Explicit Batching for Distributed Objects

Eli Tilevich!

William R. Cook?

Yang Jiao*

! Computer Science Department, Virginia Tech
{tilevich, jiaoyang}@cs.vt.edu

2 Department of Computer Sciences, The University of Texas at Austin
wcook@cs.utexas.edu

Abstract

Although distributed object systems, for example RMI
and CORBA, enable object-oriented programs to be eas-
ily distributed across a network, achieving acceptable per-
formance usually requires client-specific optimization of
server interfaces, making such systems difficult to maintain
and evolve. Automatic optimization techniques, including
Batched Futures and Communication Restructuring, do not
work as well as hand optimization. This paper presents
Batched Remote Method Invocation (BRMI), a language-
level technique for clients to specify explicit batches of op-
erations on remote objects. We have implemented BRMI
for Java as an extension of RMI, with support for batches
with array cursors, custom exception handling, condition-
als and loops. BRMI allows common design patterns, in-
cluding Data Transfer Objects and Remote Object Facade,
to be constructed on the fly by clients without special server
support. The performance benefits of batching operations
are well known; our evaluation focuses on the usability of
explicit batches, but we also confirm that BRMI outperforms
RMI and scales significantly better when clients make multi-
ple remote calls. The applicability of BRMI is demonstrated
by rewriting several RMI client applications to use BRMI.

1 Introduction

When using existing distributed object systems, in-
cluding Common Object Request Broker Architecture
(CORBA) [16], the Distributed Component Object
Model (DCOM) [7], or Java Remote Method Invocation
(RMI) [21], care must be taken to design efficient interfaces
for remote operations. Design patterns for optimization,
including Remote Facade and Data Transfer Object, assume
some knowledge of typical client interaction patterns [13].
In a more dynamic or open environment, when client
interaction scenarios are unknown or change over time, a
more flexible approach to optimizing communication is
needed.

One way to do this is implicit batching, in which the sys-
tem automatically combines communications into batches
[6, 8]. When one call returns a proxy that is used in a subse-
quent call, the calls can sometimes be combined into a batch
without affecting program semantics. Implicit batches do
not optimize multiple calls that return primitive values, so
they do not support implicit Data Transfer objects. As a
result, implicit batches are often less efficient and more un-
predictable than hand-optimized remote interfaces. More
flexible optimization is possible using mobile code, but this
does not work easily across multiple platforms and intro-
duces potential for security problems.

This paper presents explicit batching, a client API and
middleware extension for flexible management of commu-
nication in distributed object systems. Explicit batches al-
low multiple calls on remote objects to be invoked in a
batch, while automatically transferring arguments and re-
turn values in bulk, in effect creating appropriate composite
Data Transfer Objects and Remote Facades on the fly. Ex-
plicit batches allow clients to specify their own communi-
cation patterns, using generic batching capabilities provided
by the server. The infrastructure provides some of the bene-
fits of mobile code, while using a platform-independent rep-
resentation for batches. Although the client must be written
to create batches explicitly, most aspects of the familiar dis-
tributed object style are preserved.

We have implemented explicit batching for Java in
Batched Remote Method Invocation (BRMI), a middleware
facility that enhances Java RMI. Using BRMI, any RMI
client program can be modified to invoke multiple remote
methods in programmer-defined batches.

The performance benefits of batching operations are
well-known, especially in high-latency environments. We
evaluate BRMI by using it to optimize several third-party
applications and report performance improvements, pro-
gramming effort and latency effects. Unfortunately we do
not know of a publicly available implementation of implicit
batching for Java, so our comparison to implicit batching
is subjective. The usability and performance studies that
we have conducted indicate that explicit batching can be a

worthwhile addition to an implementation of distributed ob-
jects, as a programming abstraction for managing latency
and bandwidth costs.

This paper makes the following contributions:

e A general language-level technique that enables clients
to specify explicit batches of operations on remote ob-
jects; batches can include array cursors, custom excep-
tion handling, conditionals and loops.

e BRMI, a practical implementation of explicit batching
for Java, including a client API and middleware exten-
sion.

e A thorough evaluation of BRMI that assesses its per-
formance improvements, programming effort and la-
tency effects.

2 Background

Java RMI is a middleware mechanism for invoking meth-
ods on a remote object located at a different Java Vir-
tual Machine (JVM). From the programmer’s perspective,
RMI makes local and remote calls almost indistinguishable.
To be remote, an object must implement one or more re-
mote interfaces (i.e., extending java.rmi.Remote). The RMI
client can call a remote object’s methods only through a re-
mote interface.

A stub implements the remote interface and serves as
the remote object’s client-side proxy [19]; operations on the
stub are forwarded to the remote object. For the client to ob-
tain an initial stub object, the RMI runtime provides a sim-
ple distributed naming service, called RMI Registry. Addi-
tional stubs may be created when a local object is passed to
the server, or server objects are returned to the client.

BRMI also uses the well-known concept of a future. A
future is a place-holder that stands in for a value that is not
yet available. A simple generic interface for futures can be
defined in Java:

interface Future<T> { T get() throws Throwable; }

Attempting to get a value before it is defined throws an er-
ror. Other exceptions may also be returned, as defined be-
low.

