between any pair of vertices in
G. For unweighted graphs the APSP problem is also
called the all-pairs breadth-first-search (AP-BFS) prob-
lem. By V and E we denote the size of V[G] and E[G],
respectively.

Considerable research has been devoted to devel-

- - - ' ~ t of Comp Sci, University of Texas, Austin, TX 78712.
Emaih {shaikat,vlr}¢cs.utexas. edu. This work was supported
in part by NSF CCR-9988160.

oping efficient internal-memory approximate and exact
APSP algorithms [17]. All of these algorithms, however,
perform poorly on large data sets when data needs to
be swapped between the faster internal n~emory and the
slower extemzal memory. Since most real world applica-
tions work with huge data sets, the large number of I /O
operations performed by these algorithms becomes a
bottleneck which necessitates the design of I/O-efficient
APSP algorithms.

1.2 C a c h e - A w a r e A l g o r i t h m s . The two-level I/O
model (or cache-aware model) was introduced in [1].
This model consists of a memory hierarchy with an
internal memory of size M-, and an arbitrarily large
external memory partitioned into blocks of size B.
The I/O complexity of an algorithm in this model is
measured in terms of the number of blocks transferred
between these two levels. Two basic I /O bounds are
known for this model: to read N contiguous data items
from the disk one needs scan(N) = 0 (~) I /Os and to
sort N items, sort(N) = O (~ log.~ ~) I /Os [1].

A straight-forward method of computing AP-BFS
(or APSP) is to simply run a BFS (or single source
shortest path (SSSP) algorithm, respectively) from each
of the V vertices of the graph. External BFS on
an unweighted undirected graph can be solved using
either (V + sort(E)) I /Os [15] or O(X/'~-/B + sort(E))
I/Os [la]. External SSSP on an undirected graph
with general non-negative edge-weights is computed in
O(V+ ~ log ~7) I /Os using the cache-aware Buffer Heap
in [8]. There are also some results known for external
SSSP on undirected graphs with restricted edge-weights
[14]. The I /O complexity of external AP-BFS (or
APSP) is obtained by multiplying the I /O complexity
of external BFS (or SSSP) by V.

Recently Arge et al. [6] proposed an O(V. sort(E))
I /O cache-aware algorithm for AP-BFS on undirected
graphs. Their algorithm works by clustering nearby
vertices in the graph, and running concurrent BFS from
all vertices of the same cluster. This same algorithm can
be used to compute unweighted dianmter of the graph in
the same I /O bound and O (V ~) additional space.
They also present another algorithm for computing the

735

Approximate unweighted APSP
Results Unweighted APSP i with additive error 2(k - 1) Weighted APSP

(for integer k C [2, log V])
O(# V 2 log½ V v/-v-E O(V.sort(E)) I/Os, [6] k 2 1 ~! 1 O(V'(v-~-l°gV+s°rt(E)))

Known O(Vx/-V-E-B) extra space + ~ V - ~ ; E ~ log 1-~- Vloglog YE ~) for E < ~ [61
] (trivial using [10, 14])

cache-ob l iv ious , i 1 2 - . 2 , ,.2, 2 1. V B New O(~T-V a~Eak logg(1-r.) V O(V.(~/L~+sort(E))) forE_<
O(V. sort(E)) 1/Os,

(this paper) O(V) extra space] k 2 -± * + ~ V k Er" l o g l - ~ • V) O(V. (V / ~ + ~ log ~)) always
L

Table 1: I / O bounds for A P S P problems on undi rec ted graphs. (V = [V[G]], E =]E[G][, and all a lgor i thms are
cache-aware unless expl ic i t ly specified)

unweighted diameter of sparse graphs (E = O(V)) in
2 1 O(sort(kV BY)) I /Os and O(kV) space for any integer

k, 3 < k < logB.
For undirected graphs with general non-negative

edge-weights Arge et al. [6] proposed an APSP algo-
ri thm requiring O(V . (v / (VE/B) • logV + sort(E)))
I /Os, whenever E _< VB/IogV. They use a prior-
ity queue structure called the Multi-Tournament-Tree
which is created by bundling together a number of I /O-
efficient Tournament Trees [12]. This reduces unstruc-
tured accesses to adjacency lists at the expense of in-
creasing the cost of each priority queue operation.

1.3 T h e C a c h e - O b l i v i o u s M o d e l . The main dis-
advantage of the two-level I /O model is that algorithms
often crucially depend on the knowledge of the param-
eters of two particular levels of the memory hierarchy
and thus do not adapt well when the parameters change.
In order to remove this inflexibility Frigo et al. intro-
duced the cache-oblivious model [11]. As before, this
model consists of a two-level memory hierarchy, but al-
gorithms are designed and analyzed without using the
parameters M and B in the algorithm description, and
it is assumed that an optimal cache-replacement strat-
egy is used.

No non-trivial algorithm is known for the AP-BFS
and the APSP problems in the cache-oblivious model
except for the method of running single BFS and SSSP,
respectively, fi'om each of the V vertices. In this model,
BFS on an undirected graph can be performed using
O(V ~ + (E /B) . logV + MST(E)) I/Os [7], and
SSSP on an undirected graph with non-negative real-

E E valued edge-weights can be solved in O(V + ~ log ~7)
I /Os using the cache-oblivious Buffer Heap [8] or Bucket
Heap [7].

1.4 O u r R e s u l t s . In section 2 we present a simple
cache-oblivious algorithm for computing AP-BFS on
unweighted undirected graphs in O(V • sort(E)) I /Os,
matching the I /O complexity of its cache-aware coun-
terpart [6]. We use this algorithm to comlmte the di-

ameter of an unweighted undirected graph in tile same
I /O bound and O(V + E) space. Our cache-oblivious
algorithm is arguably simpler than the cache-aware al-
gorithm in [6] and it has a better space bound for com-
puting the diameter.

In section 3 we present the first nontrivial external-
memory algorithm to compute approximate APSP
oil unweighted undirected graphs with small addi-
tive error. The algorithm is cache-aware, it uses

~ ~ Z ' l - ~V 2-~ ~V) O(~.~V2-akEa',log at {)V + - "E~tog 1-

I /Os, and produces estimated distances with an addi-
tive error of at most 2(k - 1), where 2 <_ k < log V is
an integer, and E > V log V. Our algorithm is based on
an internM-memory algorithm in [10], and the number
of I /Os performed by our algorithm is close to being a
factor of B smaller than the running time of tha t algo-
rithm. Our approximate algorithm pertorms fewer I /O
operations than the O(V • sort(E)) I /O exact AP-BFS

k k

algorithm when E > max{k ~-r, (log@)~:=~ } • VlogV.
For k = 2, we present an alternate algorithm that per-
forms better for large values of B; this algorithm builds
on the internal-memory algorithm in [2].

In section 4 we introduce the notion of a Slim Data
Structure for external-memory computation. This no-
tion captures the scenario where only a limited portion
of the internal memory is available to store data fi'om
the data structure; it is assumed, however, that while
executing an individual operation of the data structure,
the entire internal memory of size M is available for
the computation. We describe and analyze the Slim
Buffer Heap which is a slim data structure based on the
Buffer Heap [8]. We use Slim Buffer Heaps in a Multi-
Buffer Heap to solve the cache-aware exact APSP prob-
lem for undirected graphs with general non-negative
edge-weights in O(V. (V ~ / B + sort(E))) I /Os and
O(V 2) space, whenever E _< VB/log 2 (VE/B) (or
E = O(VB/log 2V)). This improves on the result in
[6] for weighted undirected APSP. We also believe that
the notion of a slim data structure is of independent
interest.

