Gel: A Generic Extensible Language

Jose Falcon, William R. Cook

Department of Computer Science
University of Texas at Austin
jofalcon@mail.utexas.edu, wcook@cs.utexas.edu

Abstract. Both XML and Lisp have demonstrated the utility of generiasy
tax for expressing tree-structured data. But generic laggs do not provide the
syntactic richness of custom languages. Generic Expressioguage (Gel) is
a rich generic syntax that embodies many of the common syntaanventions
for operators, grouping and lists in widely-used languadrrefix/infix opera-
tors are disambiguated by white-space, so that documerith wiolate common
white-space conventions will not necessarily parse ctiyredth Gel. With some
character replacements and adjusting for mismatch in tgrepsecedence, Gel
can extract meaningful structure from typical files in maayduages, including
Java, CSS, Smalltalk, and ANTLR grammars. This evaluatimws the expres-
sive power of Gel, not that Gel can be used as a parser folirexiginguages.
Gel is intended to serve as a generic language for creatimpasable domain-
specific languages.

1 Introduction

The traditional approach to implementing concrete syntepaflanguage is to define
a custom grammar and a parser to read the language, andlp@sgitetty-printer to
output or reformat programs. Examples include programiainguages, grammars for
parser generators, configuration files, CSS styles, andfiteake

Cldava: int m(int[]] a) { return o.m(2 * a[x++], !done); }
Css: alink  { font-family: courier; color: #FF0000 }
Smalltalk:™ o m: 2 =* (a at: x inc) n: done not

ANTLR: call : ID '( (a=e (', b=e { a.add(b); D* )2

A custom-designed language is generally easy for humansai and write, al-
though they must learn specialized syntax and lexical aotwes for each language.
There are many tools for creating custom languages [19,2%id also for creating
extensions to custom languages [7].

A second approach is to use a generic language that provisiamdard concrete
syntax representing generic abstract trees. Examplessadpiproach include XML [9]
and Lisp S-Expressions [22]. A custom language can be defiithih a generic lan-
guage as aubsetthe Lisp programming language is a subset of S-ExpressidtiEML
is a subset of all possible XML documents. Krishnamurthi tated this technique



bicameral parsing21]. A language designer can choose how to encode higthdene
cepts using the generic syntax. For examibbex< 3 then print(x) could be represented
this way:

Lisp: (if (< x 3) (print x))

XML: <if><test op="It"><var name="x"/><const>3</const></test>
<then><call fun="print"><arg>x</arg></call></then> </if>

It is easy to embed or compose different languages in onendexctt Humans only
have to learn one set of syntactic conventions. Parsinttygpeinting, and other tools
can be reused.

A major negative of generic languages is that humans gdnéirad them less ap-
pealing to read and write than custom languages. Compataddgaages with a custom
grammar, both Lisp and XML are impoverished syntacticallfew delimiters and sim-
ple syntactic forms are repeated many times.

In this paper we present Generic Extensible Language (&é#nguage that em-
bodies many of the common syntactic conventions populguages, including C/Java,
Smalltalk, CSS and EBNF. The goal of this research is to defigeneric language
based on the syntactic conventions that have evolved ogdash 40 years.

Gel has a uniform fixed syntax supporting arbitrary prefixfisuand infix opera-
tors, lists, grouping, keywords, sequences of adjacentssns. and string interpola-
tion. It has a novel quoting construct to support meta-laggs.

We evaluate Gel by analyzing how well the Gel AST corresponmtise AST created
by a traditional parser. Ignoring some conflicts in opergt@cedence, Gel extracts a
good representation of the structure of Java programs, &S sSmalltalk programs,
and Corba IDL definitions. These examples demonstrate theessive power of Gel.
The goal is not to create actual parsers for these langulgies, use Gel as a standard
input format for future domain-specific languages. The fieigethat Gel can easily
parse embedded languages; for example, allowing a Jawéaliguage to include CSS-
like fragments directly in an expression, without switahto a different parser.

2 Introduction to Gel

This section introduces Gel by example. For reference, tmrimal summary of Gel
syntax in EBNF is given in Figure 1. A formal grammar is givenSection 3. Gel
expressions include familiar identifiers, numbers, sgindpich can be combined with
binary operators and grouped in the familiar way.

sl = x * 3 &% ¢ == "str" (&& (= sl (* x 3)) (== c "str"))
(sl = (x =* 3)) && (c == "str") (&& (=s1 (* x 3)9)0 (== ¢ "str")9)
{sl =[x * 3]} && [c == "str"] (&& (= sl (* x )N (== ¢ "str"))

The expression on the left is input text. The expression erritfht is a Lisp-like
presentation of the generic abstract syntax (GAST) thalteBom parsing the text on
the left using Gel. The grouping symbols are indicated in GA$ a superscript. This
convention emphasizes that parenthesis are often ignoitbe isemantic processing of



Precedence of expressions, highest first
. symbol, string, group, op
. quoted expression
. sequence/function application
. binary without spaces

e=s|t](e) [[e] [—o- 9
8
7
6
oc|co_|_ece_ 5. unary prefix and/or suffix
4
4
3
2

‘
e

e_e . sequence with space

e_e_e . binary with spaces

e, 2e .comma list

e: |e|:e | {e} . keyword forms and braces

e?; e 1. semicolon list
o =" *[.,7 %%, + , @#<>,1=,&|,:?$ | arbitrary operators
s:=[a-zA-Z0-9 ]t symbols
=" | " px" strings
r = \XXX ] \UXXXX| \[tnr"  \$] | char text encoding
p = $seryx | v string interpolation
g:=le] |(e) | {px} interpolation group

_:= white-space or begin/end of group/file

Fig. 1. Informal summary of Gel syntax with expression precedence

expressions. Remember that Gel only specifies syntax; thargés of these notations
are defined by the particular language encoded using Gel.

