Generic Operations and Partial Evaluation using Models

Benjamin Delaware, William R. Cook

The University of Texas at Austin
{bendy,wcook} @cs.utexas.edu

Abstract

Model-driven software development is a promising new ajapion
area for partial evaluation. In this papers, we develop qmageth
to generic programming using models instead of types. Thk& iso
done in the context of Pummel, a first-order subset of Scheitiie w
objects and monoid comprehensions. We define generic apesat
for validation, reading, and equality of values describgdiodels.
These generic operations are specialized to particulaetady an
online partial evaluator. The specializer can choose tnluefize
or execute imperative operations on objects, through aitonal
binding time attribute. Afuture construct allows dynamic values
to be manipulated statically, if the dynamic values are fionally
dependent on static state.

1. Introduction

A model is a description of the significant properties of stirimg

of interest. Examples of models include data models (UMLs€la
diagrams [30], Entity-Relationship diagrams [4]), finitate ma-
chines (Statecharts [10]), grammars, regular expresssatairity
models, user interface models (wire-frames, XUL [2]). Rhgval-
uation has been applied to some of these domains in the past, f
example, to create an efficient parser given a naive grammar i
terpreter [32] or string matcher [13]. However, these ¢ffdrave
been relatively disjoint, not part of a coordinated effarcteate a
programming model based on partial evaluation.

Generic operations can be parameterized by models, sitailar
the way that polytypic programs are parameterized by types.
example, a read operation takes a model together with a tlatars
as input and produces an appropriate instance of the moaaiité\

and the specialization argument. Specialization on piatgnin-
finite structures can generate too much code, or diverge nf&im
attempts to address these problems by prohibiting modzis ffre-
ing residualized, and only specializing on finite modelse Tinst
case is enforced by prohibiting residualization of the otsjehat
are used to represent models. If this happens, an error esafed,
and the programmer must rewrite the interpreter. A common ex
ample is indexing a static mdgd by a dynamic valu®, as inlet
v=M.lookup(D) in ..., to produce a static value Rewriting this
case as a loop is a standard binding time improvenfentf(k,v)

in M) if (k=D)

Several extensions are introduced to facilitate partialuation
of generic operations in Pummel. Pummel allows imperafifests
to be executed as specialization time or in residual cogeeriting
on whether a given input is static or dynamicfuture mechanism
is introduced to allow static structures to refer to dynavailtes, if
the dynamic values are functionally dependent on staticstre.

2. The Pummel Language

The Pummel system is built using an imperative subset ofi8ehe
with objects. Scheme was chosen for its natural identificatf
programs and data, which facilitates partial evaluatidrstf€lass
functions are used only to represent objects. A spauiedsage-
sendoperator, written(: object msg args..is used to send a
message to an object, by applying the object closure to the me
sage and arguments. While this makes the language appeareo h
first-class function values, the partial evaluator doesspetialize
methods based on their calls, so true higher-order pavigdliation

is not supported. While there is no fundamental reason foit-li
ing first-class functions, their omission does simplifytjzevalu-

operation takes a model with an instance and produces atoutpu ation’ This choice also allows us to focus on the expressive power

encoding of the instance. These generic operations carchedi
as alternative interpretation of the model. Other gengr@rations,
including comparison, differencing, validating, and casition,
can be defined analogously. Partial evaluation works bytpltie
model as a static input.

Pummel is a first-order subset of imperative Scheme [15] with
objects and monoid comprehensions [7]. First-class fanstare
avoided in order to simplify partial evaluation, althoudtey ap-
pear in restricted form in the definition of objects. An objeca
message processing function, allowing some degree of higller
programming. To replace map and fold, which are not possible
without first-class functions, Pummel introduces a form ohmid
comprehension, which can map, filter, and combine elemdris o
list. Unlike map and fold, Pummel’s monoid comprehensiores a
not strict. This means that they can search for the first itemlist
that satisfies a condition, without evaluating the entse li

Pummel uses a straightforward online partial evaluataviPr
ous work has shown that it is important to control partialleva
uation [23]: ideally it should generate efficient code, bat too
much code. Tangled binding times can cause partial evalu#obi
fail, so that the output program is a copy of the input program

of models as first-class values.