736

2 C a c h e - O b l i v i o u s A P S P a n d D i a m e t e r for
U n w e i g h t e d U n d i r e c t e d G r a p h s

In this section we present a cache-oblivious a lgor i thm
for comput ing all-pairs shortest pa ths and diameter in
an unweighted undi rec ted graph.

2.1 T h e C a c h e - O b l i v i o u s B F S A l g o r i t h m o f
M u n a g a l a a n d R a n a d e . Given a source node s, the
a lgor i thm of MunagMa & Ranade [15] computes the
BFS level of each node with respect to s. Let L(i) de-
note the set of nodes in BFS level i. For i < 0, L(i) is
defined to be empty. Let N (v) denote the set of ver-
tices adjacent to vertex v, and for a set of vertices S,
let N (S) denote the nmlt ise t formed by conca tena t ing
N (v) for all v E S.

ALGORITHM 2.1. MR-BFS(G)
The algorithm starts by setting L(0) = {s}. Then starting fl'om
i = 1, for each i < V, the algorithm computes L(i) assmning that
L(i - 1) and L(i - 2) have already been computed. Each L(i) is
computed in the following three steps:

1. Construct N(L(i - 1)) by IL(i - 1)l accesses to the adjacency
lists, once for each v G L(i - 1). This step requires O(IL(i - 1)I +
~]N(L(i - 1))I) I/Os.

2. l-l.emove duplicates from N(L(i - 1)) by sorting the nodes in
N(L(i - 1)) by node indices, followed by a scan and a compaction
phase. Let us denote the resulting set by L~(i). This step requires
O(sort(IN(L(i - 1))1)) I/Os.

3. Remove from L'(i) the nodes occurring in L(i - 1) U L(i - 2)
by parallel scanning of L~(i), L(i - 1) and L(i -2) . Since all these
three sets are sorted by node indices tile 1/O complexity of this
step is O(~(]N(L(i - 1))l + IL(i - 1)1 + IL(i - 2)1)). The resulting
set is the required set L(i).

Since ~ I L (i) I = O(V) and ~iIN(L(i))l = O(E),
this algorithm performs O(~dlL(i)l +sort(IN(L(i))])+
~(Ig(L(i))I + L(i)))) = O(Y + sort(E)) I/Os.

2.2 C a c h e - O b l i v i o u s A P S P for U n w e i g h t e d
U n d i r e c t e d G r a p h s . In this section we describe a

O (V . sor t (E)) I / O cache-oblivious A P S P a lgor i thm for
unweighted undirected graphs. Let G = (V[G],E[G])
be an unweighted undirected graph. By d(u, v) we de-
note the shortest dis tance between u, v C V[G].

Our a lgor i thm is based on the following observat ion
which follows fl'om tr iangle inequal i ty and the fact tha t
d(u, v) = d(v, u) in an undirected graph:

OBSERVATION 2.1. For any three vertices u, v and w
in C , d(u, w) - - d(u, v) < d(v, w) < d(u, w) + d(u, v).

Suppose for some u E V[G] we have already computed
d(u, w) for all w E V[G]. We sort the adjacency lists in
non-decreasing order by d(u, .), and by A (j) we denote
the por t ion of this sorted list conta in ing adjacency lists
of vertices w with d(u, w) = j . Now ifv is another vertex
in V[G] then observat ion 2.1 implies tha t the adjacency

list of any ver tex w with d(v, w) = i, must reside in some
A (j) where i - d (u , v) < j < i + d(u ,v) . Therefore,
we can use observat ion 2.1 to compute d (v , w) for all
w C V[G] as follows:

ALGORITHM 2.2. Ineremental-BFS(G, u, v, d(u, .))
(Given an unweighted undirected graph G, two vertices u,v E
V[G], and d(u,w) for all w E V[G], this algorithm computes
d(v,w) for all w ~ V[G]. It is assmned that E[G] is given as
a set of adjacency lists.)

1. Sort tile adjacency lists of G so that adjacency list of a vertex x
is placed before that of another vertex y provided d(u, x) < d(u, y)
or d(u,x) = d(u,y) Ax < y. Let A(i), 0 < i <]VI, denote the
portion of this sorted list that contains adjacency lists of vertices
lying exactly at distance i from u.

2. To compute d(v,w) for all w C V[G], run Munagala and
Ranade's BFS algorithm with source vertex v. But step (1) of
that algorithm is modified so that instead of finding the adjacency
lists of the vertices in L(i - 1) by IL(i - 1)] independent accesses,
they are found as follows:
Forj ~-- max{0,/- 1 -d(u ,v)} to rain{IV I - 1, i - 1 +d(u,v)} do:

Extract the adjacency list of each w E V[G] that appears in
L(i - 1) and whose adjacency list appears in A(j) by scaxming
L(i - 1) and A(j) simultaneously.

Step 1 of I n c r e m e n t a l - B F S requires O (s o r t (E))
I /Os . In step 2 each A (j) is scanned O (d (u , v))
times. Since ~ j IA(j)] = O (E) , this step requires

O (~ d (u , v) + sor t (E)) I /Os . Thus the I / O complex-

ity of I n c r e m e n t a l - B F S is O(~ d (u , v) + sor t (E)) .
Since I n c r e m e n t a l - B F S is ac tual ly all implemen-

t a t ion of Munaga la and Ranade ' s algori thm, its correct-
ness ibllows from the correctness of tha t a lgori thm, and
fl'om observat ion 2.1 which guarantees tha t the adja-
cency lists of all w c L(i - 1) in step 2 of I n c r e m e n t a l -
B F S are found in the set of A (j) ' s scanned.

We can use I n c r e m e n t a l - B F S to perform BFS
I/O-efficiently from all v C V[G]. The following
observat ion each par t of which follows t r ivial ly from the
propert ies of spann ing trees, Euler Tours and shortest
paths, is central to this extension:

OBSERVATION 2.2. I f E T is an Euler Tour of a span-
ning tree of an unweighted undirected graph G, then (a)
the number of edges between any two vertices x and y
on E T is an upper bound on d(x, y) in G, (b) E T has
O (V) edges, and (c) each vertex of V[G] appears at least
once in E T .

This extension is out l ined in a lgor i thm 2.3 (A P - B F S) .

C o r r e c t n e s s . Correctness of A P - B F S follows fl'om
the correctness of M R - B F S and I n c r e m e n t a l - B F S .
Moreover, observat ion 2.2(c) ensures t ha t BFS will be
performed from each v c V[G].

S p a c e C o m p l e x i t y . Since the a lgor i thm ou tpu t s all
O (V 2) pairwise dis tances it requires O (V 2) space.

737

ALGORITHM 2.3. AP-BFS(G)
1. (a) Find a spanning tree T of G.

(b) Construct an Euler Tour ET for T.
(c) Mark the first occurrence of each vertex on ET, and
let Vl,V2,... , V l v I be the marked vertices in the order they
appear on ET.

2. Run Munagala and Ranade's original BFS algorithm with vl
as the source vertex, and compute d(vl, w) for all w • V[G].
3. For i ~ 2 to IVI do:

Compute d(vi,w) for all w • V[G] by calling
Incrementa l -BFS (G , v.i-1, vi , d(v i - 1 , ")).

I / O C o m p l e x i t y . Step l (a) can be performed cache-
obliviously in O(min{V+sor t (E) , sort(E). log 2 logs V})
I / O s [4]. In step l (b) E T can also be cons t ruc ted cache-
obliviously using O(sort (V)) I / O s [41. Step 1(c) re-
quires O(sort(E)) I /Os . Step 2 requires O (V + s o r t (E))
I /Os . I tera t ion i of step 3 requires O (~ d (v i - l , V i) +
sort(E)) I /Os . Total number of I / O opera t ions required

by the entire a lgor i thm is thus O(-~ ~Iv__~ d(vi_l , vi) +
V . sort(E)). Since by observat ion 2.2(a) and 2.2(b) we

have v.Ivl d(vi-t ,v~) = O(V) , tile I / O complexi ty of
Z--. , i=2

A P - B F S reduces to O (V . sort(E)).