3 Explicit Batches with BRMI

BRMI is an extension of RMI that provides program-
ming abstractions and runtime support for invoking multi-
ple remote methods in a batch. On the client side, BRMI
uses a new kind of proxy for objects involved in a batch.
Operations on these proxies are recorded and method re-
sults returned as futures. When the client calls an explicit
flush method, the batch is executed on the server and the
results are assigned to the futures. The server is extended to
execute batches and return multiple results to the client.

3.1 A Running Example

A running example that will be used throughout the pa-
per is a distributed program that provides a hierarchical
view of a collection of remote files. The server side func-
tionality of the system is represented by interfaces File and
Directory:

interface File extends Remote {
String getName() throws RemoteException;
int getSize() throws RemoteException;

interface Directory extends Remote {
File getFile(String name) throws RemoteException;

}

A client program can use this interface to retrieve any
file from a remote file system. For example, the following
retrieves file “index.html” from the root directory.

Directory root = (Directory)Naming.lookup(“url”);
File index = root. getFile (“ index.html”);

String name = index.getName();

int size = index.getSize();

print (“ File ” + name + “ size: 7 + size);

Not counting the initial lookup of the root reference, it
takes 3 remote calls to retrieve file “index.html” and to ob-
tain its name and size.

3.2 Batch Object Interfaces

BRMI introduces batch object interfaces, which are sim-
ilar to RMI remote interfaces with systematic changes to
types. Two of the rules for deriving a batch interface from
a remote interface are: (1) a non-remote return type T is re-
placed by a future type Future<T>. (2) all remote interface
return and argument types are replaced by corresponding
batch interfaces. Primitive types are unchanged; exceptions
and arrays are described below. By convention, the name of
a batch interface starts with a B. The batch version of the
Directory interface is as follows:

interface BFile extends Batch {
Future<String> getName();
Future<Integer> getSize();

interface BDirectory extends Batch {
BFile getFile (String name);

The example given above can be performed as a batch
using BRMI:

BDirectory root = BRMI.create(BDirectory.class,
Naming.lookup(“url”));

BFile index = root. getFile (* index.html”);

Future<String> name = index.getName();

Future<Integer> size = index.getSize();

root. flush ();

print (“ File ” + name.get() +

“ size: 7 + size.get());

Before using an object in an explicit batch, it must be
wrapped in a batch-object proxy. This proxy is created by
calling the BRMI factory BRMI.create method. The first pa-
rameter is the batch object interface to be used, and the sec-
ond is the remote object being wrapped. The BRMI.create
method returns a batch-object proxy that implements the
batch interface.

Calls to the batch interface look similar to calls on a
normal interface, except that the results are futures rather
than values: getName returns a Future<String> rather than
a String. The batch object proxy records the client calls and
keeps track of the futures that are created. Implementation
details are given in Section 4.

To execute the batch, the client calls flush, which is de-
fined in the base interface, Batch. The flush method sends
the batch to the server. The results returned from the batch
execution are then stored into the futures. After calling
flush, the client can retrieve the future values using get. Any
attempt to get the value of a future before flush results in an
error.

Using BRMI decreases the number of network round
trips required to invoke multiple remote methods. Any
number of remote calls on many remote objects can be com-
bined into a batch. This enables each client to optimize its
own pattern of method invocation, without requiring server
changes. Section 5 evaluates the performance benefits of
BRMI. BRMI also avoids the creation of remote RMI prox-
ies other than for the root object. BRMI requires only client
program changes, with the server code remaining the same.

3.3 Exceptions

As with RMI, explicit batches have an effect on excep-
tion handling. With explicit batching, a simple method call
(T x = 0.m()) is split into two parts: first the method is in-
voked to create a future (Future<T> fx = 0.m()) and then af-
ter flush the actual value is retrieved (T x = fx.get();). With
BRMI, any exception thrown on the server by method m is
re-thrown during the second phase, when getting the value
of the future. The client must use exception handlers in the
second phase when futures are accessed, rather than dur-
ing the first phase when methods are invoked. For example,
the following code extends the running example to include
an exception handler when accessing the size of the file.
Exception handling is performed after flush, rather than be-
fore.

BFile index = root. getFile (“ index.html”);
Future<String> fname = index.getName();
Future<lInteger> fsize = index.getSize();
root. flush ();
string name = fname.get();
try { // getSize may throw an error
print (“ File ” + name + “ size: ”
} catch (PermissionError e) {
print (“ File ” + name + “ unknown”);

}

+ fsize .get ());

Exceptions may also be thrown by the getFile method
on the server, which returns a batch interface in-
stead of a future. For example, getFile might throw
FileNotFoundException. If getFile throws an exception,
then the file name and size are meaningless, because these
futures depend upon the result of getFile. In this case, at-
tempting to get the value of the name future will rethrow
the FileNotFoundException. In general, the get method of
a future rethrows any exception on which the future’s value
depends.

In some cases very fine-grained exception handling is
needed, where it is necessary to identify the exact method
call that threw an exception. The base Batch interface in-
cludes a method ok to check if the method call was suc-
cessful: it rethrows any exceptions on which the batch ob-
ject depends. A remote method that returns void has type
Future<Void> in its batch interface, so its exceptions can
also be checked using the get method.