The abstract syntax of the Pummel language is given in Fig-
ure 1. In this paper we consider programs that manipulatect)j
but do not include syntax to create objects; they are asstioneel
created outside the language. Primitive operators ariglisshed
from calls to defined functions. Primitive operators may lba-n
strict; the only non-strict operator used hererigsT, a binary
function that returns its first argument. Some operators Ipeaiyn-
perative, and all message sends are assumed to have sdes-eff

While not covered here, Pummel also includes a facility for
creating objects, using a standard encoding as messagespiag
functions [1]. In the current implementation, objects alwags
dynamic, so their definition is simply passed through tochesi
code by the partial evaluator.

2.1 Monoid Comprehensions

Monoid comprehensions are a first-order notation for titirsd,
filtering, and combining a list of items [7]. Translation,raapping,

1A similar decision, but for somewhat different reasons theslACL2 [14]
program verification system to use a first-order subset gf.Lis

peProg = d

d € Def = definef(Z)e

ccBxpr = vla|op(@) | £(e)
|if e e e|let x=e in ¢
| object (Tmsg Targs) €
| for = e op e e skip

op € Op = FIRST | prim

v € Value = Integer| String | Object..

x, f € ldentifier

Figure 1. Syntax

is achieved by evaluating an expression for each elemehedist.
Filtering is achieved by allowing the translation expreassio be
conditional; if it returnsskip the element is ignored. The results
can be combined by applying a binary operator to each trasla
element and the result of the rest of the list. A base valueés as
the result for the empty list. The concrete syntax for thisration
is:

(for wvar list op element base)

The effectis to calbp(element, rest) to combine the results of
evaluatingelement with var bound to each item ihist, with the
results from the-est of the list. If element returnsskip then that
item of the listis ignored. Finally, at the end of the kst = base.

If op is non-strict in its second argument, then the rest of the lis
may not be computed.

(op,let x = e1 inea, ey

Ev] = v
E[FIRST(e1, e2)]
Elopler, ... en)]
E[if ey ez es]

€1

apply(op,Efei], - .., Een])
if £[e1] then&ez] else&[es]

= [z Efea]le2]
Elforxeiopeses] =
[[g : if E[e1] = NIL

5[[63]]
E{op, [x — vnlea, er) if E[er] = CONS(vp,ve)
where e, = [for x v, op e e3]

E[let x = e; iney]

Elfler,...;en)] =

where [define f(z1,...

Ef[zi = Elei]le]
,xn)e] € P

= [if e1 (op,e2,er) (op,e3,¢r)]
= [let 2’ = e1 in (op, [z'/7]e2, er)]

(op, if e1 ez e3, er

<0p7 SkiP7 Er

<0p7 €, €er

= e’l‘

= [op(e, er)]

L~~~

Figure 2. Semantics, with monoid comprehensions

non-strict, the(error) expression is only evaluated if no even item
is found.
Some of the axioms that can be used for transformations:

(for vy (for v2 e cons bz az) op by a1)
= (for v2 e op (A(v1,$).b1,b2,skip) (for vi a2 op b1 a1))

Monoid comprehensions are similar to list comprehensions (for v (append l1 I2) op b a)

[36]. but allow replacement of the normal cons/nil openasidor
constructing the result list.

For example, the following expressions perform simple map-
ping and reduction of a list:

(for x (1 2 3) cons (* x x) ()

(for x (1 23) +x0)

= (1409)
=6

It is sometimes convenient to omit the base value, and use a

default value appropriate to each operator. Eafs, the default
base value is the empty list. Fer, the default value i, and for
begin it is void.
(for x '(1 2 3) begin (print x)) = prints 1, 2, 3
(for x '(1 2 3) cons (if (0dd? x) x (- x))) = (1-23)

An explicit base value is useful in some cases. For example, t
prepend items to a list:

(forx (1 23) cons (-x) '(45)) = (-1-2-345)

The operator is required to be the name of a binary operator,

not an explicit lambda expression. Common operatorscang,
+, and, or, begin, and first. The operatorfirst is a non-strict
function that returns its first argumerirst(a, b) = a. If a more
complex combination function is needed, the comprehensiost
be rewritten as an explicit recursive function.

To filter the list, the element expression can return theiapec
valueskip, indicating that this value should not be included in the
output:

(for x ’(1 2 3) cons (if (odd? x) x skip)) = (1 3)

We sometimes omit thekip expression from the else clause of
an if expression. Finally, monoid comprehensions suppodirig
the first item in a list that meets a condition.