Gelinterprets any contiguous digits, letters, and unaeescasymbolsAs a result,
Gel accept8F5BA2, 10pt ,3_Dand10e23 as symbols. The validity of these symbols
is determined by the client program using Gel. Handling oferammplex floating point
formats is discussed in Section 2.4.

The set of operators is not fixed. Instead, operators ardroated like identifiers:
any combination of operator symbols is an operator.

{1.9 } > [e = »= st ] (> (. 19)0 (=%= ¢ "str)Y)

Several other languages, including Haskell[18], Scalgg?8 Smalltalk[15], allow
arbitrary infix operators.

The precedence of most operators is defined by their firstackaras defined in
Figure 2. There is a special case for assignment operat8fs\faich end in[=] and
do not start witl{!=<> ]. Throughout this papefabc] represents theetof characters
{a,b,c}.

The comma, semicolon, and grouping characters are cplliedtuationin Gel.
Punctuation symbols do not combine with other operatord, are always taken as
single characters. Also, white space is always ignoredratguunctuation, while it is
significant around other operators, as described below.

Multiple uses of the same operator are collected togetherin n-ary application,
so they have no associativity. Different operators with shee precedence level use
right-associativity. While the operators resemble thecpdence of many languages,
they do not match any perfectly. Although Gel can parse Jasla,csome operators are



precedence first character middle last description
13 [- ] any not[=] dots
12 1 any not[=] high
11 [* /%] any not[=] multiplicative
10 [+-1 any not[=] additive
9 [©% any not[=] middle
8 [<>] any any relational
7 ['=1] any any equality
6 [& any not[=] and
5 [l any not[=] or
4 7% ] any not[=] low
3 not[!=<>]iflen>1 any [= assignment
2 [, 1 — — comma list
1 [] — — semicolon list

whereany =[ * /[%+-@#!=<>&|:?$' ]

Fig. 2. Gel precedence table of operator patterns and precedemte le

given the wrong precedence; the goal of Gel is not to creatdtarhlava parser, but to
be able to parse Java-like languages generically. Gel duiesipport ternary operators,
butJava'ss ? a : b operator can be parsed as a combination of binary operators.

c?a:b+2 (?c(a(+b2)

Many programming languages use comma and semicolon tosespirists of iden-
tifiers and lists of statements.

{2 3,5 7, 13 } (,235713)¢

one; two; three (; one two three)

(@ 1) @+ 1 b+ 2 (a1’ ( (+al)(+b2))
a la+l b+2 G(al)((+ral)(+b2)

Comma has higher precedence than semicolon, and they beghldvaer prece-
dence than other operators, so the last two examples abeeaivalent. An empty
objecte is inserted when list items are missing, even at the end st:a li

a,,b (baeb)
{ax=b+1 } G(=a(+b1)) v

Operators are treated as symbols in situations where thaytmake sense as
binary (or unary) operations. Comma and semicolon are awaated as operators,
unless they are directly enclosed in a group.

ops = (*, + - /) (=ops (, *+-1))
others = [(,) + () + ($)] (= others (+,0 ;0 $0)0)



2.1 Unary Operators

Any operator (other than comma and semicolon) can be usegra$imor suffix unary
operator, on any expression:

X?, *p++, ldone, pat * (, [X]? *[p]++ ![done] [pat]*)

In the abstract notation on the right, unary operators hageeial notation. For any
operatorm, the prefix form iso[x] , the suffix form is[z]x and a combined prefix/suffix
formis o[x]x.

The combination of binary and unary operators allows Geétwesent the typical
notation for regular expressions which are also used in mmodersions of Extended
BNF and other notations for patterns.

(@ [ b7 | x  * (I (| [a)+ [b]+)]1? [x]*)

Although a period is often used to represent a wildcard patie Gel it works
better to use since it is a symbol, not an operator.

Gel does not support compound grouping symbols, althoughdhn be represented
by a prefix and/or suffix operator on a standard group.

@[ "a", "b" | Q@[(, "a" by
=x, y, z]= =[G xy 2)=
<{ #2342; @:option ** }> <[(; #[2342) @:[option]**)U]>

2.2 Sequences

Gel allowssequencesf expressions that are not separated by an operator. Ineflask
sequences of expressions denote function applicatiomhiltlk a sequence of identi-
fiers following an expression represent postfix unary opesatn both cases sequences
have higher precedence than binary operators.

Haskell:f a 3 + g 10 (+( fa3)( glo)
Smalltalk:obj size + item max (+ (_ obj size) (L item max))

In the abstract syntax on the right, a sequeance is represented by an underscore
operator:(- a b). It does not matter to Gel that the interpretation of theggasytic
forms is completely different in Haskell and in Smalltalkh&f matters is that they
follow common syntactic conventions.

Java and C do not have explicit sequence operators, butrseggiarise in declara-
tions, statements and in some expressions.

static int f (int x, bool y) ( staticint f (, (_ int x) (_ bool y))?)
if (x >vy) { return x; } (- (>xy)( (- return x) €)V)
(String) x == a [i] (== (_ String® x) (L a i)

Sequences are also used in grammars and regular expressions

p = id | '( p ) (:=p (id (- 'CpY)
(+ 1 )7 (0. o)+ (- 10+ )07 (07 9)+)



Sequences enable Gel to parse compound expressions wéttpgpecific infor-
mation about what the sequence should contain.