Note that network and communication errors are raised
by flush, since it is the only call that performs remote com-
munication. One downside of this approach is that meth-
ods in batch interfaces do not have exception declarations.
To solve this problem, the exceptions would have to be de-
clared on the future methods, by using a specific future type
for each combination of exceptions.

The default behavior of a batch is to abort processing
when an exception is thrown. In some cases it may be
useful to apply a different exception policy, for example
to continue execution or restart the batch. For example,
when reading files in a directory, an illegal access on one
file should not terminate the entire batch. If the server fol-
lows a transactional model, then it may be useful to restart
a batch after an error.

BRMI uses exception policies to specify how exceptions
should be handled during the execution of a batch. The ex-
ception policy object is passed as an extra argument when a
batch is created:

Blinterface batch = BRMI.create(Blnterface.class, ri,
new ContinuePolicy());

The BRMI implementation currently provides three ex-
ception policy classes: AbortPolicy, ContinuePolicy and
CustomPolicy. When a method in a batch causes
an exception, a provided exception policy determines
how this exception affects the execution of the batch.
AbortPolicy aborts the execution if any exception is thrown.
ContinuePolicy always continues the execution of a batch.
CustomPolicy enables the programmer to express a custom
exception policy, in which an action is specified for combi-
nations of exceptions and method calls:

enum ExceptionAction {
Break, Continue, Repeat, Restart;

}

class CustomPolicy ... {

void setDefaultAction(ExceptionAction status) {...}
void setAction(String methodName, int index,
Exception e, ExceptionAction status) {...}
}

Through the setAction method, the programmer can
specify what should happen to the execution of a batch
when an exception is thrown. Specifically, in response to
an exception of a certain type, the execution of a batch can
be instructed to break, to continue, to repeat the method that
caused the exception, or to restart the batch. The exception
policies are implemented as final classes, as the program-
mer should not need to create their own exception policy
classes. Thus, exception policies are implemented without
the need for mobile code and dynamic class loading.

3.4 Operations on Arrays

It is useful to operate on arrays within a batch, but
there are several difficulties in achieving this. As an ex-
ample, consider adding a method allFiles () to return an
array of files in a Directory. The batch interface version
of this method, according to the rules above, would be
Future<BFile[]>. Although the array contains batch objects
(interface BFile) they cannot be accessed until after flush
when the containing array is returned to the client. In this
case proxies must be created for the files, and at least two
batches are needed: one to get the array and its size, and
one to operate on the items.

To support operations on arrays within a batch, BRMI
introduces the concept of a cursor. A cursor is created when
an array is accessed within a batch operation. Operations
performed on the cursor are applied to every element of the
array. The following example uses a cursor to retrieve the
name and size of every file in a directory.

CFile cursor = root. allFiles ();

Future<String> name = cursor.getName();
Future<Integer> size = cursor.getSize();

root. flush ();
while(cursor.next())

print(name.get() +

+ size.get());

A cursor is a special kind of batch interface. Before
flush, the cursor stands for an arbitrary element of the array.
Operations on the cursor return futures as if the cursor was a
file. These are special cursor-dependent futures, which take
on multiple values after the flush. When flush is called, the
server executes the batch and performs the requested opera-
tions on every element of the array. Any operation that uses
the cursor as a target or argument is repeated for each ar-
ray element. After flush, the cursor acts as an iterator: each
time next is called, the iterator updates all cursor-dependent
futures to contain the values for the next array element.

In this example, the remote method (i.e., allFiles) is ex-
ecuted on the server, creating an array of Files. The size of
the array is not known in advance. Within the same batch,

the methods getName and getSize are called on each file in
the array. The complete set of results are returned to the
client and used to populate the futures on each iteration of
the loop.

To support cursors, the rules for translating remote in-
terfaces to batch interfaces are modified so that an array
of remote interfaces, R[], is converted to a cursor type CR.
By convention, the name of a cursor interface starts with a
C. The automatically generated cursor type extends both a
batch and CursorBase interfaces to contain batch and itera-
tion methods:

interface CursorBase { boolean next(); }
interface CFile extends BFile, CursorBase {};
interface BDirectory extends Batch {

BFile getFile (String name);

CFile allFiles ();

}

Cursors allow multiple operations to be performed on all
elements of an array. The operations can involve multiple
remote references; for example, it would be possible to copy
all files from one folder to another using cursors. Cursors
can also be extended to allow multiple operations to be per-
formed on all elements of a collection object, whose class
implements interface java.lang. lterable .

3.5 Conditionals and Loops

To enable batches with a non-linear control flow, BRMI
supports remote conditionals and loops. Without having to
interrupt its execution, a batch can branch or repeat some of
its operations based on the result of a batched method re-
turning a Future<Boolean>. Because the syntax of Java is
not extensible, the BRMI design for conditionals and loops
introduces new constructs sparingly, having them as much
as possible, look and feel as their local Java counterparts.
BRMI defines its conditional and looping operations in in-
terface ConditionalsAndLoops:

interface ConditionalsAndLoops {
Future<Boolean> rlf(Future<Boolean> condition);
void rElse ();
void rWhile(Future<Boolean> condition);
void rEnd();

}

By extending this interface, all batch and cursor interfaces
inherit the capacity to express a non-linear control flow for
remote batches. Thus, a simple if /else logic can be imple-
mented in a batch as follows:

BR br= ...; //some batch interface
br.rlf (br.test()); # start if
br.foo ();
br.rElse(); / start else
br.bar (
br.rEnd()
br. flush (

)
; Hend if
).

