
Generic Operations and Partial Evaluation using Models

Benjamin Delaware, William R. Cook
The University of Texas at Austin
{bendy,wcook}@cs.utexas.edu

Abstract
Model-driven software development is a promising new application
area for partial evaluation. In this papers, we develop an approach
to generic programming using models instead of types. The work is
done in the context of Pummel, a first-order subset of Scheme with
objects and monoid comprehensions. We define generic operations
for validation, reading, and equality of values described by models.
These generic operations are specialized to particular models by an
online partial evaluator. The specializer can choose to residualize
or execute imperative operations on objects, through a conditional
binding time attribute. Afuture construct allows dynamic values
to be manipulated statically, if the dynamic values are functionally
dependent on static state.

1. Introduction
A model is a description of the significant properties of something
of interest. Examples of models include data models (UML Class
diagrams [30], Entity-Relationship diagrams [4]), finite state ma-
chines (Statecharts [10]), grammars, regular expressions, security
models, user interface models (wire-frames, XUL [2]). Partial eval-
uation has been applied to some of these domains in the past, for
example, to create an efficient parser given a naive grammar in-
terpreter [32] or string matcher [13]. However, these efforts have
been relatively disjoint, not part of a coordinated effort to create a
programming model based on partial evaluation.

Generic operations can be parameterized by models, similarto
the way that polytypic programs are parameterized by types.For
example, a read operation takes a model together with a data stream
as input and produces an appropriate instance of the model. Awrite
operation takes a model with an instance and produces a output
encoding of the instance. These generic operations can be viewed
as alternative interpretation of the model. Other generic operations,
including comparison, differencing, validating, and composition,
can be defined analogously. Partial evaluation works by taking the
model as a static input.

Pummel is a first-order subset of imperative Scheme [15] with
objects and monoid comprehensions [7]. First-class functions are
avoided in order to simplify partial evaluation, although they ap-
pear in restricted form in the definition of objects. An object is a
message processing function, allowing some degree of higher-order
programming. To replace map and fold, which are not possible
without first-class functions, Pummel introduces a form of monoid
comprehension, which can map, filter, and combine elements of a
list. Unlike map and fold, Pummel’s monoid comprehensions are
not strict. This means that they can search for the first item in a list
that satisfies a condition, without evaluating the entire list.

Pummel uses a straightforward online partial evaluator. Previ-
ous work has shown that it is important to control partial eval-
uation [23]: ideally it should generate efficient code, but not too
much code. Tangled binding times can cause partial evaluation to
fail, so that the output program is a copy of the input program

and the specialization argument. Specialization on potentially in-
finite structures can generate too much code, or diverge. Pummel
attempts to address these problems by prohibiting models from be-
ing residualized, and only specializing on finite models. The first
case is enforced by prohibiting residualization of the objects that
are used to represent models. If this happens, an error is generated,
and the programmer must rewrite the interpreter. A common ex-
ample is indexing a static mapM by a dynamic valueD, as inlet
v=M.lookup(D) in ..., to produce a static valuev. Rewriting this
case as a loop is a standard binding time improvement:for ((k,v)
in M) if (k=D)

Several extensions are introduced to facilitate partial evaluation
of generic operations in Pummel. Pummel allows imperative effects
to be executed as specialization time or in residual code, depending
on whether a given input is static or dynamic. Afuturemechanism
is introduced to allow static structures to refer to dynamicvalues, if
the dynamic values are functionally dependent on static structure.

2. The Pummel Language
The Pummel system is built using an imperative subset of Scheme
with objects. Scheme was chosen for its natural identification of
programs and data, which facilitates partial evaluation. First-class
functions are used only to represent objects. A specialmessage-
sendoperator, written(: object msg args...) is used to send a
message to an object, by applying the object closure to the mes-
sage and arguments. While this makes the language appear to have
first-class function values, the partial evaluator does notspecialize
methods based on their calls, so true higher-order partial evaluation
is not supported. While there is no fundamental reason for limit-
ing first-class functions, their omission does simplify partial evalu-
ation.1 This choice also allows us to focus on the expressive power
of models as first-class values.

The abstract syntax of the Pummel language is given in Fig-
ure 1. In this paper we consider programs that manipulate objects,
but do not include syntax to create objects; they are assumedto be
created outside the language. Primitive operators are distinguished
from calls to defined functions. Primitive operators may be non-
strict; the only non-strict operator used here isFIRST, a binary
function that returns its first argument. Some operators maybe im-
perative, and all message sends are assumed to have side-effects.

While not covered here, Pummel also includes a facility for
creating objects, using a standard encoding as message-processing
functions [1]. In the current implementation, objects are always
dynamic, so their definition is simply passed through to residual
code by the partial evaluator.

2.1 Monoid Comprehensions

Monoid comprehensions are a first-order notation for translating,
filtering, and combining a list of items [7]. Translation, ormapping,

1 A similar decision, but for somewhat different reasons, ledthe ACL2 [14]
program verification system to use a first-order subset of Lisp.

p ∈ Prog = d̄

d ∈ Def = definef(x̄) e

e ∈ Expr = v | x | op(ē) | f(ē)

| if e e e | let x = e in e

| object (xmsg xargs) e

| for x e op e e | skip

op ∈ Op = FIRST | prim

v ∈ Value = Integer| String | Object...

x, f ∈ Identifier

Figure 1. Syntax

is achieved by evaluating an expression for each element of the list.
Filtering is achieved by allowing the translation expression to be
conditional; if it returnsskip the element is ignored. The results
can be combined by applying a binary operator to each translated
element and the result of the rest of the list. A base value is used as
the result for the empty list. The concrete syntax for this operation
is:

(for var list op element base)
The effect is to callop(element, rest) to combine the results of

evaluatingelement with var bound to each item inlist, with the
results from therest of the list. If element returnsskip then that
item of the list is ignored. Finally, at the end of the listrest = base.
If op is non-strict in its second argument, then the rest of the list
may not be computed.

Monoid comprehensions are similar to list comprehensions
[36]. but allow replacement of the normal cons/nil operations for
constructing the result list.