2.3 Spaces

The combination of arbitrary infix, prefix and suffix operatavith sequences of ex-
pressions is highly ambiguous. There would not be any redderway to parse the
following generic grammar without additional syntactioes:

ex=eope|opeleop|ee

The simple expressiaam + * b can be parsed five different ways (assumirand
* are separate operators). Gel is based on common convefdidosmatting expres-
sions, using white spaces, that distinguish these caseserBare traditionally written
to ignore white-space, but humans do not ignore it. Gel usetevgpace to distinguish
three of the interpretations of this expression (here, avatgnt parenthesized version
is provided):

a+ *b=a+ (*bh) (+a *[b])
at » b=(a+t) * b (* [a+ b)
at *b=(at) ( *b) (- [a]+ *[b])
Two other interpretations require parentheses in Gel:
(at) » b=((at) *) b - [[a+]* b)
a +(*b) =a (+( *(b) (- a +[*[b]])

There is one remaining way to include white-space in theesgion. It is not clear
how this expression should be parsed.

a+xb

One option is to make it an error. However, it is similar to asexoommon situation
with a freestanding operator before or after an expressiothis case, Gel interprets
the operator as if it were in parentheses:

* X + 3=(*) x + 3 (L *(+x3))
a[@ 1] $ =a[@) 1] (¥ (aC@1)ys9)
[+- /1 =[*) 6, C =) O] G+ (D)

a+x* b=a(+) *b *(Ca+)b)

The final example illustrates how the ambiguous expresdimveis covered by
this rule. The last operator is taken as a binary operataitevphnevious operators are
parsed as symbols. The motivation for this choice is to altbs¥ to act as a flexible
tokenizer. Gel does not reject expressions that might haweamingful interpretation.

Spacesre significant in most languages. For example, in Jawax does not
mean the same thing &#x . Fortran is the only language we know for which spaces
are truly optional [1].

The precedence rules for sequences and operators do netJai@ to be parsed
perfectly, even using the pretty-printing conventionsséme cases sequences should



have higher precedence than comma, and in other cases comould $iave higher
precedence:

fun(int x, int y) (- fun (, (- intx) (- inty))?)
int X, y; (. (- intx)y)
There is no way to parse botht x, int y andint x, y  correctly with

generic precedence for sequences and comma. Gel assigesisednigher precedence
than comma so that function headers, as in the first exanqoléd be parsed correctly.
This precedence ordering, however, does not correcthepghessecond example.

2.4 Spaced and Non-Spaced Operators

Spacing also affects the interpretation of binary opesdtoGel. The examples in Sec-
tion 2.2 depend on sequences of expressions having higgmrgence than binary oper-
ators. However, there are other situations in which binaerators should have higher
precedence. One example comes from ANTLR grammars, whielan®qual sign as
a high-precedence binary operator.

exp : a=term ( '+ b=term ) *

Does ‘a=b c” parse ag=a (_ b ¢)) oras(_ (= a b) ¢)? In this case the desired
parse is the latter, but this violates the rule that sequehaee higher precedence than
binary operators. Note that the convention in ANTLR is todiaw white-spacaround
the = operator, in contrast to the convention when formatiissignment operators in
Java.

The solution in Gel is to make operators without white spaaesthigher prece-
dence than operators surrounded by white-space, inclusBggences separated by
white-space. This is clearly a controversial decision. #tches conventions in lan-
guages as diverse as Haskell and ANTLR, as examples iltediedow. Using this rule,
the ANTLR expression parses correctly in Gel:

exp : a=term ('+' b=term) *
(exp (- (=aterm)? [(_ '+ (= b term)©)°]*))

The general rule is that a chunk of text with no spaces or paticn is always
parsed as a unit, as if it were parenthesized. These chuakbam combined by any
operators with spaces. The same precedence rules aredapplien-spaced and spaced
operators. Thus white-space acts as an implicit groupiregaipr, in effect a kind of
parentheses. This idea is represented explicitly in theratigepresentation using‘a
as a grouping operator.

Unary prefix and suffix operators can only occur at the begmpor end of a chunk,
and they always apply to the result of the entire chunk.

2 + -3.14°20 (*2 —[( (. 314) 20))
x=Ax | y=B? (| [ExA)* [(FyB)?)
&a+b+c* &[(+abc)*



The first example illustrates how the decimal point in floggoint numbers is in-
terpreted as a binary operator. Java breaks sequencesafapsharacters into tokens,
but Gel does not. For example, the Gel expressgion* ++y has the binary operator
-- *++ butin Javait parses §s--) *(++y) .In Gelit must be writterx-- * ++y.
Java is not completely consistent in this respect, becataidsito parsex+++++y .

A sequence without spaces, which has high precedence th@thexd operators, can
be used for casting, function application and array aceedava. Note that sequence
has higher precedence than dot in Gel, but lower precedankaya.

f(x, y)[n] (- £(xy)? ni)o
(Integer)a.b (- - Integer? a) b)©
(Integer) a.b (- Integer? (. a b)®)
0.m(a) (o (. ma")©

o.m (a) C ((om)© a’)

These examples illustrate how spaces affect the groupingefators. The punc-
tuation characters (parentheses, brackets, braces, camthaemicolon) are always
interpreted the same whether or not they have white-spacmdithem.

Gel can also parse typical email addresses and URLs, alffibdges not conform
to the full specification of either.

wcook@cs.utexas.edu (@ wcook (. cs utexas edu))©
http://google.com/search?query=Gel&n=1#m
(:// http (? (/ (. google com) search) (# (& (= query Gel) (= n 1)) m)))©

This example is only meant to be suggestive of the kinds @tiwots that Gel could
parse, in more restricted contexts. The actual email and Bi8hdards [11, 2] allow
many other characters that would be interpreted as opsriait@el and ruin the parse.