(for x ’(1 2 3) first (if (even? x) x skip) (error)) =2

This is used to implement a common form of “the trick” for
binding type improvement before partial evaluation: loplaf a
dynamic value in a static structure is rewritten as a loop tive
static items with a test against the dynamic value. Becéuses

= (for v {1 op b (for v I3 op b a))

One way to understand these monoid comprehensions is via
translation to Scheme [20]. The primary difficulty is thesirgreta-
tion of skip.

(define-syntax for
(syntax-rules ()
((for var items op elem base)
(let loop ((scan items))
(if (null? scan)
base
(tet ((var (car scan)))
(filter op elem (loop (cdr scan)))))))))

(define-syntax filter
(syntax-rules (if let skip)
((filter op skip rest)
rest)
((filter op (if a b c) rest)
(if a (filter op b rest) (filter op c rest)))
((filter op (let bindings body) rest)
(let bindings (filter op body rest)))
((filter op elem rest)
(op elem rest))))

One thing that cannot be done with the monoid comprehensions
defined here is to iterate over two lists, either in pairs onested
iterations. It would certainly be possible to extend thetayrto
multiple parallel variable bindings, in the stylelef.

2.2 Formal Semantics

The formal semantics of the Pummel language are given in Fig-
ure 2. For simplicity, the semantics uses explicit subititu of

variables rather than environment passing. Most of the sgéosa
is standard, except the treatmentfa@f is complicated by the need
to handle filtering withskip. The form({op, e, e.-) is a filtered ver-
sion ofop(e,), wheree is the current element and is the result
from the rest of the list. It translatesinto a filter by replacing
occurrences ofkip with e,, thereby ignoring the elemeant The
programP is assumed to be globally defined.

The semantics does not include a treatment of imperative up-
dates. While detailing the use of the store would certairdkethe
semantics more precise, it would not afford much intuititout
the relationship between the evaluator and the partialatat.

2.3 Partial Evaluation

A partial evaluator for Pummel is sketched in Figure 3. Théespn-
tation follows the Scheme implementation closely, witha t#f-
ferences. One difference is that the Scheme implementases
an environment. The actual implementation also includesst-p
processing step that cleans up the residual code, and merfor
calized optimizations. The Scheme implementation of theigla
evaluator, including all optimizations and a prototypeade$tation
technique (not described here) is 800 lines of Scheme code.

Most of the partial evaluator is derived from the evaluation
semantics by a straightforward transformation. The evatuaaps
expressions to values:

& : Expr — Value
The partial evaluator maps expressions to expressions:
P : Expr — Expr where Value C Expr

In each place where the evaluatarf calls itself recursively, the
partial evaluator tests if the result is a stataue in which case it
performs the same action as the evaluator. Otherwise itrems
an expression containing simplified sub-expressions. perators,
the call is evaluated only if all its arguments are staticigal

The most complex case is a call to a function that is defined
in the program, although this is completely standard. Twaren-
ments are created;s contains the formal argument names and val-
ues for all static arguments, white> contains the formal argument
names and values for all dynamic arguments. Thusindop are
a partition of the actual arguments, tagged by their comeding
formal argument names. A new function is defined, whose name
(f,os) is a combination of the function name and the static ar-
guments. The arguments to this function are the dynamicdbrm
variabless7,. The body of the new function is the body of the orig-
inal function with the static bindings applied;s (e). Finally, the
original call is replaced by a call to the new function, pagghe re-
maining dynamic argumentsf, os)(c%,). The notatiorr, means
the expression part (the range) of the environment. If aiafieed
function is called again, then the existing definition isdise

As above, the treatment of mutable state is not explicit & th
partial evaluator. Handling of imperative state duringtigdeval-
uation of call-by-value functional languages has previplieen
studied [3]. As a result, this presentation correspondsetjoto
the actual Scheme code, which relies upon the underlyingrBeh
store for imperative effects. Care must be taken to speeiglioce-
dures in the order in which they are called, to ensure thaahyo
effects are executed in the correct order. Currently thg epe-
cial treatment of imperative effects is in ensuring that éngtive
code is not duplicated. It is possible to create invalid Egeation
by modifying static objects during specialization. Thiildws the
approach of creating and experimenting with a practicalesys
rather than trying to solve all possible problems beforg tgse
in practice.