For example, the following expressions perform simple map-
ping and reduction of a list:

(for x ’(1 2 3) cons (* x x) ’()) ⇒ (1 4 9)
(for x ’(1 2 3) + x 0) ⇒ 6
It is sometimes convenient to omit the base value, and use a

default value appropriate to each operator. Forcons, the default
base value is the empty list. For+, the default value is0, and for
begin it is void.

(for x ’(1 2 3) begin (print x)) ⇒ prints 1, 2, 3
(for x ’(1 2 3) cons (if (odd? x) x (- x))) ⇒ (1 -2 3)

An explicit base value is useful in some cases. For example, to
prepend items to a list:

(for x ’(1 2 3) cons (- x) ’(4 5)) ⇒ (-1 -2 -3 4 5)
The operator is required to be the name of a binary operator,

not an explicit lambda expression. Common operators arecons,
+, and, or, begin, and first. The operatorfirst is a non-strict
function that returns its first argument:first(a, b) = a. If a more
complex combination function is needed, the comprehensionmust
be rewritten as an explicit recursive function.

To filter the list, the element expression can return the special
valueskip, indicating that this value should not be included in the
output:

(for x ’(1 2 3) cons (if (odd? x) x skip)) ⇒ (1 3)
We sometimes omit theskip expression from the else clause of

an if expression. Finally, monoid comprehensions support finding
the first item in a list that meets a condition.

(for x ’(1 2 3) first (if (even? x) x skip) (error)) ⇒ 2
This is used to implement a common form of “the trick” for

binding type improvement before partial evaluation: lookup of a
dynamic value in a static structure is rewritten as a loop over the
static items with a test against the dynamic value. Becausefirst is

E [[v]] = v

E [[FIRST(e1, e2)]] = e1

E [[op(e1, . . . , en)]] = apply(op,E [[e1]], . . . , E [[en]])

E [[if e1 e2 e3]] = if E [[e1]] thenE [[e2]] elseE [[e3]]

E [[let x = e1 in e2]] = E [[[x 7→ E [[e1]]]e2]]

E [[for x e1 op e2 e3]] =
{

E [[e3]] if E [[e1]] = NIL
E〈op, [x 7→ vh]e2, er〉 if E [[e1]] = CONS(vh, vt)
where er = [[for x vt op e2 e3]]

E [[f(e1, . . . , en)]] = E [[[xi 7→ E [[ei]]]e]]
where [[define f(x1, . . . , xn) e]] ∈ P

〈op,if e1 e2 e3, er〉 = [[if e1 〈op, e2, er〉 〈op, e3, er〉]]

〈op, let x = e1 in e2, er〉 = [[let x′ = e1 in 〈op, [x′/x]e2, er〉]]

〈op, skip, er〉 = er

〈op, e, er〉 = [[op(e, er)]]

Figure 2. Semantics, with monoid comprehensions

non-strict, the(error) expression is only evaluated if no even item
is found.

Some of the axioms that can be used for transformations:

(for v1 (for v2 e cons b2 a2) op b1 a1)
⇒ (for v2 e op 〈λ(v1, s).b1, b2, skip〉 (for v1 a2 op b1 a1))

(for v (append l1 l2) op b a)
⇒ (for v l1 op b (for v l2 op b a))

One way to understand these monoid comprehensions is via
translation to Scheme [20]. The primary difficulty is the interpreta-
tion of skip.

(define-syntax for
(syntax-rules ()

((for var items op elem base)
(let loop ((scan items))

(if (null? scan)
base
(let ((var (car scan)))

(filter op elem (loop (cdr scan)))))))))

(define-syntax filter
(syntax-rules (if let skip)

((filter op skip rest)
rest)

((filter op (if a b c) rest)
(if a (filter op b rest) (filter op c rest)))

((filter op (let bindings body) rest)
(let bindings (filter op body rest)))

((filter op elem rest)
(op elem rest))))

One thing that cannot be done with the monoid comprehensions
defined here is to iterate over two lists, either in pairs or asnested
iterations. It would certainly be possible to extend the syntax to
multiple parallel variable bindings, in the style oflet.

2.2 Formal Semantics

The formal semantics of the Pummel language are given in Fig-
ure 2. For simplicity, the semantics uses explicit substitution of

variables rather than environment passing. Most of the semantics
is standard, except the treatment offor is complicated by the need
to handle filtering withskip. The form〈op, e, er〉 is a filtered ver-
sion ofop(e, er), wheree is the current element ander is the result
from the rest of the list. It translatese into a filter by replacing
occurrences ofskip with er, thereby ignoring the elemente. The
programP is assumed to be globally defined.

The semantics does not include a treatment of imperative up-
dates. While detailing the use of the store would certainly make the
semantics more precise, it would not afford much intuition about
the relationship between the evaluator and the partial evaluator.

2.3 Partial Evaluation

A partial evaluator for Pummel is sketched in Figure 3. This presen-
tation follows the Scheme implementation closely, with a few dif-
ferences. One difference is that the Scheme implementationuses
an environment. The actual implementation also includes a post-
processing step that cleans up the residual code, and performs lo-
calized optimizations. The Scheme implementation of the partial
evaluator, including all optimizations and a prototype deforestation
technique (not described here) is 800 lines of Scheme code.

Most of the partial evaluator is derived from the evaluation
semantics by a straightforward transformation. The evaluator maps
expressions to values:

E : Expr→ Value

The partial evaluator maps expressions to expressions:

P : Expr→ Expr where Value⊂ Expr

In each place where the evaluatorevf calls itself recursively, the
partial evaluator tests if the result is a staticValue, in which case it
performs the same action as the evaluator. Otherwise it constructs
an expression containing simplified sub-expressions. For operators,
the call is evaluated only if all its arguments are static values.