The Haskell period symbol uses a special case of the gendeafar spaces and
operators. Without spaces, the period between identifggnesents module paths, but
with spaces it is a binary operator, as seen in this one-imgamentation of the Unix
sort command:

(sequence . map putStrLn . List.sort . lines) =<< getContent S
Gel parses this Haskell expression correctly:

(=<< (. sequence (_ map putStrLn) (. List sort)© lines)? getContents))

2.5 Keywords and Curly Braces

A keyword is a special identifier often used to indicate aipaldr syntactic structure.

In most languages keywords are reserved words that cannustdakfor any other pur-

pose. One common use is to identify control flow structusekamplefor , while

if /else , switch /case, try /catch andreturn . Some keywords act as oper-
ators, for exampleew andinstanceof  in Java. The set of keywords differs from
language to language. Some languages, including Smalialkot have any keywords.



Many uses of keywords in Java can be parsed in Gel without pegific informa-
tion about keywords.

while (tb)  { b = next(); } (. while I[b]°(; (=b (L nexte%)0) )0)

p = new Point(3, 4) (=p (L new (_ Paint (, 3 4)9)°))

if (a>b) f(i); else return; G if(>ab)l (- fx0)) (- elsereturn))
if (e instanceof Point) m(e) (- if _ e instanceof Point)? (_ m e®)®)
for (i = 9;i > 1; i-) f(i) CforG(=Ei9) (i1 [i]——)° (- fio)0)

This is not a general solution, however. The statemmetirn x + y  parses
incorrectly agreturn x) + vy because sequence has higher precedence than +. A
similar situation happens in ML or Haskell, which do not reqyarentheses as in Java
and C, so control flow statements do not parse correctly in Gel

if a = b then 1 else 2 (= (. ifa) (L bthen 1 else 2))

These examples illustrate a common purpose for keywords labe or combine
expressions to form statements. When viewed from this pets@, keywords can be
understood as a kind of low-precedence operator. In Gely&sys are identified by
a prefix or suffix unary colon operator. Keywords enable mdrdava to be parsed
correctly with Gel:

return: x + vy; G [return]: (+ xVy)) €)
i a = b then: 1 else: 2 (. [if]: (= a b) [then]: 1 [else]: 2)

Keywords have precedence greater than semicolon but lasstimma. In the ab-
stract syntax (on the right) keywords are combined by a dsbhlred sequence opera-
tor, _. Gel generalizes the notion of a keyword to allow any expoessith a prefix or
suffix colon operator to be a keyword.

n-val: 23; (test): 5 G (. [(-nval): 23) (_ [test]: 5))

In addition, groups in curly braces are also treated as kaysvd his convention
mirrors usage in C/Java and CSS, where such groups are hadéocin sequences.
Compare these examples:

a+ b [ more] =at+(b[more]) (+ a (L b morel))
a+ b { more }=(ath) {more} (L (+ ab) moret)

As a result, Gel parses these forms correctly:
class: C implements: A, B { ..

(L [class]: C [implements]: (, A (L B ...9))

.info,h1 { color: #6CADDF }
(L (, .[info] h1) (_ [color]: #/6CADDF])%)

it 0 {.. }a=3 G Cb°...0) (=a3)e)

If these groups were not treated the same as keywords, thelg wparse as



implements: A, (B { ... }
and

it ()  { .. }a)=23)

The last example above illustrates a final special case: wtoemly group is inside
a semicolon operator, the group has an implicit semicolateddfter it. In C++ the
semicolon is required after a class declaration, but net aftnethod body. This special
case for curly groups affects some other languages badiyexample, many parser
generators use curly groups to enclose parser actionsegalthnot parse correctly in
Gel. The solution is to add a unary operator to the group, agin.. }, or to use a
different grouping operator.

Gel also cannot meaningfully parse languages that use kelg/for grouping, e.g.
begin /end orif...end if . Parsing these examples correctly would require spe-
cific knowledge of the structure of statements.

There is a special case for keywords or curl braces that arditact argument of a
binary operator. In this case they keyword is nested ingiddinary operator.

p = new: Point(3, 4) (=p (L [new]: (_ Point (, 3 4)%)9))
x = {a} + b * test: x L (=x(+af (*b (_ [test]: x)))))
b » k1. k2: 99 (* b (L [K1]: [k2]: 99))

The design of keywords is the most difficult part of Gel. Welexgd the option of
user-defined keywords in a document or block header, butdinigplicated the language
and interrupted the flow of content in a document. The colorkeras lightweight and
explicit.

2.6 Quoting

Quoting is useful to indicate that a syntactic form has aigh@reaning. In Lisp, any
expression can be quoted. Syntactically, this wraps theesson in a list beginning
with the symboljuote, which tells the Lisp interpreter to use the expression #sial
data value. Quotes are also useful in defining grammars. ddrepe used to distinguish
the syntax being defined from the meta-syntax of the gramfamition language. To
illustrate, first consider a conventional presentatiorhefsyntax of EBNF in EBNF:

grammar EBNF {

grammar = "grammar" id " {" rule (";" rule) LI S

rule = id ":=" pat ;

pat = id | str | pat pat | pat "|" pat | pat " *"
id n= letter+

str = quote any  * quote

This is a typical grammar for parsing text streams, in whightbkens of the lan-
guage being defined are enclosed in quotes. It assumes ¢hpatierndetter  and
quote are predefined. This grammar is highly ambiguous, requsiggificant work
to resolve these ambiguities. More work would be neededabwligh white-space.



Gel suggests another possibility where the operdftirs and" =" are parsed as
actual operators rather than strings. The operators tegbant of the language being
defined are marked with a backquote character:

id | ‘id | pat pat | pat|pat | pat’ *

This is a tree grammar [14] that recognizes Gel trees thaésept EBNF patterns.
The expressiopat'|pat  is written as a chunk (without spaces) so that it will have
higher precedence than the otlheoperators. In the example below it is parenthesized
instead. The full grammar is below:

grammar EBNF {

grammar ::= (‘grammar ID { rule = });

rule »= (ID ‘= pat);

pat = ID | ‘ID | pat pat | (pat ‘| pat) | pat *
¥

In Gel any expression or operator can be quoted. A quotectyrdras exactly the
same precedence as its unquoted version. That is, Gel edtethe same structure for
a quoted expression and an unquoted version.