The partial evaluator is invoked by making a célles, ...en)
wheree; is either a value or a variable. In the examples given

Plv] v
Plz] = =z
PIFIRST(e1,e2)] = e1
Plop(er, ... en)] =
{ apply(op,vi,...,vn) if v; = P[[el]]
[op(Plex], ..., Plen])] otherwise
Pﬂif e1 e 63]] =
if v thenP[ez] elseP[es] v = Ple1]

{

[if Ple1] thenP[e:] elseP[es]] otherwise

Pllet z =e1iney] =
{ Pllx — vlez] v = Plei]
[let © = Pei] in Ple2]] otherwise

Plfor x e1 op ez e3]

Plez] if Plex] = NIL
Pop, [x + enrlez, er) if Per] = cons(en, er)
where e, = [for x e; op ez es]

otherwise

[for = Ple1] op Plez2] Ples]]

Plf(er,-.,en)] = [(f,05)(op)]
where [define f(z1,...,z,) €] € P
os = [(zi,vi) | i € 1.n,v; = Plei] € Value]
op = [(mi,€)) | i € 1.n, e; = Ples] € Value]

add [define (f,05)(c}) ¢'] where e’ = Plos(e)]

Figure 3. Basic online partial evaluator

below, the static values are objects. It is an error for thedal
code to include an object value; while values of primitiveeycan
be lifted in a program expression, objects cannot. Thisirement
ensures that the static object input is fully evaluated leygartial
evaluation step. Only primitive values derived from statijects
can be included in the residual program. Since message seamd i
operator, this requirement ensures that any message sestdtic
object must have only static arguments.

One of the past goals of partial evaluation research wastier
self-applicative partial evaluators. A self-applicatpatial evalua-
tor is not just a partial evaluator that can be self-appled one for
which self-application has some benefit. The first probleth thiis
evaluator is that it performs explicit substitutions on gregram;
the result of a substitution is not known, so it cannot be isfhec
ized. It is easy to convert the partial evaluator to use ermitents
instead of substitution. Online evaluators have a moredorehtal
problem: at every stef® tests if the result of evaluating an ex-
pression is static or dynamic. Because the outcome of ticiside
is unknown, both branches must be included in the residui¢.co
The net effect is that the residual code is simply an unmpltifithe
partial evaluator, without any significant computationisnélated.
Binding time analysis makes static decisions about whiqires¢
sions are static or dynamic, so the residual code of selficgtipn
can be simpler than for an online partial evaluator.

Self-application is not necessary for a partial evaluatobée
useful. Pummel relies only on the® Futamura projection [8],
because the goal is to specialize model interpreters to k®mp
a model. For many applications the speed of compilation is no
significant.

3. Models

Pummelis focused on the creation, manipulation and inééaion
of models. Amodelis a description of something of interest. The
data in an SAP database is a model of a business. A finite state m

type DataModel {
String name;
Type* types;

type Type {
key String name;
bool primitive = false;
Field* fields;
Field? key;

[* primitive = fields={} */
* key € fields unique identifier */

type Field {
key String name;
Type type;
Boolean optional = false;
Boolean many = false;
Object default;

}

/* the field has a set of values */
[* default is of typetype */

Figure 4. DataModel: a data model that describes data models.

chine can model the behavior of a device, like a microwavenove

= ("DataModel” “Type” “Field")

; List of types with number of fields
(for T (: D 'types) cons
(list (: T 'name) (for F (: T 'fields) + 1
= ((“DataModel" 2) (“Type" 4) (“Field"

0)
5))

; D.types[“Field"].fields[“optional”].type.name

(tet ((T (: (: D 'types) 'item “Field")))
(: (- (: (- T 'fields) 'item “optional”) 'type) 'name))
= “Boolean”

Given a collectiorC and a valueX, the expression
(: C 'item X)
returns the collection element whose key eqials
It is interesting to consider the relationship between Kiel
of data model and the type systems used in many branches of
programming language research, based on recursion, suths an

products. It is clear that both systems can encode the dfoer.
example, a type with a collection of fields can be viewed as a

A grammar can model a natural language. A makefile describes labeled product.

the dependencies and commands in a build process. A setaf equ
tions can model many different phenomena, including chalmic
processes or financial markets. These are all examples oflmod
that describe the real world.

A meta-modelis a model that describes models. A database

Since Pummel is currently dynamically typed, the systensdoe
not enforce any static relationship between objects andbdels
that describe them. In this following section, we define aegien
operation to check that an object is a valid instance of amatzel.

schema can describe the structure of the SAP database. TRe BN 4. Generic Operations

language describes the structure of grammars. Types casebda
describe the structure of any kind of data, including thecstre of
makefiles.