The most complex case is a call to a function that is defined
in the program, although this is completely standard. Two environ-
ments are created:σS contains the formal argument names and val-
ues for all static arguments, whileσD contains the formal argument
names and values for all dynamic arguments. ThusσS andσD are
a partition of the actual arguments, tagged by their corresponding
formal argument names. A new function is defined, whose name
〈f, σS〉 is a combination of the function name and the static ar-
guments. The arguments to this function are the dynamic formal
variablesσv

D . The body of the new function is the body of the orig-
inal function with the static bindings applied:σS(e). Finally, the
original call is replaced by a call to the new function, passing the re-
maining dynamic arguments:〈f, σS〉(σ

e
D). The notationσe

D means
the expression part (the range) of the environment. If a specialized
function is called again, then the existing definition is used.

As above, the treatment of mutable state is not explicit in the
partial evaluator. Handling of imperative state during partial eval-
uation of call-by-value functional languages has previously been
studied [3]. As a result, this presentation corresponds closely to
the actual Scheme code, which relies upon the underlying Scheme
store for imperative effects. Care must be taken to specialize proce-
dures in the order in which they are called, to ensure that dynamic
effects are executed in the correct order. Currently the only spe-
cial treatment of imperative effects is in ensuring that imperative
code is not duplicated. It is possible to create invalid specialization
by modifying static objects during specialization. This follows the
approach of creating and experimenting with a practical system,
rather than trying to solve all possible problems before they arise
in practice.

The partial evaluator is invoked by making a callf(e1, ...en)
where ei is either a value or a variable. In the examples given

P [[v]] = v

P [[x]] = x

P [[FIRST(e1, e2)]] = e1

P [[op(e1, . . . , en)]] =
{

apply(op, v1, . . . , vn) if vi = P [[ei]]
[[op(P [[e1]], . . . ,P [[en]])]] otherwise

P [[if e1 e2 e3]] =
{

if v thenP [[e2]] elseP [[e3]] v = P [[e1]]
[[if P [[e1]] thenP [[e2]] elseP [[e3]]]] otherwise

P [[let x = e1 in e2]] =
{

P [[[x 7→ v]e2]] v = P [[e1]]
[[let x = P [[e1]] in P [[e2]]]] otherwise

P [[for x e1 op e2 e3]] =

P [[e2]] if P [[e1]] = NIL
P〈op, [x 7→ eh]e2, er〉 if P [[e1]] = CONS(eh, et)

where er = [[for x et op e2 e3]]
[[for x P [[e1]] op P [[e2]] P [[e3]]]] otherwise

P [[f(e1, . . . , en)]] = [[〈f, σS〉(σ
e
D)]]

where [[define f(x1, . . . , xn) e]] ∈ P
σS = [(xi, vi) | i ∈ 1..n, vi = P [[ei]] ∈ V alue]
σD = [(xi, e

′

i) | i ∈ 1..n, e′i = P [[ei]] 6∈ V alue]
add [[define 〈f, σS〉(σ

x
D) e′]] where e′ = P [[σS(e)]]

Figure 3. Basic online partial evaluator

below, the static values are objects. It is an error for the residual
code to include an object value; while values of primitive type can
be lifted in a program expression, objects cannot. This requirement
ensures that the static object input is fully evaluated by the partial
evaluation step. Only primitive values derived from staticobjects
can be included in the residual program. Since message send is an
operator, this requirement ensures that any message sent toa static
object must have only static arguments.

One of the past goals of partial evaluation research was to create
self-applicative partial evaluators. A self-applicativepartial evalua-
tor is not just a partial evaluator that can be self-applied,but one for
which self-application has some benefit. The first problem with this
evaluator is that it performs explicit substitutions on theprogram;
the result of a substitution is not known, so it cannot be special-
ized. It is easy to convert the partial evaluator to use environments
instead of substitution. Online evaluators have a more fundamental
problem: at every stepP tests if the result of evaluating an ex-
pression is static or dynamic. Because the outcome of this decision
is unknown, both branches must be included in the residual code.
The net effect is that the residual code is simply an unrolling of the
partial evaluator, without any significant computations eliminated.
Binding time analysis makes static decisions about which expres-
sions are static or dynamic, so the residual code of self-application
can be simpler than for an online partial evaluator.

Self-application is not necessary for a partial evaluator to be
useful. Pummel relies only on the1st Futamura projection [8],
because the goal is to specialize model interpreters to compile
a model. For many applications the speed of compilation is not
significant.

3. Models
Pummel is focused on the creation, manipulation and interpretation
of models. Amodelis a description of something of interest. The
data in an SAP database is a model of a business. A finite state ma-

type DataModel {
String name;
Type* types;

}
type Type {

key String name;
bool primitive = false; /* primitive ⇒ fields={} */
Field* fields;
Field? key; /* key ∈ fields unique identifier */

}
type Field {

key String name;
Type type;
Boolean optional = false;
Boolean many = false; /* the field has a set of values */
Object default; /* default is of typetype */

}

Figure 4. DataModel: a data model that describes data models.

chine can model the behavior of a device, like a microwave oven.
A grammar can model a natural language. A makefile describes
the dependencies and commands in a build process. A set of equa-
tions can model many different phenomena, including chemical
processes or financial markets. These are all examples of models
that describe the real world.

A meta-modelis a model that describes models. A database
schema can describe the structure of the SAP database. The BNF
language describes the structure of grammars. Types can be used to
describe the structure of any kind of data, including the structure of
makefiles.

Some models can also describe themselves. Object-oriented
classes can describe the properties of classes; an example is the
reflection classes in Java or C#. The data in some special database
tables can describe the structure of a database’s tables. The BNF
language can be defined using a grammar written in BNF. And
types can be used to describe the structure of types.

Pummel uses graphs of objects to represent models. To impose
some structure on the objects, Pummel uses meta-models. Adata
model, or schema, organizes objects into classes and defines the
allowed relationships between them. Examples of data models in-
clude Semantic Data Models [9], UML Class diagrams [30], Entity
Relationship models [4]. A data model that describes data models is
the core of all data modeling; an example is the UML meta-model
[22]. A simple form of meta-model for data, calledDataModel is
given in Figure 4. This data model is defined using a simple data
model language based on Java class definitions. A type definition
is a name followed by a set of fields. A field has a type, a name
and an optional default value. An annotation may follow the type:
? means optional, and* means many-valued. A field may also be
marked as being the key for a type, which means that field uniquely
identifies an object within its container. These types also resemble
the classes in the Java reflection model [33].