(- grammar EBNF
(; (::= grammar (_ ‘grammar ID [rule]* ©)%)
(::= rule (::= ID pat)®)
(:=pat (| ID ‘ID ( pat pat) (‘| pat pat) [pat]*)))")

Gel quoting can also be combined with a prefix operator to @mgnt back-quote
substitution as in Lisp. This kind of structural substitutihas a counterpart in strings
as defined in the next section.

2.7 Strings and Interpolation

Many languages allow variables or expressions to be embldddigle a string, a tech-
nique calledstring interpolation For example;the $nth word" is equivalent to
"the " + nth + " word" . String interpolation is a short-hand for string con-
catenation. In Gel th& character can be followed by an optional symbol, then an op-
tional operator, and then any number of groups. The parsistlaed square bracket
groups contain Gel, while the curly bracket groups enckisags That is, the text
inside${... } isimplicitly quoted and can contain additional interpaat.

"$heading[2+n]  {Section $n } equation: $= {2+n}"
(+ (_ heading * (+ 2 n)! (“Section " n*){})* “ equation " (_ = “2+n")%)

Note that Gel's interpolations generalized both Perl notand also gX [20].
After substituting$ for \, Gel can extract meaningful structure from many (but ngt all
TeX documents. Gel could be used for a Latex-like formattingglzage, but the Gel
operator syntax could be used for math instead of text engaah in EX.



3 Gel Specification

Gel is defined by a concrete grammar, an abstract syntax, aatda rewrite rules to
handle keywords. The grammar of Gel is given in Figure 3. Astasidardz* means
zero or more repetitions af, x+ is one or more, angd? means zero or one copyofA

set of characters in brackdtsbc] represents exactly one character from the set. Char-
acter sets preceded by-aymbol represents exactly one character that is notin the ch
acter set, and sets superscripted by a numlvepresent repetitions. Ranges may also
appear in superscripts as- m. White-space tokens are not ignored, but are represented
explicitly in the grammar ap ]. Comments can only occur in conjunction with white-
space. The reference parser for Gel is defined using Ratg!d1Harsing Expression
Grammar system [13]. Syntactic predicates are needed irutbdor B, ; to identify
extra operators as defined at the end of Section 2.3. Morésiatal the Gel implemen-
tation are available for downloadlatp://www.utexas.edu/users/wcook/Gel

expression:= list quote?[; ] expression list
list ::= optional quot€], ] list | optional
optional::=[ 1?B3?[ 1?
B, ::= Bi+1 [1op:[] B; | Bi+1 fori e {37’L}
Bns1 = 0p[ 12 | (0P 1)* sequencq ] op )*
sequence= chunk([ ] chunk*
chunk::= op? C; op?
C, = Ci+1 op; C; | Ci+1 fori e {3TL}
Cpp1 = primary+
op; ;= qUOE?[$@7?|&!I=<>+-  */\%T#. ]+
wherei is the precedence as defined in Figure 2
op:=op|...|op,
quote::=[‘ 1+
primary ::= quote? (symbol| group| string1| string2)
symbol::=[a-zA-Z0-9 ]+
group::=[{] expressioij}] | exprGroup
stringl::=["] (escape —['1)*[']
string2::=["] (escape interpolate| —["] )* ["]
escape:= [\[U[0-9A-F 1* [ [\I[0-7 1"~ | [\] -
interpolate::= [$] symboP op? (string3| exprGroup*
string3::=[{] (escapd interpolate| —[}] -)* [}
exprGroup::=[(] expression) ] | [ ] expressiof] ]
ignore::=[/ ][/ ] (-newling* newline| [/ ][] any* [*][/]

Fig. 3. Gel grammar, where is the number of operator precedence levels
The first three productions represent lists, separatedrbiceéon (0p,;) and comma

(ops), of optional items. The nontermindss throughB,, represent binary expressions
with op; surrounded by spaces. Th¢ terminal represents any number of white-space



*xxT)x)= (T x) (xx(*x7)= (xx )
Ckx)=(CEk2x) Czk)=(C2xk)
(cCzZv)v)= (L T (cvyva))|(cvr (L v2X)= (L (0w v2)T)
- C2) € 22))= (1 22)
CCD2)=(z2) Cz(Ca)=(z)
G2 (C T2 23) Ta) =( 71 (C T2 2V) (L 23) 74)

x,0€o0p,o &[] xisany Gelk € { [z]:, :[a], 2% },v & {x, @, 2B, (L T)}

Fig. 4. Keyword rewrite rules

characters, including single spaces, tabs, return feetis@mlines. These nonterminals
have lower precedence thaequencewhich is a list of chunks that do not contain
spaces. Th8,,; rule allows operators to be part of a sequence, when theyot&en
interpreted as binary operators. The nontermi@lsre analogous t®; except the
operators do not have spaces. The ; rule allows sequences of primaries that are not
separated by spaces.

Compound operators are composed of any sequence of opeha@cters. The
precedence order of operators is given by the table in FiguF®r most operators the
precedence is given by the precedence of the first chardttere is a special case for
assignment operatorsvhich end with equdl] and do not begin witfl=<> 1.