Some models can also describe themselves. Object-oriented

classes can describe the properties of classes; an exasnile i
reflection classes in Java or C#. The data in some specidlatzta
tables can describe the structure of a database’s tablesBNF
language can be defined using a grammar written in BNF. And
types can be used to describe the structure of types.

Pummel uses graphs of objects to represent models. To impos
some structure on the objects, Pummel uses meta-modelataA
mode] or schemaorganizes objects into classes and defines the
allowed relationships between them. Examples of data maddel
clude Semantic Data Models [9], UML Class diagrams [30],tint
Relationship models [4]. A data model that describes datatsds
the core of all data modeling; an example is the UML meta-rhode
[22]. A simple form of meta-model for data, call&@htaModel is
given in Figure 4. This data model is defined using a simple dat
model language based on Java class definitions. A type definit
is a name followed by a set of fields. A field has a type, a name
and an optional default value. An annotation may follow et
? means optional, ani means many-valued. A field may also be
marked as being the key for a type, which means that field ehqu
identifies an object within its container. These types atsemble
the classes in the Java reflection model [33].

e

A generic operation expresses a general strategy for anbiev
goal. Programmers often have general strategies in thad, lzend
they specialize them manually to the particular situatibraay
given point in a program. Examples include validating datam-
paring, differencing, combining, reading, writing, or re@ophis-
ticated forms of parsing and formatting.

4.1 Validation

Thevalidate operation in Figure 5 checks if an object satisfies the
requirements in a data model type. This is a simplified véiliea
algorithm that does not handle cyclic object graphs. Teples for
cyclic objects are discussed in Section 4.3. This versistrggturns
true or false, but a more sophisticated validation routre return

a list of all the error found.

When partially evaluated with respecttigpe, validate reduces
to a series of type checks on the object’s fields. The statigeta-
tions are underlined. An example of a specialized validatetion
is given in the next section.

4.2 Read

A generic reader uses a data model to guide conversion of an
external representation into a collection of objects dbedrby the
data model [5]. A simple external representation is a taggesl

that specifies types and fields of objects, similar to XML:

A data model describes the legal operations on values. Fhe as Vajue = Primitive | (Type (field: Value ...) ...)

sertions are observational; the data model does not neite Sssy
anything about how the values are implementedD Hepresents a
data model, which is described ByataModel and which describes
DataModel then the following operations are legal:

: name of data model
(: D 'name) = “DataModel”

; names of types in data model
(for T (: D 'types) cons (: T 'name))

Type names and field names alternate at each level of nesting
in the S-expression. Parsing other representations,dmguinear
text, are a natural extension of this approach. As a sim@eneie,
consider the following data model for hierarchical outtine

type Outline { String label; Outline* contents; }

The validation function for Outline objects is the resultpair-
tially evaluatingvalidate with the Outline type as a static argument
(generated code is shown in a box):

(define (validate type obj)
(if (: type 'primitive)

(if (equal? (: type 'name) "String")
(string? obj)

(if (equal? (: type 'name) "Boolean")
(boolean? obj)

(if (equal? (: type 'name) "Integer”)
(integer? obj)
#f)))

; else its is not primitive

(for field (: type 'fields) and
(validate-field field obj))))

; validate a field of an object
(define (validate-field field obj)
(if (not (: field 'many))
; single-valued field, if not defined, must be optional
(if (defined? (: obj (: field 'name)))
(validate (: field 'type) (: obj (: field 'name)))
(: field 'optional))
; many-valued fields
; for item in obj.(field.name).items
(for item (: obj (: field 'name)) and
(validate (: field 'type) item))))

Figure 5. Validation of an object against a data model.

(define (validate-Outline obj)
(and (validate-String (: obj 'label))
(for item (: obj 'contents) and
(validate-Outline item))))

Below is an Outline value describing part of the outline aéth
paper, represented as a nested tree structure:

(Outline (label: “Research Paper”)
(contents:
(Outline (label: “Introduction™))
(Outline (label: “The Pummel Language”)
(contents:

(Outline (label: “Objects”))
(Outline (label: “Monoid Comprehensions™))))

(Outline (label: “Models”))))

A basic generic reader is given in Figure 6. This reader does n
ensure that the structure it creates is valid. It takes ast iaglata
model, a factory for creating objects described by the daideh
and a data tree. If the data is not a pair, then it must be a wdlue
primitive type. If the data is a list, then its first item must & type
name.