A data model describes the legal operations on values. The as-
sertions are observational; the data model does not necessarily say
anything about how the values are implemented. IfD represents a
data model, which is described byDataModel and which describes
DataModel then the following operations are legal:

; name of data model
(: D ’name) ⇒ “DataModel”

; names of types in data model
(for T (: D ’types) cons (: T ’name))

⇒ (“DataModel” “Type” “Field”)

; List of types with number of fields
(for T (: D ’types) cons

(list (: T ’name) (for F (: T ’fields) + 1 0))
⇒ ((“DataModel” 2) (“Type” 4) (“Field” 5))

; D.types[“Field”].fields[“optional”].type.name
(let ((T (: (: D ’types) ’item “Field”)))

(: (: (: (: T ’fields) ’item “optional”) ’type) ’name))
⇒ “Boolean”

Given a collectionC and a valueX, the expression

(: C ’item X)

returns the collection element whose key equalsX.
It is interesting to consider the relationship between thiskind

of data model and the type systems used in many branches of
programming language research, based on recursion, sums and
products. It is clear that both systems can encode the other.For
example, a type with a collection of fields can be viewed as a
labeled product.

Since Pummel is currently dynamically typed, the system does
not enforce any static relationship between objects and themodels
that describe them. In this following section, we define a generic
operation to check that an object is a valid instance of a datamodel.

4. Generic Operations
A generic operation expresses a general strategy for achieving a
goal. Programmers often have general strategies in their head, and
they specialize them manually to the particular situation at any
given point in a program. Examples include validating data,com-
paring, differencing, combining, reading, writing, or more sophis-
ticated forms of parsing and formatting.

4.1 Validation

Thevalidate operation in Figure 5 checks if an object satisfies the
requirements in a data model type. This is a simplified validation
algorithm that does not handle cyclic object graphs. Techniques for
cyclic objects are discussed in Section 4.3. This version just returns
true or false, but a more sophisticated validation routine can return
a list of all the error found.

When partially evaluated with respect totype, validate reduces
to a series of type checks on the object’s fields. The static computa-
tions are underlined. An example of a specialized validate function
is given in the next section.

4.2 Read

A generic reader uses a data model to guide conversion of an
external representation into a collection of objects described by the
data model [5]. A simple external representation is a taggedtree
that specifies types and fields of objects, similar to XML:

Value = Primitive | (Type (field : Value ...) ...)

Type names and field names alternate at each level of nesting
in the S-expression. Parsing other representations, including linear
text, are a natural extension of this approach. As a simple example,
consider the following data model for hierarchical outlines:

type Outline { String label; Outline* contents; }

The validation function for Outline objects is the result ofpar-
tially evaluatingvalidate with theOutline type as a static argument
(generated code is shown in a box):

(define (validate type obj)
(if (: type ’primitive)

(if (equal? (: type ’name) ”String”)
(string? obj)

(if (equal? (: type ’name) ”Boolean”)

(boolean? obj)
(if (equal? (: type ’name) ”Integer”)

(integer? obj)
#f)))

; else its is not primitive
(for field (: type ’fields) and

(validate-field field obj))))

; validate a field of an object
(define (validate-field field obj)

(if (not (: field ’many))
; single-valued field, if not defined, must be optional
(if (defined? (: obj (: field ’name)))

(validate (: field ’type) (: obj (: field ’name)))

(: field ’optional))
; many-valued fields
; for item in obj.(field.name).items
(for item (: obj (: field ’name)) and

(validate (: field ’type) item))))

Figure 5. Validation of an object against a data model.

(define (validate-Outline obj)
(and (validate-String (: obj ’label))

(for item (: obj ’contents) and
(validate-Outline item))))

Below is an Outline value describing part of the outline of this
paper, represented as a nested tree structure:

(Outline (label: “Research Paper”)
(contents:

(Outline (label: “Introduction”))
(Outline (label: “The Pummel Language”)

(contents:
(Outline (label: “Objects”))
(Outline (label: “Monoid Comprehensions”))))

(Outline (label: “Models”))))

A basic generic reader is given in Figure 6. This reader does not
ensure that the structure it creates is valid. It takes as input a data
model, a factory for creating objects described by the data model,
and a data tree. If the data is not a pair, then it must be a valueof
primitive type. If the data is a list, then its first item must be a type
name.

It would be natural to use indexed access to find the corre-
sponding type:(: (: D ’types) ’item (car data)). However, this
would prevent partial evaluation because the desired static type
value would depend upon dynamic data. Instead the reader uses
a loop to search the finite set of types for one whose name matches
the data. This is a standard form of binding-time improvement [13].
Although a linear search makes the unspecialized reader slower, it
allows specialization of types and is potentially much faster after
specialization.

Once the reader has identified the appropriate type, it bindsobj
to a new object, and then iterates over the field specifications in
the data. Again it searches for an appropriate field, rather than
indexing into the fields collection. It then has two cases depending
on whether the field is single-valued or many-valued. In either case,

(define (read D factory data)
(if (not (pair? data))

data
(for type (: D ’types) first

(if (eq? (: type ’name) (car data))
(let ((obj (: factory ’new (: type ’name))))

(for field-data (cdr data) begin
; field = type.fields[car(field-data)]
(for field (: type ’fields) first

(if (eq? (: field ’name) (car field-data))
(if (not (: field ’many))

; single-valued
(let ((val (cadr field-data)))

; insert check for future reference here
; obj.(field.name) = read(D, factory, val)
(: obj (make-symbol ’set- (: field ’name))

(read D factory val))))
; multi-valued
(for val (cdr field-data) begin

; obj.(field.name).insert(read(D, factory, val))
(: (: obj (: field ’name)) ’add

(read D factory val)))
skip)

(error-msg ‘(Invalid field ,(car field-data)
for type ,(: type ’name)))))

obj) skip)
(error-msg ‘(Invalid type ,(car data)))))