2.3 C a c h e - O b l i v i o u s U n w e i g h t e d D i a m e t e r fo r
U n d i r e c t e d G r a p h s . The A P - B F S a lgor i thm can be
used to find the unweighted diameter of an undirected
g raph cache-obliviously in O(V • sort(E)) I /Os . We no
longer need to ou tpu t all O(V 2) pairwise distances, and
each i teration of step 3 of A P - B F S only requires the
iS(V) distances computed in the previous i teration or
in step 2. Thus the space requirement is only (9(V)
in addi t ion to the O(E) space required to handle the
adjacency lists.

3 C a c h e - A w a r e A p p r o x i m a t e A P S P fo r
U n w e i g h t e d U n d i r e c t e d G r a p h s

In this section we present a family of cache-aware
ex te rna l -memory algori thms A p p r o x - A P - B F S k for
approximat ing all distances in an unweighted undi-
rected graph with an addit ive error of at mos t 2(k - 1),
where 2 _< k <_ l o g V is an integer. The error is one
sided. If 5(u, v) denotes the shortest dis tance between

any two vertices u and v in the graph, and ~(u, v) de-
notes the es t imated distance between u and v produced
by the algori thm, then 5(u,v) _< 5(u,v) <_ 5(u,v) +
2 (k - 1). Provided E > V l o g V , A p p r o x - A P - B F S k

2 1] runs in O (k V - ~ E v l o g l - 1 / k V) time, and tr iggers
1 2 2 2 k - 2 - ~ 1 1 1 O(~ .~V - ~ E ~ . log ~ (1 - ~) V + ~ v ~ g ' ~ l o g - ~ V)

I /Os . This family of a lgori thms is the ex te rna l -memory

version of the family of O (k V 2 - ~ E ~ log 1-1/k V) t ime
in te rna l -memory approximate shortest pa ths a lgori thms

by Dor et al. [10] which is the most efficient a lgor i thm
available for solving the problem in internal memory.

The second te rm in the I / O complexi ty of A p p r o x -
A P - B F S k is exact ly (l / B) t imes the running t ime
of the Dot' et al. a lgor i thm [10]. T h o u g h the first

2
te rm has a smaller denomina tor (B s), its numera tor
is smaller than the numera tor of the second te rm when
E > V log V, thus reducing the impact of the first t e rm
in the overall I / O complexity.

3.1 T h e I n t e r n a l - M e m o r y A p p r o x i m a t e A P -
B F S A l g o r i t h m b y D o r e t al . . The intei 'nal-memory
approximate A P S P a lgor i thm (a p a s p k) in [10] receives
an unweighted undirected g raph G = (V[G] ,E[G]) as

input, and ou tpu t s an approximate distance ~'(u,v)
between every pair of vertices u,v C V[G] with a
positive addit ive error of at most 2(k - 1). Recall t ha t
a set of vertices D is said to domina te a set U if every
ver tex in U has a neighbor in D.

A high level overview of the a lgor i thm follows:

ALGORITHM 3.1. DHZ-Approx-AP-BFSk(G)
E (V los. 1. Fori+-- 1 t o k - 1do: set si~-- V E v)~.

2. Decompose G to produce the following sets:
(a) A sequence of vertex sets D1, D2,. . . , Dk of increasing sizes
with D k = V[G]. For 1 < i < k - 1, Di dominates all vertices of
degree at least si in G.
(b) A decreasing sequence of edge sets E1 _D E2 _D ... _D Ek,
where E1 = E[G] and for 1 < i < k tim set Ei contains edges that
touch vertices of degree at most si-1.
(c) A set E* C_ E[G] which bears witness that each Di dominates
the vertices of degree at least si in G.
3. For i ~-- 1 to k do:

(a) For each u • Di do:
(al) Run SSSP from u on Gi(u) = (V[G],Ei U E* U

({~} x v [c]))
In each O~ (u) the edges E~ U E* are unweighted edges of the input
graph, but the edges {u} x V[G] are weighted, and to each such
edge (u,v) an weight is attached which is equal to the current
known best upper bound on the shortest distance from u to v.
4. Return the smallest distance computed between every pair of
vertices in step 2.

Tile a lgor i thm mainta ins the invariant t ha t after the
i th i terat ion in step 3, the distance computed fl'om each
u E Di to each v E V[G] has an addit ive error of at most
2(i - 1). Thus after the k th i terat ion a surplus 2(k - 1)
dis tance is computed between every u, v C V[G].

3.2 O u r A l g o r i t h m . Our a lgor i thm adapts the Dor
et al. a lgor i thm (D H Z - A p p r o x - A P - B F S k) to obta in
a cache-efficient implementat ion. In our adap ta t i on we
do not modify step 1 of D H Z - A p p r o x - A P - B F S k , and
use the same sequence of values for (sl, s2, • . . , sk-1). In
section 3.3 we describe an ex te rna l -memory implemen-
ta t ion of step 2 of D H Z - A p p r o x - A P - B F S k .

I t tu rns out t h a t the I /O-complex i ty of D H Z -
A p p r o x - A P - B F S k depends on the I /O-eff iciency of

738

the SSSP algorithm used in step 3(al). Therefore,
we replace each SSSP algorithm with a more I /O-
efficient BFS algorithm by transforming each Gi(u) to
an unweighted graph G~(u) of comparable size. But in
order to preserve the shortest distances fl'om u to other
vertices in Gi(u), the weighted edges of G~(u) need to be
replaced with a set of directed unweighted edges. This
makes the graph G{(u) partially directed, and we need
to modify existing external undirected BFS algorithms
to handle the partial directedness in G{(u) efficiently.
This is described in section 3.4.

There are two ways to apply the BFS: either we
can run an independent BFS fl'om each u E D~ as in
step 3 of D H Z - A p p r o x - A P - B F S k , or we can run BFS
incrementally from the vertices of Di as in section 2.2.
Running independent BFS is more I/O-efficient when
IDd is smaller (i.e., i is smaller), and incremental BFS
is more I/O-efficient when G~(u) is sparser (i.e., i is
larger). Therefore, we choose a value of i at which
switching fl'om independent BFS to incremental BFS
minimizes the I /O-complexi ty of the entire algorithm.
The overall algorithm is described in section 3.5.

3.3 External-Memory Implementation of Step
2. It has been shown by Aingworth et al. [2] tha t there
is always a set of size O(-E-D-~-Y-) tha t dominates all 8
vertices of degree at least s in an undirected graph, and
in [10] it has been shown that this set can be found
deterministically in O(V + E) time. We describe an
external-memory version of this construction, which we

V 2 call D o m i n a t e , that requires C9(V + -W + sort(E))
I /Os and C9(V 2 + E log V) time, which is sufficient for
our purposes, The internal-memory algorithm uses a
priority queue that supports Delete-Max and Decrease-
Key. But due to the lack of any such I/O-efficient
priority queue we use linear scans to sinmlate those two

V 2
operations leading to the N- term in the I /O-complexi ty
of D o m i n a t e . Details of this construction are in the full
paper [9].