This code snippet expresses functionality equivalent to that
of a regular Java conditional statement with a few syntactic
differences. The control flow constructs of if and else be-
come methods rlf and rElse, respectively, and method rEnd
terminates the conditional branch. In lieu of the curly brace
characters in BRMI, rEnd terminates all statement blocks
starting with either rlf or rWhile.

As a specific example of using conditionals in a batch,
consider a scenario that requires deleting a remote file, if it
was modified before a given date. rlf can express this logic
similarly to an if statement in an imperative programming
language:

BR bFile = br. getFile (“ A.txt”);

Future<Boolean> res =

br. rif (bFile.isExpired(cutOffDate));
bFile.delete ();

br.rEnd();

br. flush ();

print (“ rlf was” + res.get ());

Note that rlf returns Future<Boolean>, which is simply
the value of its parameter, allowing the client to determine
which remote branch was taken during the execution of a
batch.

When rlf is called on a BRMI cursor, it concisely ex-
presses a filtering operation to be applied on each item of
a remote collection. Consider extending the above example
of removing an expired file to a collection of remote files:

CRemoteFile cr = br.allFiles (); # cursor

cr. rlf (cr.isExpired(cutOffDate);
cr.delete ();

cr.rEnd();

br. flush ();

This example first retrieves a cursor for a collection of re-
mote files and then deletes all files that have expired, with
all the remote operations executed in a single batch.

Conditionals and loops increase the expressive power of
BRMI by allowing a non-linear control flow in a batch,
whereas their presence hinders implicit batching optimiza-
tions. For example, an if statement using the result of a re-
mote method would require breaking an implicit batch, as to
execute an if, its boolean operand must be first evaluated.
By providing the remote equivalents of the Java conditional
and looping constructs, BRMI can batch longer sequences
of remote methods.

4 Implementation

BRMI is implemented as a layer on top of Java RMI,
without changes to the Java language or runtime. This sec-
tion focuses on the implementation issues of BRMI, its un-
derlying techniques, and its integration with Java RMI. Sec-
tion 5.2 quantifies BRMI performance benefits.

BRMI includes a tool to generate batch and cursor inter-
faces, as defined in the previous section. The batch interface

generation process is transitive: it does not stop until all
the transitively-referenced Batch interfaces have been gen-
erated. Thus, a Batch interface contains references only to
other Batch interfaces, but never to Remote interfaces. The
batch interface tool is invoked by using the —batch com-
mand line switch to rmic. Generating Batch interfaces au-
tomatically makes programming with BRMI easier.

The BRMI runtime architecture is logically divided into
the client and server modules. There are three phases in cre-
ating and executing an explicit batch: 1) invocation moni-
toring 2) batch execution and 3) result interpretation.

4.1 Invocation Monitoring (BRMI Stub)

The first phase, invocation monitoring, starts when the
BRMI stub is created and ends when flush is called. Dur-
ing this phase, client calls are recorded by the client stub,
but not sent to the server. The target and arguments of the
call are stored in a method descriptor (an object of class
InvocationData). Each method call is assigned a sequence
number which acts as an identifier for that call. Some spe-
cial processing is applied to the return values and arguments
of the invocation.

If the method returns a Future type, a new future is cre-
ated and added to the list of futures stored in the batch. A
future is identified by the sequence number of method that
created it. The future is returned as the result of the method
invocation.

For a method returning a batch interface, the stub cre-
ates and returns a BRMI stub for this interface. The iden-
tification number of the stub is the sequence number of the
method that created it. The new stub is returned as the result
of the invocation.

Cursors are a special case of batch interface. Invoca-
tion monitoring for a cursor is the same, except that there
is an ordering constraint: the operations on the cursor are
recorded contiguously, even if operations on stubs from the
cursor are interleaved with operations on stubs that are not
derived from the cursor. A cursor also maintains a list of all
futures created by stubs derived from the cursor. In effect
the cursor is a sub-batch of its containing batch.

For method arguments, the simple case is when the ar-
gument is a value (or serializable object). In this case the
argument value is simply stored in the method descriptor. If
the argument type is a batch interface, then its value must be
a stub that was previously created in the batch. An error is
raised if the stub was created within a different batch chain.
The stub is stored in the method descriptor as the argument
value. When transmitting the InvocationData to the server,
only the identifier of the stub is needed.

The same technique is used to identify the target of an
invocation. Any method calls on a stub created by the batch
will be included in the batch. The BRMI stubs are imple-
mented as dynamic proxies [22].

The end result of invocation monitoring is a list of
method descriptors, a list of stubs and a list of futures. The

method descriptors are serializable objects that are sent to
the server. The stubs are only needed for exception han-
dling, conditionals and loops — only the sequence num-
bers are sent to the server, so that method arguments can be
matched to prior method return values. The futures are used
when the results are returned from a batched execution.

4.2 Batch Execution

When the client calls flush, the recorded method calls are
sent to the server as a batch by calling a regular RMI method
invokeBatch. To make the BRMI functionality available to
all RMI remote objects, the invokeBatch method is added to
UnicastRemoteObject, a super class extended by RMI ap-
plication remote classes.