Figure 6. A generic reader with static expressions underlined, for
static D

(define (read-Outline factory data)
(if (not (pair? data))

data
(if (eq? ’Outline (car data))

(let ((obj (: factory ’new ’Outline)))
(for field-data (cdr data) begin

(if (eq? ’label (car field-data))
(let ((val (cadr field-data)))

(: obj ’set-label (read-Outline factory val)))
(if (eq? ’contents (car field-data))

(for val (cdr field-data) begin
(: (: obj ’contents) ’add (read-Outline factory val)))

(error-msg ‘(Invalid field ,(car field-data)
for type Outline)))))

obj)
(error-msg ‘(Invalid type ,(car data))))))

Figure 7. A specialized Outline reader (generated code)

the key issue is how to set or insert the field value. Given a field
namedX, it can be set tovalue by calling (: obj ’set-X value).
Thus the reader constructs the method name dynamically by calling
(make-symbol ’set- (: field ’name)). This kind of operation is
typical of reflection in Java. When specialized, these reflective calls
become static method calls.

The specialization ofread to theOutline data model is given in
Figure 7. All of the names in method calls are static. The codeis
similar to what a programmer would write by hand to read outline
objects.

(DataModel (name: “DataModel”) (types:
(Type (name: “Type”)

(key: (@ (types “Type”) (fields “name”)))
(fields:

(Field (name: “name”) (type: (@ (types “String”))))
(Field (name: “primitive”) (type: (@ (types “Bool”)))

(default: false))
(Field (name: “fields”) (type: (@ (types “Field”)))

(many: true))
(Field (name: “key”) (type: (@ (types “Field”)))

(optional: true))))
(Type (name: “Field”)

(key: (@ (types “Field”) (fields “name”)))
(fields:

(Field (name: “name”) (type: (@ (types “String”))))
(Field (name: “type”) (type: (@ (types “Type”))))
(Field (name: “optional”) (type: (@ (types “Bool”)))

(default: false))
(Field (name: “many”) (type: (@ (types “Bool”)))

(default: false))
(Field (name: “default”) (type: (@ (types “Object”)))

(optional: true))))
(Type (name: “String”) (primitive: true))
(Type (name: “Object”) (primitive: true))
(Type (name: “Bool”) (primitive: true))))

Figure 8. DataModel expressed in storage format

4.2.1 Reading Circular Structures

Most object models are graphs of objects with cycles, not trees as in
the Outline example above. One strategy for creating cyclicobjects
is to create the objects first, then add cyclic links between them.
There are several ways that the cross links between objects can be
specified. Some lisp reader/writers mark the target of a circular ref-
erence with an identifier, where later use of that identifier creates a
back link to the previous structure. Another approach, usedhere, is
to use symbolic paths to specify the target of a potentially circular
reference. The paths are a simplified form of the navigational ac-
cess paths illustrated in Section 3. The paths contain a listof fields
and item keys:

pseudocode root.types[“Field”].key
code (: (: (: root ’types) ’item “Field”) ’key)
path ((types “Field”) key)

Given this notation for static paths, the storage format canbe
extended to allow references between objects:

Value = Primitive
| (Type (field : Value ...) ...)
| (@ Path...)

Path = (field Primitive) | field

ThePath elements access items starting from the root of the ob-
ject being read. An example of a circular structure is theDataModel

from Figure 4, which is shown in storage format in Figure 8.
The read procedure can be extended to handle circular struc-

tures, as shown in Figure 9. Theread-circular procedure creates
a fixup list to keep track of the cross-references between objects
that must be created after the objects have been created. Items in
the fixup list have the format(object field path) indicating that a
field of an object should be assigned the value at a given path in
the final structure. This version of the reader only supportsrefer-
ences for single-valued fields, although it is not difficult to support
many-valued fields as well. After the object is read in, the fixup list

(define (read-circular D factory data)
(let ((fixups (dynamic (make-list-collection ’()) data)))

(let ((obj (read D factory fixups data)))
; update the objects with the new locations
(for action fixups begin

(let ((target (car action))
(setter (cadr action))
(value (lookup (caddr action) obj)))

(: target setter value)))
obj)))

(define (read D factory fixups data)
...

; Insert this code at “check for future reference” in Figure 6
(if (and (pair? val) (eq? (car val) ’@))

; delayed reference
(: fixups ’add (list obj

(make-symbol ’set- (: field ’name))
(cdr val))))

...)

(define (lookup path obj)
(if (null? path) obj
(if (pair? (car path))

(let ((field (caar path)) (val (cadar path)))
(lookup (cdr path) (: (: obj field) ’item val)))

(lookup (cdr path) (: obj (car path))))))

Figure 9. Modifications to the reader to load cyclic data

is processed to lookup the paths and assign the resulting object to
fields.

Partial evaluation of the reader must take into account the bind-
ing time of the fixup table. If the reader is partially evaluated only
with respect to a data model, then the fixup table must be created
and updated as a dynamic value. The expression(dynamic (create-
hash ’()) data) ensures that the fixup table is dynamic, even though
(create-hash ’()) appears to be static. This is a known technique.
The inclusion ofdata in the dynamic expression is explained in the
next section, when both the data model and the data are considered
static.

While partial evaluation successfully specializes this code, it
does not eliminate all reflective operations: inread-circular, the
expression(: target setter value) does not call a statically known
method. Instead, the variablesetter contains the name of the setter
method to be called. In addition, the lookup function is not special-
ized because the path comes from the dynamic data.

An alternative would be to create a list of fixup objects with a
single method fixup taking the root object as a parameter. These
fixup objects would then be specialized to static methods. Ifthe
paths were specified in the data model or another static model, then
the path lookups could also be specialized. These possibilities are
areas for future research.

4.2.2 Creation Scripts

It is also useful to partially evaluate the reader with respect to the
input data, in addition to the data model. The result is a specialized
program for quickly constructing an object graph: in effect, an ob-
ject creation script [34]. If bothD anddata are static, the goal is to
create a residual program that just invokes the factory and then sets
object properties and references. The only dynamic expressions in
Figures 6 & 9 are the ones involvingfactory andobj.