We need another fnnction, called Decompose,
which is an external-melnory version of an internal-
memory fnnction with the same name described in [101,
and uses D o m i n a t e as a subroutine. The function
receives an undirected graph G = (V[G],E[G]), and
a decreasing sequence sl > s2 > . . . > sk-1 of degree
thresholds as inputs. I t produces edge sets E1 D E2 =D
. , . D Ek, where E1 = E[G] and for 1 < i 55 k the set
E i contains edges that touch vertices of degree at most
s,i-1. Clearly, IEiI 55 Vsi-1 for 1 < i 55 k. This function
also produces dominating sets D1, D 2 , . . . , Dk, and an
edge set E*. For 1 55 i < k, Di dominates all vertices
of degree greater than si, while Dk is simply V[G]. The
set E* C_ E is a set of edges such tha t if the degree of

F f t

U V 2 I,' 3 Vt Pt+l ViVI-I
~ X ~ ~ y

(u,x) = 1 (u,y) = t

Figure 1: The directed unweighted edges that replace
the undirected weighted edges of G~(u).

a vertex u is greater than si then there exists an edge
(u,v) E E* with v E Di. Clearly IE*[55 kV. Details of
Decompose and the analysis of its I / O complexity of

is O(k(V + -~) + sort(E)) are in [9].

3.4 Replacing SSSP with B F S in S t e p 3 (a l) .
For i = 1 , 2 , . . . , k , in step 3(at) D H Z - A p p r o x - A P -
BFSk runs an SSSP algorithm from each u E Di o i l

a graph G,(u) = (V, El(U)), where E~(u) = E~ U E* U
({u} x V). The edges E~UE* are the original edges of the
graph. But the edges {u} x V are not necessarily so, and

to such an edge (u, v) an weight of 6(u, v) is attached,

where ~(u, v) is the current best known upper bound on

6(u, v) ill G. Initially, 6"(u, v) = 1 if (u, v) C E[G] and

~(u, v) = oo otherwise.
Since external-memory BFS is more I/O-efficient

than external-memory SSSP, we replace the SSSP in
step 3(al) with a BFS algorithm. But this requires us to
transform the weighted graph Gi(u) into an unweighted
graph of conlparable size.

Transforming Gi(u) into an Unweighted Graph.
Since the distances we compute are non-negative inte-
gers smaller than IV], we can, in fact, t ransform Gi(u)
into an nnweighted graph G{(u) by introducing IV[- 2
new vertices along with at most 2IV 1-3 new unweighted
directed edges instead of the weighted undirected edges
of {u} x V while preserving the shortest distances fl'om u
to all other vertices in V. We introduce I V] - 2 new ver-
tices v~, v~, . . . , vlvj_l, and introduce the directed edges

t V t (U, V 2) , (V ~ , V . ~) , (V ; , V ~) , . . . , ([V l_2 ,Y fv l_ l) . For each_

v E V[G] with ~(u, v) = 1, we acid a directed edge (u, v),

and for each v C V[G] with 2 55 6(u, v) = t 55 [VI - 1, we
add a directed edge (v~, v) (see Figure 1). The resulting
graph G{(u) is partially directed. The following lemma
has been proved in the full paper [9] for G{(u):

LEMMA 3.1. The unweighted partially directed graph
G{(u) obtained f i rm the weighted undirected 9r'aph
G,i(u) = (V, E,i(u)) preserves the shortest distances front
u to all other vertices in V.

Handling the Partial Directedness in G~(u). We
can modify the M R - B F S algorithm in section 2.1 to
correctly handle the partial directedness in G{(u) with

739

only O(scan(E) + sort(V)) I / O overhead, and thus
w i thou t changing i ts I / O complexi ty . T h e a lgo r i t hm
will receive G~(u) as an und i rec ted g raph , and will
impl ic i t ly hand le the edges t h a t a re in tended to be
d i rec ted . I t mus t ensure the following:

(a) L(i) mus t not con ta in any v~ except vi+' 1, and

(b) for a ve r t ex v wi th BFS level less t h a n i, any
edge (v~+l, v) mus t not force v to be inc luded in L(i).

Ensur ing (a) is s t r a igh t - fo rward , bu t in o rde r to ensure
(b) we use an o p t i m a l e x t e r n a l - m e m o r y p r io r i t y queue
s u p p o r t i n g Insert and Delete-Min [3] t h a t keeps t r ack
of the v is i ted ver t ices connec ted to the v}'s. T h e
modi f ica t ions are de ta i l ed in M o d i f i e d - M R - B F S . I t
pe r fo rms a t mos t one Insert and one Delete-Min for each
edge of the form ('v~, v), and thus caus ing O(sort (V))
e x t r a I / O s [3]. A n add i t i ona l O(scan(E)) I / O overhead
resul ts from scann ing the a d j a c e n c y lists. Cor rec tness
of th is a lgo r i t hm a p p e a r s in the full p a p e r [9].

ALGORITHM 3.2. Modified-MR-BFS(G~(u),u)
(The input graph G~ (u) is given as an undirected graph but with
implicit directed edges as discussed in section 3.5. This algorithm
is a version of Muuagala & Ranade's BFS algorithm modified to
perform BFS on this implicitly partially directed graph from the
source vertex u.)
1. Perform the following initializations:
(~) Set L(0) ~- {~}
(b) Set Q ~-- 0, where Q is an optimal external-memory priority
queue supporting Insert and Delete-Min
2. Fori~-- 1 to V - 1 do:
(a) Scan the adjacency lists of vertices in L(i - 1), and for each
edge (v,v~+l) with j > i, set Q ~-- Q u {(v,j)} (Insert)
(b) Set P ~-- {v[(v,i) C Q} (Delete-Min)
(e) Construct N(L(i - 1))
(d) Remove duplicates and all v}'s from N(L(i - 1))
(e) Set L(i) ~- {N(L(i - 1)) \ {L(i - 1) U L(i - 2) U P}} U {v~+ 1 }

3.5 External-Memory A p p r o x i m a t e A P - B F S .
As po in ted ou t in sect ion 3.2, t he re are two ways to
a p p l y the B F S in s t ep 3 (a l) of D H Z - A p p r o x - A P -
B F S k : e i ther we can run B F S i n d e p e n d e n t l y fi 'om each
ve r t ex in Di as in D H Z - A p p r o x - A P - B F S k , or we can
run B F S inc remen ta l ly from the ver t ices of D~ using the
s t r a t e g y used in A P - B F S (see sect ion 2.2).

We present the a lgo r i t hm I n d e p e n d e n t - B F S
which when cal led wi th Di as a p a r a m e t e r cons t ruc t s
the p a r t i a l l y d i rec ted unweighted g r a p h G~(u) for each
u E Di and runs Meh lho rn & Meyer ' s B F S algo-
r i t h m [13] on G~(u) f r o m u. T h e I / O - c o m p l e x i t y
of Meh lhorn & Meyer ' s a l g o r i t h m is O(V ~ +
(E / B) log V), and thus i t pe r fo rms be t t e r t h a n Muna-
ga l a & R a n a d e ' s a lgo r i t hm (M R - B F S in sect ion 2.1)
on spa rse graphs . Meh lhorn & Meyer ' s a lgo r i t hm is
based on M R - B F S , and can be modif ied in e xa c t l y
the same way to hand le the pa r t i a l d i rec tedness in

G~(u). The IJ_.O=cip~plexity of I n d e p e n d e n t - B F S is
thus O (D i (v / V E i / B + (E i / B) log Y)) .