A primary is a symbol, string, or group. Tls&ringlandstring2rules define strings
with single and double quotes, respectively. Both striflgsvalava-style escaping with
backslash. Thg$] character is an interpolation character in double-quotieags. It
allows interpolation of Gel expressions into a string. Thgke back-quote character
(* ) is used for quoting. Any operator or primary may be quoted.

x € Gel = symbol| “str” | (kx1...x0) | %X | x| *[X* | ‘@ |29 | €
symbole [a-zA-Z0-9 ]+
x €], | [$@7)&!I=<>+-  */\UWTH ]| - | -
G € Group= () [{} [0

where_ means sequence,means keyword sequengg,means chunk

Fig. 5. Gel abstract syntax.

The behavior of keywords in Gel is not implemented by the gratsut is handled
by the rewrite rules in Figure 4 during construction of thetadict syntax tree. The first
rule combines operators to eliminate associativity. Keydsan a sequence are moved
outside of other operators. The last rule adds an implicitiselon after a group. The
abstract syntax of Gel is defined in Figure 5.



4 Evaluation

We evaluate Gel by testing how well it can extract the stmectrom existing languages
that are defined by a custom grammar. It is not enough to detemvhether Gel accepts
a given input, because Gel accepts almost any input witmbathgrouping operators.
The key question is whether Gel can extract meaningful stradrom typical doc-
uments that follow standard formatting conventions. Thesés were instrumental in
designing Gel.

Let S be a source file of a languade and letL(S) be the AST ofS created by the
L parser. The same source fifecan be parsed with Gel to produce a GA&E[(.9).

The goal is to determine &el(.S) has the same structure A§S).

However, thel.(S) AST cannot be compared to the GAST because each uses a dif-
ferent abstract syntax. To overcome this problem, we apmgydea that the structure of
an abstract tree can be made explicit in concrete syntax dip@garentheses at every
level of the tree. The implementation of this idea starthwitprinterP for language
L having the property thak(P(T)) = T for any abstract tre& in L. We then con-
vert P into aparenthesizing printei®’ that prints a tred” while adding parentheses
around every abstract node as it is printed. The ouff¢’) may not be a valid in-
stance of languagg, but it can be parsed with Gel. The extra parentheses fortmGe
create a parse three that mirrors the structuré (). Gel has captured the structure
of L if Gel(P'(L(S))) = Gel(S) ignoring parentheses. As an example, consider this
Smalltalk fragment and its parenthesized versions:

X min to: args size * 2 do: aBlock
(. (. x min) [to]: (* (_ args size) 2) [do]: aBlock)
((x) min) to: (((args) size) * (2)) do: (aBlock)

(L (L X9 min)? [to]: (* (_ args" size)? 20)0 [do]: aBlock?)

Not all languages follow Gel’s syntactic standards. Althlodhere can be signif-
icant differences, sometimes the differences are smallefample comment mark-
ers and operator choices may conflict. Smalltalk separaéésnsents with a period,
which is a high-precedence binary operator in Gel. If Sraldltised a semicolon, as
in Java, Gel would parse it more accurately. We handle mipatastic issues by con-
verting symbols before parsing with Gel. This change presethe key characteris-
tics of Smalltalk; it just uses a different symbol. A fixup risformationT” for lan-
guagel is applied to the files before they are parsed by Gel. Thessframations are
simple character or reserved word substitutions. Withsfiegmation, the comparison
is Gel(T'(P'(L(S)))) = Gel(T(S)). We have successfully applied this technique to
Smalltalk, Java, CSS and CORBA IDL. For a small set of repriedive sample docu-
ments, Gel extracts the exact same structure as the custser,da all but a few cases
as mentioned below. There may be other syntactic mismatbhéslid not show up in
our test documents.

Java Gel operators and precedence are based on Java, but Gelaldes/a exactly
the same operator precedences, so it will not parse JaviaglsedVe tested Gel against
Java documents whose operators align with Gel precedernber @sues in java are



related to sequences, where two syntactic structures acegbhext to each other with
just a space between them.

— Declarations of multiple variables do not parse correetbytescribed at the end of
Section 2.4.

— Java keywords do not parse correctly unless they are mask&ehbkeywords as
mentioned in Section 2.5.

— The grammar we used for Java pareas() as(_ (. o m) "), while Gel parses it
as(. o (L m ¢%)). Itis debatable which of these is correct.

— Generics in Java are declared usingttend> characters, as itack<String>
We translated these to [...] before parsing.

— Typical white-space conventions must be followed: usingevhpace after a colon,
and around binary operators. Typical white-space meansritja x ~ must not
be writtenint [[x  although this is legal in Java, it violates coding convamgio
Similarly, p = *p2 must not be writterp =+ p2. We found that the reformat
command in Eclipse corrects most spacing issues in Javardous so that they
parse correctly with Gel.

Smalltalk The Gel syntax closely resembles and generalizes Smadjtatkmar. Key-
words in Smalltalk are identified by a colon suffix. Arbitrdsiypary operators use infix
notation, and have higher precedence than keywords. Unaesgages are represented
by a sequence of symbols separated by spaces, with higleadaece than binary op-
erators. Parentheses, braces, and brackets are usedupirgro

There are problems with parsing using Gel:

— Statements are terminated or separated by periods. Wéatteththese semicolons
before parsing with Gel.

— Cascaded message sends are separated by semicolons. &b@se lmambiguous
if period is replaced by semicolon. We insert a special “fmes” token after the
semicolon to make reuse of the previous message targetiéxpliese message
sends must also be enclosed in parentheses if the target @bjeturned.

— Binary operators in Smalltalk all have the same precedence.

— The conventional storage format for Smalltalk programs ttethod change list)
does not have grouping constructs that can be parsed by Gel.

— Typical white-space conventions must be followed: usingevlpace after a colon,
and around binary operators.