To achieve this goal, the fixup table must be created and manip-
ulated at specialization time. What this means is that the fixup table

(if (and (pair? val) (eq? (car val) ’@))
; delayed reference
(future (id obj)

(: fixups ’add (list id (: field ’name) (cdr val))))

Figure 10. Use of future identifiers when specializing the reader
to generate a creation script

is dynamic if data is dynamic, and static if the data is static. This
conditional behavior is implemented by the expression(dynamic
(create-hash ’()) data). The general format is:

(dynamic result condition)
The result is marked dynamic if thecondition evaluates to a

dynamic value, and static otherwise. This illustrates thatimperative
code can be executed at either specialization time or duringresidual
code execution.

There is one problem with the resulting specialization: it fails
when attempting to specialize the insertion into the fixup table:

(: fixups ’add (list obj
(make-symbol ’set- (: field ’name))
(cdr val))))

The problem is thatobj is dynamic, yet it must be inserted
into the static fixup table. This is a binding-time contradiction; an
early-stage structure cannot normally contain values created at later
stages.

However, there is a one-to-one correspondence between objects
created by the reader and parts of the storage data. Thus it is
possible to create a static name for each dynamically created object.
These names can then be inserted into the static fixup table, to
uniquely identify object values. To achieve this goal, we introduce
a new expression to create static names for dynamic values:

(future (var exp) body)
The future expression bindsvar to a staticfuture identifier

representing the dynamicexp that will exist in the residual code.
Thevar is bound withinbody. The future identifier is created only if
valueis dynamic. The entirefuture construct is always dynamic. If
the partial evaluator could return both a static value and a dynamic
effect, then the future construct could be simplified to(future exp),
where the future identified is returned rather than bound. This is a
direction for future research. The semantics of future is given in
Figure 12.

A dynamic table is created to map future references to their true
dynamic values. The future values are the keys of this map. When a
future value is used in a dynamic context, a lookup is inserted into
the code to return the dynamic value associated with the reference.
The reader can now be fixed to support specialization on itsdata
argument, as shown in Figure 10.

A part of the resulting create script for theDataModel in Fig-
ure 8 is given in Figure 11. All of the method calls are static,even
the traversal of the paths from the storage data. TheFM table could
be replaced by a collection of local variables or an array. The result
would more closely resemble what a programmer would write.

4.3 Equality

A generic model-driven equality function takes three arguments: a
model and two values, where the model is a description of the rele-
vant properties of the values. The relevant information forequality
is primarily structural: what observations can be made on the two
values so they can be compared. A simple model-driven equality
function is given in Figure 13. This function is sufficient tocom-
pute equality ofTree values.

The functionEqual creates a hash table to check for circularity
in the structures. It then callsEqual1, which does most of the work.

(define (create-DataModel factory)
(define FM (make-table))
(let ((obj (: factory ’DataModel ’())))

(: obj ’set-name “DataModel”)
(: (: obj ’types) ’insert

(let ((obj1 (: factory ’Type ’())))
(: obj1 ’set-name “DataModel”)
(table-set! FM 1 obj1)
(: (: obj1 ’fields) ’insert

(let ((obj2 (: factory ’Field ’())))
(: obj2 ’set-name “name”)
(table-set! FM 2 obj2)
obj2))

(: (: obj1 ’fields) ’insert
(let ((obj3 (: factory ’Field ’())))

(: obj3 ’set-name “types”)
(table-set! FM 3 obj3)
(: obj3 ’set-many #t)
obj3))

obj1))
...
(: (table-ref FM 1) ’set-key (lookup-Type-name obj))
(: (table-ref FM 2) ’set-type (lookup-String obj))
(: (table-ref FM 3) ’set-type (lookup-Type obj))
...
obj))

(define (lookup-Type-name obj)
(let ((obj (: (: obj ’types) ’item “Type”)))

(: (: obj ’fields) ’item “name”)))

(define (lookup-Type obj)
(: (: obj ’types) ’item “Type”))

(define (lookup-String obj)
(: (: obj ’types) ’item “String”))

Figure 11. Partial listing of generatedDataModel create script

P [[dynamic op(e1...en) when(e′1...e
′

m)]] =
{

[[op(P [[e1]], . . . ,P [[en]])]] ∃i : P [[e′i]] 6∈ Value
P [[op(e1...en)]] otherwise

P [[indirect x = e1in e2]] =
{

P [[let x = e1in e2]] P [[e1]] ∈ Value
[[store(z,P [[e1]]);P [[[x 7→ z]e2]]]] wherez is fresh

P [[z]] =

{

[[lookup(z)]] when lifted to a dynamic context
z in a static context

Figure 12. Partial evaluation of future and conditional dynamic

If type is primitive it compares the primitive values directly; if not,
then the values must be objects. It checks to see if the objects have
been tested before, and if so uses the hash table to ensure that the
cycles are equivalent. Otherwise it adds an entry to the table, then
compares each of the fields of the objects. The equality function
resembles a bisimulation check, although it also checks identify of
objects on cycles.

(define (Equal type a b)
(Equal1 type (dynamic (create-hash ’())) a b))

(define (Equal1 type hash a b)
(if (: type ’primitive)

(equal? a b) ; base types
(if (defined? (table-ref hash a (void)))

(eq? b (table-ref hash a)) ; already checked
(begin ; add to table and check

(table-set! hash a b)
(for field (: type ’fields) and

(if (not (: field ’many))

; a.(field.name) = b.(field.name)
(Equal1 (: field ’type) hash

(: a (: field ’name))
(: b (: field ’name)))

; many-valued
(and ; a.(field.name).size = b.(field.name).size

(eq? (: (: a (: field ’name)) ’size)
(: (: b (: field ’name)) ’size))

(let ((key (: (: field ’type) ’key)))
(for e (: a (: field ’name)) and

; e = b.(field.name)[e.(key.name)]
(Equal1 (: field ’type) hash

e
(: (: b (: field ’name))

’item
(: e (: key ’name)))))))

Figure 13. Generic equality function.