The a lgo r i t hm I n t e r d e p e n d e n t - B F S when cal led
wi th p a r a m e t e r Di, cons t ruc t s G~(u) for each u E
Di, and then runs M o d i f i e d - M R - B F S (sect ion 3.4)
i nc remen ta l ly on G~(u) f rom each u using the tech-
nique used in A P - B F S (sect ion 2.2). T h e ma in dif-
ferences between I n t e r d e p e n d e n t - B F S and A P - B F S
are: I n t e r d e p e n d e n t - B F S uses a different range for
loca t ing the ad j acency lists, works on a s l ight ly differ-
ent g r a p h in each i t e ra t ion , each g r a p h it works on is
p a r t i a l l y d i rec ted , and runs B F S on ly from the ver t ices
in Di. The I / O - c o m p l e x i t y of I n t e r d e p e n d e n t - B F S
is O ((E i / B) (V + iD~) + D~sort(E.i)).

We observe t h a t runn ing I n d e p e n d e n t - B F S in
s tep 3(a) of D H Z - A p p r o x - A P - B F S k is more I / O -
efficient when IDol is smal le r and G~(u) is denser
(i.e., i is smal ler) , and I n t e r d e p e n d e n t - B F S is
more I /O-ef f ic ien t when]Di[is larger and G~(u) is
spa rse r (i.e., i is larger) . I f we use I n d e p e n d e n t -
B F S for all values of i, i t will cause a t o t a l of

2 1 1 1 i O (V 2 / x / ~ + (k / B) V - r E r . log - ~ V) I / O s , and run-
ning I n t e r d e p e n d e n t - B F S for all values of i requires

2 1 1 a t o t a l of O (V E / B + (k / B) V - r E r l o g l - ~ V) I / O s .
Therefore , we can do be t t e r if we t ake a hybr id ap-
proach: s t a r t i n g fi 'om i = 1 we run I n d e p e n d e n t -
B F S up to some value l of i, and then we swi tch
to I n t e r d e p e n d e n t - B F S . We call this p a r a m e t e r 1 a
switching parameter, and choose i ts value in o rde r to
min imizes the I / O - c o m p l e x i t y of the ent i re a lgor i thm.
The overal l a l go r i t hm is given in A p p r o x - A P - B F S k ,
and i ts p roo f of cor rec tness is in [9].

ALGORITHM 3.3. Independent -BFS(V, E, Di, El, E*, L)
(Perform BFS independently from each vertex u C Di on a graph
constructed from V, Ei,E* and the information in the list L of
current best upper bounds oil all-pairs shortest distances ill tile
original graph (V, E). It updates L with the computed distances.
Invoked by A p p r o x - A P - B F S . See A p p r o x - A P - B F S for the
definition of the parameters.)

1. Set L ~ ~-- q}
2. Sort the vertices in Di by vertex indices.
3. For each u C Di do:
(a) Set V I ~-- V, and E I ~ Ei U E*
(b) Retrieve from L the current best upper bound 5(u, v) on the
shortest distance from u to each v E V. Collect only finite bounds.

I ! i y I " (c) A d d IV l - 2 new ver t i ces v2,v3,...,vlvl_l t o

(d) Add the following undirected edges to E~: (i) (u,v~), (ii)
(u,v) for each v E V with 5(u,v) = 1, (iii) (v~,v~+l) for
2 < t < IV] - 1, and (iv) (v~,v) for each v C V with 5(u,v) = t
(e) Sort the edges in E ~ to convert it into adjacency list format.
(f) Run Mehlhorn & Meyer's BFS [13] on (V ~, E~), and append
the computed distances to L t. The algorithm must be modified
to handle the implicit partial directedness in (V ~, E~).

4. Update the entries in L by sorting L ~ appropriately and
scanning the two lists in parallel.

740

ALGORITHM3.4. I n t e r d e p e n d e n t - B F S (V , E, Di, E,, E*,
(Vl,V2,. . . ,Vlvl) , L)
(Perform BFS from each u ~ D, on a g raph cons t ruc ted from
V, El, E* and the in format ion in the list L of cur ren t bes t upper
b o u n d s on al l-pairs shor tes t d i s t ances in t he g raph (V, E). BFS
is pe r fo rmed on t he vert ices of D i in the order they appear
in (v~,v2, . . . ,v lv l) , and d i s tance in format ion obta ined from
the last (most recent) BFS is used to reduce I / O overhead.
List L is upda t ed wi th the c o m p u t e d dis tances, hwoked by
A p p r o x - A P - B F S . See A p p r o x - A P - B F S for the defini t ion of
t he pa ramete r s .)

1. Set L ~ ~--
2. Ar r ange t he vertices in Di in t he order they appear in
(Vl, v2 , . . . , vlvl) . Let (u~, u2 , . . . , ut) be t he sequence of vertices
in Di after t he ordering.
3. (a) - (e) Same as s teps 3 (a) - (e) in I n d e p e n d e n t - B F S , bu t

per formed wi th 'a~ ins tead of u. Let (Iq~, E~) be the g raph
cons t ruc ted .
(f) R u n M u n a g a l a and R a n a d e ' s a lgor i thm (M o d i f i e d -
M R - B F S) with u~ as the source to c o m p u t e d(u~,w) for
all w ~ V. Append t he compu t ed d i s tances to L ~.

4. F o r j ~ - - 2 t o t d o :
(a) - (e) Same as the s teps 3 (a) to 3 (e) in I n d e p e n d e n t - B F S ,
but per formed with uj ins tead of u. Let (Vj, E}) be the g raph

cons t ruc ted .
(f) Sort the adjacency lists of the vertices v,~, vl~,.. . ,Vlv[_ 1 so

t ha t for 2 _< p < IVI - 1, ad jacency list of @ is placed ahead of
t ha t of v~+~. Let A ~ be th is sor ted list of adjacency lists.
(g) Sort the r emain ing adjacency lists so t ha t adjacency list
of a ver tex x is placed before t h a t of y provided d(u j_ i ,x) <
d(uj-~,y) or d(u i -~ ,x) : d(uj_~,y) A x < y. Let A(p),
0 _< i < [VI, denote the por t ion of th is sor ted list t h a t conta ins
adjacency lists of vertices lying exact ly at d i s tance p f rom u j_~ .
(h) To c o m p u t e d(uj ,w) for all w 6 V ' , r un M u n a g a l a and
R a n a d e ' s BFS a lgor i thm (M o d i f i e d - M R - B F S) wi th source ver-
tex u j . But s tep (2) of t ha t a lgor i thm is modified so t h a t ins tead
of f inding the adjacency lists of the vertices in L(q - 1) by IL(q- 1)l
independen t accesses, t hey are found by scann ing L(q - 1) and
A(p) in parallel for max{0 , q - 1 - d (U j _ l , U j) - 2 (i - 1)} < p <
rain{IV [- 1 , q - 1 + d(u j - l ,Uj) + 2(i - 1)}. If v~ 6 L (q - 1) load
its adjacency list h 'om A' . A p p e n d the compu t ed d i s tances to L ' .

5. U p d a t e the entr ies in L by sor t ing L ' appropr ia te ly and
scann ing the two lists in parallel.

ALGORITHM 3.5. A p p r o x - A P - B F S k (G , l)
(Given an undi rec ted g raph G = (V[G],E[G]) and a swi tching
pa r ame te r l, compu t e s the shor tes t d i s tance between every pair
of vert ices in G wi th addi t ive error of at mos t 2(k - 1).)

1. Per form the following init ializations:
E , }.~_12..g_~.(~. - ± (a) F o r i ~ l t o k - l d o : set s ~ - V t E) ~

(b) Set ((E l , E2, •. •, Ek, E*), (D~, D2 , . . . , Dk))
D e c o m p o s e (G , (s~., s2 , s k - 1))
(c) Sort the edges in E[G] so t h a t edge (u l , v~) is placed ahead
edge (u2,v2) provided (u~ < u 2) V ((g l = ~./,2) A (V l < v 2)) . Scan
E[G] to p roduce a sor ted (in the s a m e order t ha t is used for sor t ing

E[G]) list L of approx ima te d i s tances 6(u, v), where u, v 6 V[G],
and 6(u, v) ~-- 1 provided (u, v) 6 E[G], 6(u, v) ~-- c<~ otherwise.