The BRMI server runtime decodes method descriptors,
invokes batched methods one-by-one and returns the results
back to the BRMI client.

The server plays back the method invocations in the
same order in which they were invoked on the client. The
remoteObj array keeps track of the objects created during
the batch; they correspond one-to-one with the stubs created
on the client during invocation monitoring. The non-remote
values returned by methods are stored in the returnValues
array, which corresponds one-to-one with the list of futures
on the client.

Exceptions are trapped and handled as specified by a
given exception policy (see Section 3.3 for details). Cur-
sors are implemented by executing a sub-batch of methods
for each item in the array. All of the cursor operations are
performed at the point when the cursor value is created on
the server. As a result, the relative order of playback of cur-
sor operations may differ slightly from the order in which
they were recorded, if non-cursor operations are interleaved
with cursor operations. The non-cursor operations will be
executed after the cursor operations. The server returns the
number of elements in the cursor’s array to the client and
assigns sequence numbers to them so that they can be refer-
enced in conditionals and loops.

Upon the completion invokeBatch, the array of return
values is sent back to the client, along with any exceptions
that arose. Note that normal RMI proxies are never returned
to the client.

4.3 Result Interpretation

The results from the server are an array of objects and an
array of exceptions. The values are assigned to the futures
in the client. The exceptions are assigned to the futures and
the stubs. If the future has an exception, rather than a value,
then this exception is thrown when accessing the content of
the future.

For cursors, result interpretation is more complicated.
Each time next is called on the cursor, the futures associated
with the cursor are assigned values from the return value ar-
ray. The number of values in the array is the number of

elements in the cursor times the number of futures. Futures
normally do not change value after they have been assigned,
but in the case of futures created within a cursor, the future
values may change on each iteration of the loop.

5 Evaluation

We evaluate both the applicability and the performance
of BRMI. We have reengineered two third-party RMI appli-
cations to use BRMI and conducted a rigorous performance
evaluation of our implementation through a series of micro-
benchmarks.

5.1 Applicability

To assess the applicability of BRMI, we introduced ex-
plicit batching to two third-party RMI applications that
came from publicly available projects and books and rep-
resent different domains.

5.1.1 Remote File Server

This RMI application [18] is similar to the running example
used throughout the paper: it uses Java RMI to obtain a
listing of all files in a directory from a remote file system.

The client code obtains an array of files and prints their
name, directory, modification date, and length, and can be
implemented in BRMI as follows:

BRemoteFile remoteFiles = BRMI.create(BRemoteFile.class,
Naming.lookup(“url”);

CRemoteFile filesCursor = remoteFiles. listFiles ();
Future<String> nameFuture = filesCursor.getName();

Future<Boolean> isDirectoryFuture = filesCursor.isDirectory();

Future<lLong> dateFuture = filesCursor.lastModified();
Future<Long> lengthFuture = filesCursor.length();
remoteFile.flush ();

while(filesCursor .next())
System.out.printin (
nameFuture.get() +
“: isDirectory=" + isDirectoryFuture.get() +
“; lastModified=" + new Date(dateFuture.get()) +
; length=" + lengthFuture.get());

In the code above, BRemoteFile wraps the server RMI
remote object. Then it obtains a cursor object filesCursor
and uses it to specify methods getName, isDirectory,
lastModified, and length, which are to be invoked on each
element of the array of file objects returned by method

listFiles on the server. It then calls flush, resulting in the

invocation of all the methods on the server; their results are
transferred to the client in one batch, too. Finally, all the
method calls within the while loop are local. These local
calls retrieve the results using the filesCursor and Future
objects.

Compared to implicit batching, the use of the cursor ab-
straction here makes it possible to obtain a listing of an en-
tire directory in a single remote call. To optimize a regu-
lar RMI program to that level of efficiency, implicit batch-
ing would need compiler optimization techniques that could
synthesize the specialized semantics of cursor objects (i.e.,
applying a set of operations on each element of a to-be-
created remote array). We are not aware of complier opti-
mizations powerful enough to transform a target program in
such a significant way fully automatically.

5.1.2 Bank

This RMI application [14] models a credit card manage-
ment system. The server component represents a bank that
manages credit card accounts. It exposes two external inter-
faces to the client CreditManager, for creating and looking
up credit card accounts, and CreditCard, for making pur-
chases and keeping track of the remaining balances. As a
bootstrapping arrangement, the methods of the RMI inter-
face CreditManager return CreditCard remote references to
the client.

public interface CreditManager extends java.rmi.Remote {
public CreditCard findCreditAccount(String Customer)

throws RemoteException;

public interface CreditCard extends Remote {
public float getCreditLine() throws RemoteException;
public void makePurchase(float amount)
throws RemoteException;

}

Thus, the client of this credit management system looks
up a reference to CreditManager in the RMI registry, calls
one of its methods (e.g., findCreditAccount) obtaining a ref-
erence to a remote CreditCard object and uses it to make
purchases.