5. Related work
This paper is a continuation of work on applying partial evaluation
to model interpreters [5]. One of the advantages of explicitmodel
transformation is that the target language is defined by the trans-
formation. With partial evaluation, the residual program is always
defined in the same language as the interpreter, although there is
some work on overcoming this limitation [31].

5.1 Reflection

Reflection is a technique for reifying the state of a running pro-
gram [29]. In object-oriented programming, reflection allows in-
trospection over the structure of classes and the runtime stack. The
class structure is an example of a meta-model, a data structure that
describes a class. The original idea of reflection also encompassed
making changes to these representations, and even modifying the
interpreter that executes the current program. As is commonly used,
in Java and C#, reflection is used to retrieve a model that describes
code structure, and then invoke operations dynamically.

Model interpreters invert this relationship; rather than derive re-
flective information from code, Partial evaluation then derives code
from models. The desire to have more modeling information is
driving the inclusion of extensible attributes on classes and meth-
ods. Ruby on Rails [21] and other object-oriented frameworks use
this technique. However, the focus is still on code, not on models
in and of themselves.

The Walkabout technique allows a generic equality to be writ-
ten using the reflective API in Java [26]. The validate operation in
Section 5 is very close in structure to the Walkabout class. Walka-
bout does not need an explicit model argument, as in model-driven
generic equality, because it can be derived via reflection from the
values being compared. The explicit separation of models and (dy-

namic) data presented here is important because it facilitates partial
evaluation. From the viewpoint of partial evaluation, deriving static
models from dynamic objects by reflection is a binding time er-
ror. Given a static model, partial evaluation can convert dynamic
method invocations to static calls.

5.2 Datatype Generic Programming

Datatype generic programming allows generic functions to be writ-
ten that work on any data type [12]. Existing approaches workby
defining generic functions for the type constructors (or functors)
that are used to create types. The generic function for a specific
type is created by assembling the appropriate generic components
based on the particular structure of the type. Examples of data-type
generic programming include Generic Haskell [11], PolyP [24]
and Scrap Your Boilerplate (SYB) [17], and Adaptive Program-
ming [25]. The entire system can be type-checked in advance to
ensure that all generic function instances will be well-defined.

Generic model-driven operations, as described in this paper, al-
low generic functions to be written over arbitrary data types, which
are described by data models. The generic function computesover
the data model itself, not the constructors used to create a type.

Models are more general than a types, in that it can include
attributes or constraints that influence the semantics of the type.
Polytypic programming also uses specialization to create instances
of a generic function, but it does not allow arbitrary computation
over the structure of a type. The downside is that Pummel doesnot
currently provide static type safety. It is an open questionwhether
the generic operations in this paper can be type-checked.

5.3 Metaprogramming

Sheard discusses a number of approaches to metaprogramming[28].
The generic model-drivenEqual function does not use what is tra-
ditionally called metaprogramming, because it neither produces
nor computes over explicit representations of programs. However,
it does use the modelT, which is in some sense a meta-level value,
since it is a description ofa andb. But the key point is that the
model-generic function just does the work of comparing the val-
ues, while the equality generator function writes a programthat
does this work.

Template metaprogramming C++ provides a Turing-complete
language for writing a form of metaprogram or generic tem-
plate [6]. Templates are instantiated at compile time, bothgen-
eral and specific template instances may be defined. Encodingfull
computation in templates is awkward, since it does not have aclean
representation of data at the meta-level. It is also not possible for
a template to add arbitrary methods (with computed names) toa
generated class.

Multi-stage programming Multi-stage programming allows pro-
grams to write programs. It is closely related to partial evaluation.
Many partial evaluation systems create an explicit multi-stage pro-
gram, also called a two-level calculus, that is run to generate the
residual program. Since the first phase of partial evaluation, which
creates the multi-stage program, is often the most problematic,
it can sometimes be more effective to write the multi-stage pro-
gram manually. Type systems have also been developed for multi-
stage programming languages, although there is some debateabout
whether these type systems prohibit some typical kinds of multi-
stage programs.

However, it is quite difficult to write multi-stage programs. At
the same time, the need to write explicit programs is lessened by
the increasing effectiveness of partial evaluation, mentioned above.

6. Conclusion
This work is part of a larger effort to develop a programming
environment based on partial evaluation of model interpreters and
generic operations. The programming language and environment,
called Pummel, is implemented in itself. If successful, thePummel
environment will be a demonstration of the power of model-driven
development, in the same way that Smalltalk demonstrates the
power of object-oriented programming.

We show that a simple online partial evaluator is sufficient to
specialize generic operations over data models, for validation, read-
ing, and equality. Other operations, for differencing, composition
and writing can also be defined. One of the benefits of this tech-
nique is that it avoids the use of explicit metaprogramming and
staging that are commonly used in model-directed programming.

There are many issues remaining to be resolved. Future work
will consider how to type-check generic model operations. The
residual code could given here could in most cases be annotated
with types so that a traditional static type-checker could verify
type safety. But type-checking the generic operation itself is more
difficult. Validation is similar to type-checking.

Specializing model interpreters and generic model operations
may be a “sweet spot” for partial evaluation, because these func-
tions tend to be simpler than interpreters of Turning complete lan-
guages. It is not necessary to have a self-applicable partial evalua-
tor, because we are only interested in creating compiled models, not
creating compilers. To control partial evaluation further, we pro-
hibit static objects from being residualized, as a result they must be
fully consumed during partial evaluation.

References
[1] N. Adams and J. Rees. Object-oriented programming in Scheme. In

Proc. of the ACM Conf. on Lisp and Functional Programming, pages
277–288, 1988.

[2] S. Ahmed and G. Ashraf. Model-based user interface engineering
with design patterns.Journal of Systems and Software, In Press,
Corrected Proof.

[3] K. Asai, H. Masuhara, and A. Yonezawa. Partial evaluation of call-
by-valueλ-calculus with side-effects. InACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM ’97, pages 12–21, 1997.