2.
(a) For i *-- 1 to l do: I n d e p e n d e n t - B F S (V , E, Di, Ei, E*, L)
(b) F ind a spamf ing tree T of G, and an Euler Tour ET of T.
Mark the first occurrence of each ver tex on ET; let v~, v2, • . . , v Iyl
be the marked vert ices in the order t hey appear on ET.
(c) For i ~- l + 1 to k do: I n t e r d e p e n d e n t -
B F S (V , E, D~, Ei, E* , (Vl, v2 vwi), L)

3. Re tu rn the o u t p u t of s tep 2(c).

I / O C o m p l e x i t y o f A p p r o x - A P - B F S k . I /O
cost of step 1 is dominated by that of D e c o m p o s e
which is O(k(V + V2/B) + sort(E)). Step 2(a)

D , (v W k 7 / B (E /B)logV)) = requires O (~ = 1 +

O(V2x/V/(BEd+ 0 logV + (I/B)V2-~E~ log ~-~ V)
I/Os, where ct = (V l o g V / E) ~ . Step

--~-) I /Os 2(b) incurs O(sort(E) log2 log2 VB
[5]. The I /O-complexity of step 2(c) is
O k (~ i= t+ l {(Ei/B)(V + iD~) + Di " sort(Ei)}) =
O(VEal-I /B + ((k - I)/B)V2-} E } log '-} V).

Therefore the total I /O cost of A p p r o x - A P -
BFSk is O(V2v/V/(BEc~I+I)IogV + VEctl-1/B +

2 1 1 (k/B)V -;Er. log 1-{= V). This expression is minimized
for 1 = (log (VaB log 2 V) - log (E3c~))/(31ogct) + 1,
and thus the I /O complexity reduces to

O(V2- loofi('- .) v + log v).

3.6 A n A l t e r n a t e A l g o r i t h m for k = 2. We can
externalize the internal-memory approximation algo-
ri thm by Aingworth et al. [2] to compute all pair-
wise distances in an unweighted undirected graph with
an additive one-sided error of at most 2 incurring

' 7- ' - " ' v+½v. v) I /Os. O(B~4V4 E4 log V+NV~E-~ log ~ log

The resulting algorithm is described in detail in [9]
and outperforms A p p r o x - A P - B F S 2 whenever B >

V 2 v-~ lo~V assuming V > log4V and E < logV
E - - - - "

4 C a c h e - A w a r e A P S P for W e i g h t e d
U n d i r e c t e d G r a p h s

In [6], Arge et al. introduce the Multi-Tournament-lq'ee
to obtain an O(V. (v/(VE/B)logV + sort(E))) I /O
cache-aware algorithm for computing APSP on general
weighted undirected graphs with E < VB/logV. In
this section we introduce the Multi-Buffer-Heap, and use
it to obtain an O(V. (V ~ / B + sort(E))) I /O cache-
aware algorithm for solving the same problem assuming
E < VB/log 2 (VE/B) or E = O(VB/log zy). This
leads to an O(V . (v / ~ + (E/B)logE/B)) I /O
algorithm for any edge density using O(V 2) space.

4.1 S l im D a t a S t r u c t u r e s . We introduce here the
notion of a slim data structure which is an external-
memory data structure in which a fixed-sized portion
is kept in internal memory. The area in the internal
memory that holds that specific portion is called the
slim cache. By DS(A) we denote an external-memory
data structure DS, in which a portion of size A is
kept in the slim cache. We continue to assmne the
behavior of the two-level I /O model, namely (a) the
size of the internal memory is M and (b) the portion of
the data structure that is not stored in the slim cache

741

is stored in an external memory divided into blocks of
size B, and thus accessing anything outside the slim
cache causes I /Os. While executing a da ta structural
operation the operation can use all free internal memory
for t emporary computat ion, hut after the operation
completes only the data in the slim cache is preserved
for reuse by the next operation on the data structure.

In the next section we present a slim data structure
based on the Buffer Heap [8], which we call a Slim
Buffer Heap, SBH(A) , which supports Decrease-Key,
Delete and Delete-Min with the amortized cost of O(-~ +
.!.a log ~) I /Os each. In section 4.3 we use a collection
of Slim Buffer Heaps in a Multi-Buffer-Heap.

we believe tha t the need for slim data structures
could arise in other applications. A typical application
would be one in which a number of da ta structures need
to be kept in internal memory simultaneously, and thus
only a limited portion of the internal memory (:an be
dedicated to each structure.

4.2 The Sl im Buffer Heap. In this section we
extend the cache-oblivious Buffer Heap [8] to a slim
data structure with an arbi t rary parameter A. We
call this data structure a Slim Buffer Heap (SBH) ,
and for an SBH with parameter A (1 <_ A _< M),
denoted by SBH(A) , it is assumed that an initial
segment of O(A) elements in the da ta structure resides
in internal memory. A Delete(x) operation deletes
element x from the queue if it exists and a Delete-
Min 0 operation retrieves and deletes the element with
mininmm key from the queue. A Decrease-Key(x, kx)
operation inserts the element x with key k~ into the
queue if x does not already exist in the queue, otherwise
it replaces the key k~ of x in the queue with k~ provided
k~ < k~. A Buffet" Heap supports Delete, Delete-Min
and Decrease-Key operations in O (~ log ~) I /Os each.
We show in this section tha t an SBH(A) supports each
of these operations in OO(-~ + ½ log ~) amortized I /Os ,
where N is the number of elements.

in Bi+i. (b) For 0 _< i < r - 1, for each element x in
Bi, all updates applicable to x that are not yet applied,
reside in Uo, U1, . . . , U,i.

INVARIANT 4.3. (a) Elements in each Bi are kept
sorted in ascending order by element id. (b) Updates
in each Ui are divided into (a constant number of) seg-
ments with 'updates in each segment sorted in ascending
order by element id and time stamp.

All buffers are initially empty.

4 .2.2 L a y o u t . As in [8] we use a stack SB to store
the element buffers, and another stack Su to store
the update buffers. An array As of size r to stores
information on the buffers. For 0 < i < r - 1, As[i]
contains the number of elements in Bi, and the number
of segments in Ui along with the nnmber of updates
in each segment. We assume the existence of a slim
cache of size O(A), large enough to store B0, B1,. • . , Bt,
Uo, U1, . . . , Ut+l, and the first A entries of A~, where
t = log (A + 1) - 1. The remaining portions of SB, Su
and As are kept in external memory.

4 .2.3 O p e r a t i o n s . In this section we describe how
Delete, Delete-Min and Decrease-Key operations are im-
plemented. A Delete or Decrease-Key operat ion inserts
itself into U0 (by pushing itself into Su) augmented with
the current t ime stamp. Further processing is deferred
to the next Delete-Min operation except that the F ix -
U function may be called to restore invariant 4.1(b)
for the structure. If needed, the Delete-Mi'n/Delete/
Decrease-Key operat ion collects enough elements from
higher level element buffers to fill the slim cache.

After each operat ion the Reconstruct function is
called which reconstructs the entire da ta s tructure
periodically. The objective of the function is to ensure
that the nmnber of levels r in the s tructure is always
within ±1 of log 2 N, where N is the current number of
elements in the structure.