CSS Most of CSS follows a typical structure with semi-colons dmdces. CSS also
uses keywords tagged with colon. It uses a variety of prefikiafix operators. How-
ever, there are problems with parsing CSS with Gel:

— ldentifiers that include hyphens, elmackground-color , parse as chunks in
Gel. This works reasonably well, although Gel is breakingngve tokens than are
necessary.

— Typical white-space conventions must be followed: usingevlpace after a colon,
and not separating prefix operators from their.



— Pseudo-classes look like binary colon operators, of thm fimk:visible
According to one CSS grammar they should be parsdihls(:visible)
but Gel parses them &s link visible) . This does not seem like a major
issue.

— The use of numbers with a dimension, ad@pt , is handled in Gel as an identifier,
not as a sequence of numkEs andpt . It is simple to process these tokens to
extract the dimension.

Python Although Python does not adhere to many of the conventiosudsed, Gel
is able to parse Python programs. The following problemstinesddressed to parse
Python correctly:

— In Gel, logical blocks of code can only be created using theettypes of grouping
operators. However, Python uses indentation to specifgébblocks of code. This
is currently handled by a pre-processor, which insérts } groups according to
indentation rules of Python. This preprocess is a lexiealdformation.

— Many statement constructs in Python use the colon charadeinif x is
True: . These can be discarded once grouping operators are craataad the
logical block.

— Python uses newline to separate statements. However,wloede parse as white-
space tokens in Gel, so semicolons must be inserted.

ANTLR and other parser generatoid/e have used Gel to parse grammar specifica-
tion languages, including ANTLR [24] and Rats! [17]. Thearduages usg.. } as
parser actions within a rule. A prefix or suffix must be addegrevent actions from
terminating the expression (according to the keyword nul8ection 2.5). In addition,
Rats! use$A-Z] as a character class, in effect quoting an arbitrary set afachers,

as in[( {] . These must quoted as strings, or converted to the form us@dNiLR:
'‘ALZ

5 Related Work

Gel is related to other generic and extensible languagelsida Lisp, XML and JSON.
Gel can parse Lisp-like data [22], if single-quote is cotweto backqoute, comma$o
comments td/ . Common lisp atomsval-list * are converted to Gel chunk(-
val list)]* with prefix/suffix* operators, which means that they have been over-analyzed
but are still recognizable. Any sequence of non-punctaatitaracters without spaces
can be parsed as Gel. Operators are the main problem, sigpelways treats them
as ordinary symbols, but Gel may parse them as binary operatbus(a + b) is
incorrectly parsed as a b) in Gel. To express something like the correct Lisp structure
(- a + b) the operator must be changed, for example enclosed in a goupt} b) .
XML [9] cannot be parsed by Gel at all. It usesand> as grouping characters,
and tags as grouping for large-scale units. To parse XMé dikuctures, a more C-like
notation is needed.

<tag attr="value” ...>...</tag> = tag: attr="value” ... { ... }
text= "text



Alternatively, Gel could simulate the text-oriented natof XML and its history in
HTML by using an interpolation-based translation:

<tag attr="value” ...>...</tag> = $tag(attr="value” ...){ ... }

The JavaScript Object Notation (JSON) is a subset of Jai@3bat is frequently
used as a generic data encoding language [12]. CorrechgarsfiJSON depends on
consistent white-space conventions. It works well if cakineated as a binary operator.

"val" : 3, "name" : "Test" (, (: “val” 3) (: “name” “Test"))
"val": 3, "name": "Test" (- [*val": (, 3 (L ["name”]: “Test")))
"val": 3; "name": "Test" G C ["val): 3) (L ["name”): “Test"))

The keyword notation in the second example groups the vaudsvardly: the
second keyword is within the body of the first keyword becafghe comma. If JISON
used semi-colons then Gel could parse the keyword form metrealy, as in the third
example.

Another approach to extensible languages involves larggiafpose syntax can be
extended with additional rules. This approach has the ddgarthat specific syntax
is recognized and checked during parsing. Brabrand and &tttvach [5] provide a
detailed summary and comparison of different systems fotasyextension [10, 27, 6,
8, 16]. It is difficult to perform a direct comparison betwebe extensible syntax and
the idea of generic extensible languages, because the twoaghes are so different
in their fundamental assumptions. Each clearly has drak#baed advantages that can
only be evaluated in the context of a larger system in whiahaa specific languages
are defined and manipulated. Examples of such systems exchigwig> [4,5] and
Stratego [28]. Lisp and Scheme macros provide a similarfiténghe context of the
generic syntax of Lisp S-Expressions. Gel does not yet gaatammplete system for
language definition and syntactic extension, so it is diffitucompare its effectiveness
at this level. Given that Gel is essentially a syntactic aatriof Lisp S-Expressions,
the techniques developed for Lisp/Scheme should work féraGavell. This kind of
validation will not be possible until different researchexperiment with using Gel in
their own systems.

6 Conclusions

Gel is designed to be used as a front-end for domain-speaifgulages. To define a
language within Gel, appropriate operators and syntagtin$ are chosen, and a struc-
ture grammar is defined. The output tree from Gel must therabseg to verify that it
matches the DSL structure. This process is very much likielatithg against an XML
Schema [26, 3] but is beyond the scope of this paper. Gel al&asgy syntactic compo-
sition or embedding of different languages within each pthenay also be possible to
define a generic pretty-printer for Gel.

One argument against Gel may be that its use of white spadessnitaoo fragile
for casual use. However, most programming languages aséigerio adding new arbi-
trary spaces, or completely removing spaces. Gel acceptly/revery input document
without error, as long as grouping symbols are balanced nMied for a specific DSL,



error messages will come from later phases, when the outgiigtids validated against
the DSL structure.