It would be natural to use indexed access to find the corre-
sponding type(: (: D 'types) 'item (car data)). However, this
would prevent partial evaluation because the desiredcstypie
value would depend upon dynamic data. Instead the reader use
a loop to search the finite set of types for one whose name emtch
the data. This is a standard form of binding-time improveirfit3).
Although a linear search makes the unspecialized readsesld
allows specialization of types and is potentially much dastfter
specialization.

Once the reader has identified the appropriate type, it kihfls
to a new object, and then iterates over the field specification
the data. Again it searches for an appropriate field, rathen t
indexing into the fields collection. It then has two casesetieljng
on whether the field is single-valued or many-valued. Inegittase,

(define (read D factory data)
(if (not (pair? data))
data
(for type (: D 'types) first
(if (eq? (: type 'name) (car data))
(let ((obj (: factory 'new (: type 'name))))
(for field-data (cdr data) begin
; field = type.fields[car(field-data)]
(for field (: type 'fields) first
(if (eq? (: field 'name) (car field-data))
(if (not (: field 'many))
; single-valued
(let ((val (cadr field-data)))
; insert check for future reference here
; obj.(field.name) = read(D, factory, val)
(: obj (make-symbol 'set- (: field 'name))
(read D factory val))))
: multi-valued
(for val (cdr field-data) begin
; obj.(field.name).insert(read(D, factory, val))
(: (: obj (: field 'name)) 'add
(read D factory val)))
skip)
(error-msg ‘(Invalid field ,(car field-data)
for type ,(: type 'name)))))
obj) skip)
(error-msg ‘(Invalid type ,(car data)))))

Figure 6. A generic reader with static expressions underlined, for
static D

(define (read-Outline factory data)
(if (not (pair? data))
data
(if (eq? 'Outline (car data))
(let ((obj (: factory 'new 'Outline)))
(for field-data (cdr data) begin
(if (eq? 'label (car field-data))
(let ((val (cadr field-data)))
(: obj 'set-label (read-Outline factory val)))
(if (eq? 'contents (car field-data))
(for val (cdr field-data) begin
(: (: obj 'contents) 'add (read-Outline factory val)))
(error-msg ‘(Invalid field ,(car field-data)
for type Outline)))))
obj)

(error-msg ‘(Invalid type ,(car data))))))

Figure 7. A specialized Outline reader (generated code)

the key issue is how to set or insert the field value. Given d fiel
namedX, it can be set tavalue by calling (: obj 'set-X value).
Thus the reader constructs the method name dynamicallylloyoca
(make-symbol ’'set- (: field 'name)). This kind of operation is
typical of reflection in Java. When specialized, these réflecalls
become static method calls.

The specialization ofead to theOutline data model is given in
Figure 7. All of the names in method calls are static. The dede
similar to what a programmer would write by hand to read aetli
objects.

(DataModel (name: “DataModel”) (types:
(Type (name: “Type")
(key: (@ (types “Type”) (fields “name”)))
(fields:
(Field (name: “name”) (type: (@ (types “String”))
(Field (name: “primitive”) (type: (@ (types “Bool”
(default: false))
(Field (name: “fields”) (type: (@ (types “Field")))
(many: true))
(Field (name: “key”) (type: (@ (types “Field")))
(optional: true))))
(Type (name: “Field")
(key: (@ (types “Field") (fields “name’)))
(fields:
(Field (name: “name”) (type: (@ (types “String"))))
(Field (name: “type”) (type: (@ (types “Type”))))
(Field (name: “optional”) (type: (@ (types “Bool")))
(default: false))
(Field (name: “many”) (type: (@ (types “Bool")))
(default: false))
(Field (name: “default”) (type: (@ (types “Object”)))
(optional: true))))
(Type (name: “String”) (primitive: true))
(Type (name: “Object”) (primitive: true))
(Type (name: “Bool”) (primitive: true))))

)
)

Figure 8. DataModel expressed in storage format

4.2.1 Reading Circular Structures

Most object models are graphs of objects with cycles, nestes in
the Outline example above. One strategy for creating cptijects
is to create the objects first, then add cyclic links betwémmt

There are several ways that the cross links between objantbe
specified. Some lisp reader/writers mark the target of alzirgef-

erence with an identifier, where later use of that identifieates a
back link to the previous structure. Another approach, tmeed, is
to use symbolic paths to specify the target of a potentiatiyuéar

reference. The paths are a simplified form of the navigatiana
cess paths illustrated in Section 3. The paths contain aflf&lds

and item keys:

pseudocode root.types[‘Field"].key
code (: (: (: root "types) 'item “Field") "key)
path ((types “Field") key)

Given this notation for static paths, the storage format lwan
extended to allow references between objects:

Value = Primitive
| (Type (field: Value ...) ...)
| (@ Path...)