4.2.1 S t r u c t u r e . The structure is the same as tha t
of a 'Buffer Heap without a tall cache' which was
described briefly in [8]. I t consists of r = 1 + [log 2 N]
levels. For 0 < i < r - 1, level i consists of an element
buffer Bi and an update buffer Ui. Each element in Bi
is of the form (x, kx), where x is the element id and kx
is its key. Each update in Ui is augmented with a t ime
s tamp indicating the t ime of its insertion into the queue.
At any time, the following invariants are maintained:
INVARIANT 4.1. (a) Each Bi contains at most 2 i ele-
ments. (b) Each U.i contains at most 2 i updates.

INVARIANT 4.2. (a) For 0 _< i < r - 1, key of every
element in Bi is no larger than the key of any element

FUNCTION 4.1. D e c r e a s e - K e y (x , k x) / D e l e t e (x)
(Inserts a Decrease -Key /De le t e operat ion into the s t ructure.)

1. Push the operat ion into U0 augmented with current t ime s tmnp

2.
• Set B I ~-- 0, i ~-- 0 {L i s t B ~ stores elems re turned by F i x - U }
• F i x - U (/ , B ')
3. Move the contents of B ~ to the shallowest possible element
buffers mMntaining invariants 4.1(a), 4.2(a) and 4.3(a)

4. R e c o n s t r u c t ()

FUNCTION 4.2. F i x - U (/ , B ~)
(Fixes all overflowing upda te buffers in levels i and up. An upda te
buffer Ui overflows if lu l l > 2 i. For each overflowing U~ collects
the contents of Bi in B t after applying Ui on Bi,)

1. While i < r AND ([Ui [> 2 i OR (i = t + 1 AND [B'l = 0) OR
(i > t + 1 AND IB'I < A)) do:

742

• A p p l y - U p d a t e s (i)
• Append the elements of Bi to B'
• Set i ~ - i + 1
2. If i < r then merge the segments of Ui

FUNC'rlON 4.3. A p p l y - U p d a t e s (i)
(Apply the updates in Ui on the elements in Bi, move remaining
updates h'om Ui to Ui+l if i < r - 1, and after applying the
updates move overflowing elements h'om Bi to Ui+i as Sinks.)
1. l f lBi l = 0 a n d i < r - 1 then:
• Merge the segments of Ui
• Empty Ui by moving contents of Ui as a new segment of Ui+i

2. Else (IBil > 0 or i = r - 1) do:
• Merge the segments of Ui
• If i = r - 1 then set k ~-- +co else set k ~-- largest key in Bi
• Scan Bi and Ui simultaneously, and for each operation in Ui if
the operation is:

- Delete(x) then remove any element (x, kx) from Bi if exists
- Decrease-Key(x, kx)/Sink(x, kx) then if any element

(x, k*) exists in Bi replace it with (x, min(k~, k~)), otherwise copy
(x, kx) to B~ i f kx < k
• If i < r - 1 then do the following:

- copy each Decrease-Key(x, kz) / Sink(x, kx) in Ui with
k~ > k t o U i + l

- for each Delete(x) and Decrease-Key(x, kx) with kx < k
in Ui copy a Delete(x) to Ui+i
• If [B d > 2 i+1 then do:

- i f i = r - l t h e n s e t r ~ - - r + l
- keep the 2 i+i elements with the smallest 2 i+l keys in Bi

and insert each remaining element (x, kx) into Ui+l as Sink(x, kx)
• Set Ui ~- 0

FUNCTION 4 . 4 . D e l e t e - M i n 0
(Extracts the element with the smallest key from the strncture.)

1. Set i +- 0
Repeat

- A p p l y - U p d a t e s (i)
- Set i ~ - - i + 1

Until Bi is non-empty or i = r
2 .
• Set B' ~-- Bi, i ~-- i -/- 1
• F i x - U (i , B ')
3 .
• Extract the minimum-key element frmn B'
• Move rest of B' to the shallowest possible element buffers
maintaining invariants 4.1(a), 4.2(a) and 4.3(a)
4 . R e c o n s t r u c t ()

FUNCTION 4.5. R e c o n s t r u c t ()

(Reconstructs the data structure when No = L ~ J + 1, where
Ne is the number of elements in SBH immediately after the
last reconstruction (Ne = 0 initially), and No is the nmnber of
operations since the last reconstruction/initialization of SBH.)

1. If No = k-~] + 1 then:
• For i ~-- 0 to r - 1 do A p p l y - U p d a t e s (i)
• Distribute remaining elements to shallowest element buffers

4 . 2 . 4 A n a l y s i s . C o r r e c t n e s s of t h e o p e r a t i o n s 1s

s t r a i g h t - f o r w a r d , a n d t h e p r o o f is in t h e full p a p e r [9].

T h e p r o o f of t h e fo l lowing l e m m a is also in [9].

LEMMA 4.1 . For 1 < i < r - l , every empty U~ ,receives
batches of updates a constant number of times before Ui
is applied on Bi and emptied again.

T h i s l e m m a has t h e fo l lowing i m p l i c a t i o n s :
• E a c h e n t r y o f As has c o n s t a n t s ize and t h u s

s e q u e n t i a l access of As wil l i ncu r (9 (~) a m o r t i z e d cache-

misses pe r access pe r ent ry .
• M e r g i n g t h e s e g m e n t s of Ui (in A p p l y - U p d a t e s)

incur s o n l y 0 (~) a m o r t i z e d I / O s p e r u p d a t e ill g i .

We now s t a t e t h e m a i n l e m m a of th is sec t ion .

LEMMA 4.2 . A Slim Buffer Heap supports Dele te ,

D e l e t e - M i n and D e c r e a s e - K e y operations in 0 (~ +
£ log 2 -~) amortized I /Os each using O(N) space, where
B
N is the current number of elements in the structure.

Proof . (S k e t c h - see [9] for de ta i l s) As in [8], we a s s u m e

t h a t a Decrease-Key o p e r a t i o n is i n se r t ed in to U0 as

an o r d e r e d pa i r (Decrease-Key, Dummy}. A f t e r t i le

successfu l a p p l i c a t i o n of t h a t Decrease-Key o p e r a t i o n on

s o m e B i , t h e Decrease-Key o p e r a t i o n in t h e o r d e r e d pa i r

m o v e s to Ui+l as a Delete o p e r a t i o n , a n d t h e Dummy
o p e r a t i o n e i t he r t u r n s in to an e l e m e n t in Bi , or m o v e s

to U~+i as a Sink o p e r a t i o n . T h u s a Decrease-Key
o p e r a t i o n wil l be c o u n t e d as two o p e r a t i o n s un t i l i t is

app l i ed on s o m e e l e m e n t buffer .
For 0 < i < r - l , le t ui be t h e n u m b e r of o p e r a t i o n s

in U~ and b~ t h e n u m b e r in Bi . Le t A d e n o t e t h e n u m b e r

of n e w Decrease-Key, Delete a n d Delete-Min o p e r a t i o n s

s ince t h e las t t i m e any p a r t of t h e d a t a s t r u c t u r e o u t s i d e

t h e s l im cache was accessed , and le t Ao be t h e n u m b e r of

o p e r a t i o n s s ince t h e las t c o n s t r u c t i o n / r e c o n s t r u c t i o n o f

t h e d a t a s t r u c t u r e . I f H is t h e c u r r e n t s t a t e o f SBH(A) ,
we def ine t h e potential of H as tbllows:

• (H) = E =0 {(2r - i) . + (i + 1)- bd

As in t h e ana lys i s of t h e I / O - c o m p l e x i t i e s of t h e Buffer

H e a p o p e r a t i o n s in [8], t h e key o b s e r v a t i o n is t h a t

o p e r a t i o n s a lways m o v e d o w n w a r d in t h e U buffer

and e l e m e n t s g e n e r a l l y m o v e u p w a r d in t h e B buffer.
F u r t h e r , any t i m e a U buffer is e x a m i n e d , i t is e m p t i e d

and i ts c o n t e n t s m o v e d d o w n to t h e n e x t lower buffer ,

and b e t w e e n two success ive e m p t y i n g s it neve r rece ives

m o r e t h a n a c o n s t a n t n u m b e r of ba t ches of u p d a t e s .