During the design of Gel numerous alternatives were trieglh&ve worked hard to
eliminate special cases. Currently the only special casefoa assignment operators
and curly braces. These special cases are relatively sfimplesers and provide useful
options to language designers when designing a new not&tiemave resisted allow-
ing the grammar to be customized, for example by allowingmadl definition of a set
of keywords. We plan to gather feedback on Gel for a shorbplesf time before fixing
the language specification.

References

1. J.W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. ElerR. A. Hughes, L. B. Mitchell,
R. A. Nelson, R. Nutt, D. Sayre, B. P. Sheridan, H. Stern, aller. Fortran Automated
Coding System For the IBM 704nternational Business Machines Corporation, New York,
1956.

2. T. Berners-Lee, L. Masinter, and M. McCabhill. Uniform Reasce Locators (URL). RFC
1738, Internet Engineering Task Force, Dec. 198#p://ds.internic.net/rfc/
rfc1738.txt ; accessed August 23, 1997.

3. P. V. Biron and A. Malhotra. XML Schema part 2: Datatype$ie World Wide Web Con-
sortiumhttp://www.w3.org/TR/xmlschema-2/ , May 2001.

4. C.Brabrand, A. Mgller, and M. |. Schwartzbach. Kaeigwig> project. ACM Trans. Interet
Technol, 2(2):79-114, 2002.

5. C. Brabrand and M. |. Schwartzbach. Growing languagds métamorphic syntax macros.
In In Proceedings of Workshop on Partial Evaluation and SemafBased Program Manip-
ulation, PEPM 2002. ACMpages 31-40. ACM Press, 2002.

6. C.Brabrand, M. |. Schwartzbach, and M. Vanggaard. Thefratt system: Extensible pars-
ing and transformation. lim Proc. 3rd ACM SIGPLAN Workshop on Language Descriptions,
Tools and Applications, LDTA '02003.

7. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. VisSénatego/xt 0.17. a language and
toolset for program transformatioSci. Comput. Program72(1-2):52—-70, 2008.

8. M. Bravenboer and E. Visser. Designing syntax embeddingsassimilations for language
libraries. InModels in Software Engineering: Workshops and Symposiaci2BILS 2007,
Nashville, TN, USA, September 30 - October 5, 2007, ReppndfRevised Selected Papers
pages 34-46, Berlin, Heidelberg, 2008. Springer-Verlag.

9. T. Bray, J. Paoli, C. M. Sperberg-McQueen, Eve, and F.&@ugeditorsExtensible Markup
Language (XML) 1.0W3C Recommendation. W3C, fourth edition, August 2003.

10. L. Cardelli, F. Matthes, and M. Abadi. Extensible synteth lexical scoping. Technical
report, Research Report 121, Digital SRC, 1994.

11. D. H. Crocker. Standard for the Format of ARPA Internet Text Messagesiversity of
Delaware, Department of Electrical Engineering, Newark, 19711, August 1982www.
fags.org/rtcs/rfc822.html .

12. D. Crockford. Rfc 4627. the application/json media tfgrgavascript object notation (json).
online, http://www.json.org/, 2006.

13. B. Ford. Parsing expression grammars: A recognitigetbayntactic foundation. 18ym-
posium on Principles of Programming Languagpages 111-122, 2004.

14. A. V. Gladky and I. A. Mel€uk. Tree grammars (&grammars). IrProceedings of the
1969 Conference on Computational linguistipgges 1-7, Morristown, NJ, USA, 1969.
Association for Computational Linguistics.



15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

A. Goldberg and D. Robsogmalltalk-80: the Language and Its Implementatigadison-
Wesley, 1983.

R. Grimm. Practical packrat parsingew York University Technical Report, Dept. of Com-
puter Science, TR2004-852004.

R. Grimm. Better extensibility through modular syntdr.PLDI '06: Proceedings of the
2006 ACM SIGPLAN conference on Programming language demighimplementation
pages 38-51, New York, NY, USA, 2006. ACM.

P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbaifrasel, M. M. Guzman, K. Ham-
mond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. &artand J. Peterson. Report
on the programming language Haskell: a non-strict, punehgfional language version 1.2.
SIGPLAN Not.27(5):1-164, 1992.

S. C. Johnson. Yacc: Yet another compiler compilelUNiX Programmer’'s Manualvol-
ume 2, pages 353-387. Holt, Rinehart, and Winston, New Yoy USA, 1979.

D. E. Knuth.The EXbook Addison-Wesley, 1984.

S. KrishnamurthiProgramming Languages: Application and Interpretati@d06.
http://www.cs.brown.edu/ sk/Publications/Books/Prog Langs/ .

J. McCarthy. Recursive functions of symbolic exprass@nd their computation by machine,
part i. Commun. ACM3(4):184-195, April 1960.

M. Odersky, L. Spoon, and B. VennerBrogramming in Scala: A comprehensive step-by-
step guide Artima Inc, August 2008.

T. Parr and R. Quong. ANTLR: A Predicated-LL (k) Parsen&ator.Software - Practice
and Experience25(7):789-810, 1995.

T. Parr and R. Quong. ANTLR: A Predicated-LL(k) parsenggator. Journal of Software
Practice and Experiencg25(7):789—-810, July 1995.

H. S. Thompson, D. Beech, M. Maloney, and N. MendelsohiL chema part 1: Struc-
tures. The World Wide Web Consortiuhttp://www.w3.org/TR/xmlschema-2/ ,
May 2001.

E. Visser. Meta-programming with concrete object synta Generative Programming and
Component Engineering (GPCEQ2ages 299-315. Springer-Verlag, 2002.

E. Visser. Program transformation with stratego/xtteRustrategies, tools, and systems in
stratego/xt 0.9. In C. Lengauer, D. S. Batory, C. Consel,Mn@dersky, editorsDomain-
Specific Program Generatigvolume 3016 ofLecture Notes in Computer Sciengages
216-238. Springer, 2003.