[4] P. P. Chen. The entity-relationship model - toward a unified view of
data. ACM Transactions on Database Systems (TODS), 1(1):9–36,
1976.

[5] W. R. Cook, B. Delaware, T. Finsterbusch, A. Ibrahim, and
B. Wiedermann. Strategic programming by model interpretation
and partial evaluation. (Submitted for publication to ICSE2009).

[6] K. Czarnecki, J. O’Donnell, J. Striegnitz, and W. Taha.LNCS 3016,
chapter DSL Implementation in MetaOCaml, Template Haskell, and
C++. Springer Verlag, 2004.

[7] L. Fegaras and D. Maier. Towards an effective calculus for object
query languages. InACM SIGMOD International Conference on
Management of Data, pages 47–58, 1995.

[8] Y. Futamura. Partial evaluation of computation process– an approach
to a compiler-compiler. Systems, Computers, Controls, 2:45–50,
1971.

[9] M. Hammer and D. McLeod. The semantic data model: a modelling
mechanism for data base applications. InSIGMOD ’78: Proceedings
of the 1978 ACM SIGMOD international conference on management
of data, pages 26–36, New York, NY, USA, 1978. ACM Press.

[10] D. Harel and A. Naamad. The statemate semantics of statecharts.
ACM Transactions on Software Engineering and Methodology, 5:54–
64, 1996.

[11] R. Hinze and J. Jeuring. Generic haskell: practice and theory. InIn
Generic Programming, Advanced Lectures, volume 2793 of LNCS,

pages 1–56. Springer-Verlag, 2003.

[12] R. Hinze, J. Jeuring, and A. Löh. Comparing approachesto generic
programming in Haskell. InSpring School on Datatype-Generic
Programming, 2006.

[13] N. D. Jones, C. K. Gomard, and P. Sestoft.Partial evaluation and
automatic program generation. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[14] M. Kaufmann, J. S. Moore, and P. Manolios.Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell,
MA, USA, 2000.

[15] R. Kelsey, W. Clinger, and J. Rees. Revised 5 report on the algorithmic
language Scheme.ACM SIGPLAN Notices, 33(9), 1998.

[16] V. Kulkarni and S. Reddy. Separation of concerns in model-driven
development.IEEE Software, 20(5):64–69, 2003.

[17] R. Laemmel and S. P. Jones. Scrap your boilerplate: a practical
approach to generic programming. InTLDI 2003, July 2002.

[18] R. Lämmel, E. Visser, and J. Visser. The Essence of Strategic
Programming, 2002. Available athttp://www.cwi.nl/ ralf.

[19] R. Lämmel, E. Visser, and J. Visser. Strategic programming meets
adaptive programming. InProceedings of Aspect-Oriented Software
Development (AOSD’03), pages 168–177, Boston, USA, March 2003.
ACM Press.

[20] G. Lapalme. Implementation of a “Lisp comprehension” macro.
SIGPLAN Lisp Pointers, IV(2):16–23, 1991.

[21] R. M. Lerner. At the forge: Ruby on rails.Linux J., 2005(138):8,
2005.

[22] O. management Group.OMG Unified Modeling Language Specifica-
tion, version 1.3. OMG,http://www.omg.org, March 2000.

[23] A.-F. L. Meur, J. L. Lawall, and C. Consel. Towards bridging the gap
between programming languages and partial evaluation. InPEPM
’02: Proceedings of the 2002 ACM SIGPLAN workshop on Partial
evaluation and semantics-based program manipulation, pages 9–18,
New York, NY, USA, 2002. ACM.

[24] U. Norell and P. Jansson. Polytypic programming in Haskell.
In In proceedings of the 15th International Workshop on the
Implementation of Functional Languages (IFL 2003, pages 168–184,
2003.

[25] D. Orleans and K. Lieberherr. DJ: Dynamic adaptive programming
in java. InReflection 2001: Meta-level Architectures and Separation
of Crosscutting Concerns, Kyoto, Japan, September 2001. Springer
Verlag. 8 pages.

[26] J. Palsberg and C. B. Jay. The essence of the visitor pattern. In
COMPSAC ’98: Proceedings of the 22nd International Computer
Software and Applications Conference, pages 9–15, Washington, DC,
USA, 1998. IEEE Computer Society.

[27] J. D. Poole. Model-driven architecture: Vision, standards and emerg-
ing technologies. InIn ECOOP 2001, Workshop on Metamodeling
and Adaptive Object Models, 2001.

[28] T. Sheard. Accomplishments and research challenges inmeta-
programming. InProceedings of the Second International Work-
shop on Semantics, Applications, and Implementation of Program
Generation, pages 2–44. Springer-Verlag, 2001.

[29] B. Smith. Reflection and semantics in Lisp. In K. Kennedy, editor,
Proc. of the ACM Symp. on Principles of Programming Languages,
pages 23–35. ACM, 1984.

[30] R. Software. Whitepaper on the UML and Data Modeling, 2000.

[31] M. Sperber and P. Thiemann. Two for the price of one: composing
partial evaluation and compilation. InProceedings of the ACM
SIGPLAN ’97 Conference on Programming Language Design and
Implementation (PLDI), SIGPLAN Notices, pages 215–225. ACM
Press, 1997.

[32] M. Sperber and P. Thiemann. Generation of LR parsers by partial
evaluation.ACM Trans. Program. Lang. Syst., 22(2):224–264, 2000.

[33] Sun. Web page for the Java reflection API. Internet, 2003.
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html.

[34] D. Syme. Initializing mutually referential abstract objects: The value
recursion challenge.Electr. Notes Theor. Comput. Sci., 148(2):3–25,
2006.

[35] E. Visser. Domain-specific language engineering. In R.Lämmel
and J. Saraiva, editors,Proceedings of the Summer School on Gen-
erative and Transformational Techniques in Software Engineering
(GTTSE’07), lcns. Springer Verlag, 2007.

[36] P. Wadler. Comprehending monads. InLFP ’90: Proceedings of the
1990 ACM conference on LISP and functional programming, pages
61–78, New York, NY, USA, 1990. ACM.