S imi la r ly , any t i m e a B buffer is e x a m i n e d , each e l e m e n t

in it is e i t h e r m o v e d up to a h ighe r B bnffer or is

m o v e d to a lower U buffer as a Sink o p e r a t i o n . T h e o n e

e x c e p t i o n is w h e n a B buffer is e x a m i n e d d u r i n g F i x - U ,

and t h e cos t of t h i s is p a i d by t h e d r o p in p o t e n t i a l d u e

to t h e u p w a r d m o v e m e n t of ~t(k) e l e m e n t s in e l e m e n t

buffers (th is is t h e r e a s o n for t h e f ac to r 2 t h a t a p p e a r s

be fo re t h e s u m m a t i o n p a r t in t h e p o t e n t i M func t ion) .

I g n o r i n g t h e Sink o p e r a t i o n for t h e m o m e n t , all o t h e r

cos ts a re pa id for by t h e c o r r e s p o n d i n g d r o p in p o t e n t i a l .
O n e un i t o f ~ on O(A) en t r i e s in t h e t o p t levels pays

743

for the cost of bringing in a new block when an access
is made to an entry in level t + 1. Finally the cost of
the Sink operations is handled in the same manner as
in [8], namely by the drop in potential incurred by the
removal of the Decrease-Key operation that triggered
the Sink. The Ao terms appearing in the potential
function ensures enough potential drop to pay for the
cost of periodic reconstruction of the data structure. []

4.3 Mult i -Buffer-Heap and External -Memory
APSP. A Multi-Buffer-Heap is constructed as follows.
Let .k < B and let L = ~. We pack the slim caches of
O(L) SBH(A) into a single memory block. We call this
block the multi-slim-cache and the resulting structure a
Multi-Buffer-Heap. By the analysis in section 4.2.4 this
structure supports Delete, Delete-Min and Decrease-
Key operations on each of its component Slim Buffer

,
Heaps in O(~ + -~ log 2 amortized I /Os each.

For computing APSP we take the approach in [6].
We work on all V underlying SSSP problems sinmlta-
neously, and solve each individual SSSP problem using
Kumar & Schwabe's algorithm for weighted undirected
graphs [12]. For 1 < i < V, we require a priority
queue pair (Qi, Q~), where the i th pair belong to the
i th SSSP problem. These V priority queue pairs are
implemented using O(-~) Multi-Buffer-Heaps. The al-
gorithm proceeds in V rounds. In each round we load
the multi-slim-cache of each MBH, and for each MBH
extract a settled vertex with minimum distance from
each of the O(L) priority queue pairs it stores. We sort
the extracted vertices by vertex indices, and scan this
sorted vertex list and the sorted sequences of adjacency
lists in parallel to retrieve the adjacency lists of the set-
tled vertices of this rotmd. Another sorting phase moves
all adjacency lists to be applied to the same MBH to-
gether. Then all necessary Decrease-Key operations are
performed by cycling through the Multi-Buffer-Heaps
once again. At the end of the algorithm the extracted
vertices along with their computed distance values are
sorted to produce the final distance matrix.

I / O Complex i t y . In each round O(~) I /Os are
required to load the multi-slim-caches of all Multi-
Buffer-Heaps. Accessing all required adjacency lists
over O(V) rounds requires (9(V. sort(E)) I/Os. A
total of O(VE. (~ + ~ log2 ~)) I /Os are required by
all O(VE) priority queue operations performed by this
algorithm. Sorting the final distance matrix requires
O(V. sort(V)) I/Os. Thus the I /O complexity of this
algorithm is O(V. (~ + -~ + ~- log 2 ~ + sort(E))). Using
L = r i f l e >_ 1, we obtain the following:

THEOREM 4.1. Using Multi-Buffer-Heaps, APSP on
undirected graphs with non-negative real edge weights

can be solved using O(V. (V / R I B + sort(E))) I/Os
and O(V 2) space whenever E - l o g - ~ < v13 (or E =

VB O(~o7)).
In conjunction with the I /O efficient APSP algo-

rithm for sufficiently dense graphs implied by the SSSP
results in [12, 8] we obtain the following corollary.

COROLLARY 4.1. APSP on an undirected graph with
non-negative real edge weights can be solved using O(V.
(v / ~ f f / B + (E/B) log E/B)) I/Os and O(V 2) space.

References
[1] A. Aggarwal and J. S. Vitter. Tile inpu t /ou tpu t complexity

of sorting and related problems. CACM, 31:1116-1127,
1988.

[2] D. Aingworth, C. Chekuri, P, Indyk, and R. Motwani. Fast
estimation of diameter and shortest paths (without matr ix
nmltiplication). S I A M J. Comput., 28:1167-1181, 1999.

[3] L. Arge. The buffer tree: A new technique for optimal l /O-
algorithms. In Proc. Jth WADS, pp. 334-345, 1995.

[4] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley,
and J. I. Munro. Cache-oblivious priority queue and graph
algorithm applications. In Proc. STOC, pp. 268-276, 2002.

[5] L. Arge, G. S. Brodal, and L. Toma. On external-memory
MST, SSSP, and multi-way planar graph separation. In
Proc. 7th SWAT, pp. 433-447, 2000.

[6] L. Arge, U. Meyer, and L. Toma. ExternM memory
algorithms for diameter and all-pairs shortest-paths on
sparse graphs. In Proc. 31st ICALP, pp. 146-157, 2004.

[7] G. S. Brodal, R. Fagerberg, U. Meyer, and N. Zeh. Cache-
oblivious data structures and algorithms for undirected
breadth-first search and shortest paths. In Proc. 9th SWAT,
pp. 480-492, 2004.

[8] R. A. Chowdhury and V. Ramachandrau. Cache-oblivious
shortest paths in graphs using buffer heap. In Proc. 16th
SPAA, pp. 245-254, 2004.

[9] R. A. Chowdhury and V. Ramachandran. External-
Memory Exact and Approximate All-Pairs Shortest-Paths
in Undirected Graphs. Tech. Rap. TR-04-38, UT Austin,
2004.

[10] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest
paths. S I A M J. Comput., 29(5):1740-1759, 2000.

[11] M. l~Yigo, C. E. Leiserson, H. Prokop, and S. Ramachaudran.
Cache-oblivious algorithms. In Proc. JOth FOCS, pp. 285-
297, 1999.

[12] V. Kumar and E. Schwabe. hnproved algorithms and data
structures for solving graph problems in external memory.
In Proc. 8th SPDP, pp. 169-177, 1996.

[13] K. Mehlhorn and U. Meyer. External-memory breadth-first
search with sublinear I /O. In Proc. lOth ESA, LNCS 2J61,
pp. 723-735, 2002.

[14] U. Meyer and N. Zeh. I/O-efficient undirected shortest
paths. In Proc. 11th ESA, LNCS 2832, pp. 434-445, 2003.

[15] K. Munagala and A. Ranade. I /O-complexity of graph
algorithms. In Proc. lOth SODA, pp. 687-694, 1999.

[16] H. Prokop. Cache-oblivious algorithms. Master 's thesis,
Dept. of EECS, MIT, June 1999.

[17] U. Zwick. Exact and approximate distances in graphs - a
survey. In Proc. 9th ESA, LNCS 2161, pp. 33-48, 2001.
Updated version at ht tp: / /www.cs . tau.ac. i l / -zwick.

744