In the original application, the account lookup and each
purchase require a separate remote call. The goal of this
case study is to explore whether BRMI can provide the same
functionality in a single remote call. Although it is fairly
straightforward to use BRMI to combine all the remote calls
into a single batch, the account lookup presents a complica-
tion. If it throws an exception, the batched execution should
be terminated, as it failed to return a valid CreditCard object
on which the subsequent purchase methods are performed.
The BRMI exception policy mechanism can provide an el-
egant solution to this problem. Specifically, the following
exception policy can be specified when creating a BRMI
invocation object:

CustomPolicy cp = new CustomPolicy();
cp.setDefaultAction(ExceptionAction.Continue);
cp.setAction(DuplicateAccountException.class,
“findCreditAccount”, 0, ExceptionAction.Break);
BCreditManager cmm = BRMlI.create(BCreditManager.class,
cm, ¢p);

With this exception policy in place, it is safe to specify
the rest of the methods to be invoked in the same batch:

account = cmm.findCreditAccount(“AccountName”);
account.makePurchase(123.00);
account.makePurchase(456.00);

Future<Float> creditLineFuture = account.getCreditLine();
cmm.flush();

float creditLine = creditLineFuture.get();

If a thrown exception signals that an account can-
not be found, the subsequent methods will not be exe-
cuted; the exception will be re-thrown when the client calls
creditLineFuture.get.

Without the ability to express a custom exception pol-
icy, implicit batching would have no choice but to emulate
the execution semantics of the original RMI program. To
do this safety will require rwo implicit batches, so that the
client could properly handle exceptions potentially thrown
by findCreditAccount.

5.2 Performance Numbers

To assess the advantages of explicit batching, we com-
pared the performance of RMI and BRMI versions of three
micro benchmarks and a macro benchmark. All the exper-
iments were run in JDK 1.6 (build 1.6.0-b10) in two con-
figurations: (1) Two identical Windows XP Professional
workstations, with Dual Core 3GHz processors and 2 GB of
RAM, connected with a dedicated 1Gbps, 1ms latency net-
work. (2) Two identical Windows XP Professional Toshiba
Satellite laptops, with Dual Core 1.66 GHz Processor and
1GB of RAM, connected with a 48.0 Mbps, 252ms latency
wireless network. To ensure accuracy, all the benchmarks
were repeated between 5000 to 10000 times with the results
averaged.

5.3 Micro benchmarks

5.3.1 no-op

As a no-op benchmark, we used a do-nothing remote
method that takes no parameters and returns void. This
benchmark, thus, isolates the middleware processing over-
head. In BRMI, we used a single batch irrespective of the
number of method calls.

The performance graphs in Figures la and 1b indicate
that in both networking configurations, as the number of
calls increases, the time taken grows linearly in RMI and
stays almost constant in BRMI. The execution time of a re-
mote call can roughly be split into network transmission and
processing. Since the processing amount is about the same
for both RMI and BRMI (BRMI does some extra process-
ing), the BRMI version’s advantage is due solely to reduced
overall latency.

As expected, RMI outperforms BRMI when the batch
size is smaller than two due to the overhead of the BRMI
runtime.

no op - 1Gbps network

Linked List Traversal - 1Gbps Network

Remote File Server - 1 Gbps Network

0.9 6 30
0.8 +—|--RMI | [~-Rm it
207 1 = BRMI| P ms = BRMI 25— ~RMI ~
B 0.6 | B4 2, | LwBRM
S0.5 | . 8
804 2 g
£03 1 52 £ 10
= s 10
0.2 4 1] / = g8 a8
0.1 - = = —=—* 51
0 1] T T T T 0 T - - - - T T T T
1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
Number of Method Calls Number of Traversals Number of files
(a) No-op Benchmark (LAN) () Traversing a Linked List (LAN) (e) File Server (LAN)
1 no op - 48 Mbps Wireless Network a5 Linked List Traversal - 48 Mbps Wireless Net Remote File Server - 48 Mbps Wireless Network
300
| [+Rmi N 40 | -~
1277 2 gRMI ——RMI _ 250 - RMI —
10 4 " 35 ‘ / " -= BRMI
-
g . 'g 30 BRMI gzoo -
) S 25 o
150 —=—» =8 p 8 —8—=0
26 / 220 2
= E 5 =100 |
=49 u o— = a = =
o = 10 - 50 -
2 51 0
0 0 ‘ ‘ ‘ ‘ 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 1 2 3 4 5 Number of Files

Number of Method Calls
(b) No-op Benchmark (Wireless)

Number of Traversals
(d) Traversing a Linked List (Wireless)

(f) File Server (Wireless)

Figure 1: Performance of BRMI and RMI for different applications and network conditions

5.3.2 Linked List Traversal

In this benchmark, we measure the time it takes a client
to traverse and retrieve an n'h' nodes value of a linked list
implemented as a remote object with the following Remote
and Batch interfaces:

interface RemoteList extends Remote {
RemoteList next();
int getValue();

interface BRemotelList extends Batch {
BRemoteList next();
Future<Integer> getValue();

}

Despite being an inefficient approach to retrieve an nth
nodes value of a linked list, this micro benchmark demon-
strates an important piece of functionality: traversing a vari-
able chain of references.

The performance graphs in Figures lc and 1d show
trends similar to that of the no-op benchmark in both con-
figurations: whereas RMI numbers grow linearly, BRMI
ones stay close to constant. One unexpected result is that
in both configuration, BRMI outperforms RMI even when
traversing only one node (i.e., no batching is possible). In
the BRMI version, method next returns a BRemoteList ref-
erence to a client BRMI stub, thus completely avoiding any
network transfer.

To test the extent of this advantage in terms of perfor-
mance improvement, we changed the BRMI version of the
benchmark to call flush after each method invocation, re-

Linked List Traversal without Batching - 1 Gbps

Network
6
—~—-RMI

5 T-=-BRMI
8
c 4
o
3 3
°
g2

1 -

0

1 2 3 4 5

Number of Traversals

Figure 2: Linked List Traversal (Batches Size 1)

sulting in sending a batch of size one to the server. As per
Figure 2, even without batching, BRMI consistently out-
performs RMI, but with the BRMI execution time growing
linearly. The BRMI version does not suffer the overheads
of marshaling a RemoteList object, used as a return value.

5.4 Remote File Server Macro Benchmark

This benchmark evaluates the performance of the Re-
mote File Server, the running example throughout the pa-
per. The server first creates a directory with 10 files of a
specified size. It then loads all the files from disk into main
memory, to avoid disk access tainting the results. We mea-
sured the total time taken by transferring n files from the
server, with the total size of all the files equal to 100KB.
Figures le and 1f shows that BRMI achieves several orders
of magnitude performance increase over RMI for most in-

put parameters (i.e., number of files to retrieve from server),
with the advantages present in both configurations.

6 Related Work

Explicit Batching. Software design patterns [13] for Re-
mote Facade and Data Transfer Object (also called Value
Objects [3]) can be used to optimize remote communica-
tion by performing block transfers of data between client
and server. A data transfer object is a Serializable class that
contains properties retrieved from or sent to a remote object.
However, a system must often be rearchitected to support
value objects. In addition, different kinds of value objects
may be needed by different clients. Rather than hard-coding
a batching decision into the implementation of a value ob-
ject, the programmer can use BRMI and its convenient API
to combine any set of remote methods into a batch. BRMI
constructs an appropriate value object on the fly, automati-
cally, as needed by a particular situation. BRMI also gener-
alizes the concept of a data transfer object to support trans-
fer of properties from arbitrary collections of objects, and
also invocations of arbitrary methods, rather than just ac-
cessors and getters.

The DRMI system [15] aggregates RMI calls following
an approach similar to BRMI. DRMI also uses special inter-
faces to record and delay the invocation of remote calls. An
interesting feature of DRMI is the ability to pass a Future
that resulted from one call as an argument to a later call.
This design choice basically precludes Serializable argu-
ments from being passed to batched methods. In addition
to simple call aggregation, BRMI supports array cursors,
custom exception handling, conditionals, and loops. BRMI
also allows passing a result of a batched call to a later call,
but only for remote results, thereby allowing passing arbi-
trary Serializable arguments to batched methods.

Detmold and Oudshoorn [12] present analytic perfor-
mance models for RPC and its optimizations including
batched futures as well as a new optimization construct
termed a responsibility. Their analytic models could be ex-
tended to model the performance properties of the new op-
timization constructs of BRMI such as array cursors, condi-
tionals, and loops.

Sometimes a communication protocol defines batches
directly, as is in the compound procedure in Network File
System (NFS) version 4 Protocol [20], which combines
multiple NFS operations into a single RPC request. The
compound procedure in NFS is not a general-purpose mech-
anism; the calls are independent of each other, except for a
hard-coded current filehandle that can be set and used by
operations in the batch. There is also a single built-in ex-
ception policy. Web Services are often based on transfer of
documents, which can be viewed as batches of remote calls
[23,9].

Cook and Barfield showed how a set of hand-written
wrappers can provide a mapping between object interfaces
and batched calls expressed as a web service document.

BRMI automates the process of creating the wrappers and
generalizes the technique to support exception policies and
remote cursors. As a result, BRMI scales as well as an op-
timized web service, while providing the raw performance
benefits of RPC [10]. Web services choreography [17] de-
fines how Web services interact with each other at the mes-
sage level. BRMI can be seen as a choreography facility for
distributed objects.

Mobile Code. Mobile object systems such as Emer-
ald [5] reduce latency by replacing multiple remote method
calls with moving an entire object so that the calls could be
performed locally. Ambassadors is a communication tech-
nique that uses object mobility [11] to minimize the ag-
gregate latency of multiple inter-dependent remote meth-
ods. DJ [1] adds explicit programming constructs for direct
type-safe code distribution, improving both performance
and safety.

Mobile objects generally require sophisticated runtime
support not only for moving objects and classes between
different sites, but also for dealing with security issues.
A Java application can essentially disable the use of mo-
bile code by not allowing dynamic class loading. Because
BRMI does not require any changes to the server, it can
minimize the aggregate latency of remote communication
without using mobile code.

Implicit Batching. Batched futures reduce the aggregate
latency of multiple remote methods [6]. If remote methods
are restructured to return futures, they can be batched. The
invocation of the batch can be delayed until a value of any
of the batched futures is used in an operation that needs
its value. We extend batched futures to include support for
cursors, conditionals, and exception policies.

Yeung and Kelly [8] use byte-code transformations to
delay remote methods calls and create batches at runtime.
A static analysis determines when batches must be flushed.
Small changes in the program, for example introducing an
assignment to a local variable, or an exception handler, can
cause a batch to be flushed. The implicit mechanism will
combine any possible set of operations into a batch. How-
ever, it is not clear how the array cursors, conditionals, and
loops of BRMI could fit into an implicit batching model.

Future RMI [2] communicates asynchronously to speed
up RMI in Grid environments, when one remote method
is invoked on the result of another. Remote results of a
batch are not transferred over the network, remaining on
the server to be used for subsequent method invocations.

Asynchronous RMI. Another approach to improving
the performance of RMI is asynchronous dispatch of re-
mote calls, as is in ProActive [4]. Its asynchronous remote
calls also return futures, and the client waits for a result by
blocking on a future. Asynchronous RMI provides no per-
formance benefits for a chain of calls 0.m1().m2() to remote
objects. BRMI can effectively batch such a chain of remote
calls, thereby reducing their aggregate latency.

7 Conclusion

This paper presents explicit batching for distributed ob-
jects, a general mechanism for clients to optimize access to
distributed objects. The server infrastructure supports ex-
plicit batches for all clients, so that servers do not need to
be optimized for specific clients. This is useful in settings
where client needs cannot be predicted, or change over time.

Clients must be rewritten to use explicit batch interfaces,
but the resulting program still uses the familiar object-
oriented style and has the added benefit of making dis-
tributed communication very explicit. Explicit batches sup-
port multiple operations on any number of objects, includ-
ing operations on the results of previous method calls in
the batch. Additional features include custom exception
handling, bulk operations on every element of a collection,
conditionals and loops to support operations that cannot be
performed in a single batch.

We implemented explicit batches in Batched Remote
Method Invocation (BRMI), an extension to Java RMI. A
tool automatically creates batch interfaces from normal re-
mote interfaces. It it interesting to note that BRMI avoids
use of traditional object proxies, except for the root of a
batch. The design also avoids all use of mobile code. Future
work will explore language support for batches and integra-
tion of batches with transactions.

We evaluated the applicability and performance of
BRMI by converting several third-party RMI applications
to use BRMI. Benchmarks of these applications and several
micro-benchmarks demonstrate that BRMI outperforms
RMI and scales significantly better when clients make mul-
tiple remote calls.

Availability: BRMI can be downloaded from
http://research.cs.vt.edu/vtspaces/brmi

References

[1] A. Ahern and N. Yoshida. Formalising Java RMI with ex-
plicit code mobility. In Proc. of OOPSLA 05, pages 403—
422, New York, NY, USA, 2005. ACM.

[2] M. Altand S. Gorlatch. Adapting Java RMI for grid comput-
ing. Future Generation Computer Systems, 21(5):699-707,
2005.

[3] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns: Best
Practices and Design Strategies. Prentice Hall PTR, 2003.

[4] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet,
M. Morel, and R. Quilici. Grid Computing: Software En-
vironments and Tools, chapter Programming, Deploying,
Composing, for the Grid. Springer-Verlag, January 2006.

[S] A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy.
The development of the Emerald programming language. In
HOPL 111, pages 11-1-11-51, 2007.

[6] P. Bogle and B. Liskov. Reducing cross domain call
overhead using batched futures. ACM SIGPLAN Notices,
29(10):341-354, 1994.

(7]
(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]
(17]

(18]

[19]

(20]

(21]
[22]

(23]

N. Brown and C. Kindel. Distributed Component Object
Model Protocol-DCOM/1.0, 1998. Redmond, WA, 1996.
K. Cheung Yeung and P. Kelly. Optimising Java RMI Pro-
grams by Communication Restructuring. In ACM Middle-
ware Conference. Springer, 2003.

W. Cook and J. Barfield. Web Services versus Distributed
Objects: A Case Study of Performance and Interface De-
sign. In the IEEE International Conference on Web Services
(ICWS’06), pages 419-426, 2006.

C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle.
Benchmarking the Round-Trip Latency of Various Java-
Based Middleware Platforms. Studia Informatica Univer-
salis Regular Issue, 4(1):7-24, 2005.

H. Detmold, M. Hollfelder, and M. Oudshoorn. Ambas-
sadors: structured object mobility in worldwide distributed
systems. In Proc. of ICDCS’99, pages 442-449, 1999.

H. Detmold and M. Oudshoorn. Communication Constructs
for High Performance Distributed Computing. In Proceed-
ings of the 19'" Australasian Computer Science Conference,
pages 252-261, 1996.

M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

P. Heller. Java 1.1 developer’s handbook. SYBEX San Fran-
cisco, CA, 1997.

E. Marques. A study on the optimisation of Java RMI pro-
grams. Master’s thesis, Imperial College of Science Tech-
nology and Medicine, University of London, 1998.

The Object Management Group (OMG). The Common Ob-
Jject Request Broker: Architecture and Specification, 1997.
C. Peltz. Web services orchestration and choreography.
Computer, 36(10):46-52, 2003.

E. Pitt and K. McNiff. Java.RMI: The Remote Method In-
vocation Guide. Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA, 2001.

M. Shapiro. Structure and Encapsulation in Distributed Sys-
tems: The Proxy Principle. In Proceedings of ICDCS’86,
pages 198-204, 1986.

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. Network File System
(NFS) version 4 Protocol, 2003.

Sun Microsystems. Java Remote Method Invocation Speci-
fication, 1997.

Sun Microsystems.
1999.

W. Vogels. Web services are not distributed objects. Internet
Computing, IEEE, 7(6):59-66, 2003.

Dynamic proxy classes specification,