Path = (field Primitive) | field

ThePath elements access items starting from the root of the ob-
ject being read. An example of a circular structure isitheaModel
from Figure 4, which is shown in storage format in Figure 8.

The read procedure can be extended to handle circular struc-
tures, as shown in Figure 9. Thead-circular procedure creates
a fixup list to keep track of the cross-references betweeactdj
that must be created after the objects have been creatett ite
the fixup list have the formdiobject field path) indicating that a
field of an object should be assigned the value at a given path i
the final structure. This version of the reader only suppeater-
ences for single-valued fields, although it is not difficolsupport
many-valued fields as well. After the object is read in, thagilst

(define (read-circular D factory data)
(et ((fixups (dynamic (make-list-collection '()) data)))
(let ((obj (read D factory fixups data)))
; update the objects with the new locations
(for action fixups begin
(let ((target (car action))
(setter (cadr action))
(value (lookup (caddr action) obj)))
(: target setter value)))

obj)))
(define (read D factory fixups data)

; Insert this code at “check for future reference” in Figure 6
(if (and (pair? val) (eq? (car val) 'Q))
; delayed reference
(: fixups 'add (list obj
(make-symbol 'set- (: field 'name))
(cdr val))))
)

(define (lookup path obj)
(if (null? path) obj
(if (pair? (car path))
(let ((field (caar path)) (val (cadar path)))
(lookup (cdr path) (: (: obj field) 'item val)))
(lookup (cdr path) (: obj (car path))))))

Figure 9. Modifications to the reader to load cyclic data

is processed to lookup the paths and assign the resultirgtdig
fields.

Partial evaluation of the reader must take into account itte- b
ing time of the fixup table. If the reader is partially evakeonly
with respect to a data model, then the fixup table must beexteat
and updated as a dynamic value. The expreqsigmamic (create-
hash '()) data) ensures that the fixup table is dynamic, even though
(create-hash '()) appears to be static. This is a known technique.
The inclusion oflata in the dynamic expression is explained in the
next section, when both the data model and the data are evedid
static.

While partial evaluation successfully specializes thigeoit
does not eliminate all reflective operations:riead-circular, the
expressior(: target setter value) does not call a statically known
method. Instead, the variabletter contains the name of the setter
method to be called. In addition, the lookup function is rpedal-
ized because the path comes from the dynamic data.

An alternative would be to create a list of fixup objects with a
single method fixup taking the root object as a parameters@he
fixup objects would then be specialized to static methodghef
paths were specified in the data model or another static mibel
the path lookups could also be specialized. These posi&bitire
areas for future research.

4.2.2 Creation Scripts

It is also useful to partially evaluate the reader with respe the
input data, in addition to the data model. The result is aispized
program for quickly constructing an object graph: in effect ob-
ject creation script [34]. If botd anddata are static, the goal is to
create a residual program that just invokes the factory laei $ets
object properties and references. The only dynamic exjpres
Figures 6 & 9 are the ones involvirfgctory andobj.
To achieve this goal, the fixup table must be created and manip

ulated at specialization time. What this means is that thepftable

(if (and (pair? val) (eq? (car val) 'Q))
; delayed reference
(future (id obj)
(¢ fixups 'add (list id (: field 'name) (cdr val))))

Figure 10. Use of future identifiers when specializing the reader
to generate a creation script

is dynamic if data is dynamic, and static if the data is stéttus
conditional behavior is implemented by the expresgidymamic
(create-hash '()) data). The general format is:

(dynamic result conditior)

The resultis marked dynamic if theondition evaluates to a
dynamic value, and static otherwise. This illustrates itngerative
code can be executed at either specialization time or doesigual
code execution.

There is one problem with the resulting specializationaitsf
when attempting to specialize the insertion into the fixupea

(¢ fixups 'add (list obj
(make-symbol 'set- (: field 'name))

(cdr val))))

The problem is thabbj is dynamic, yet it must be inserted
into the static fixup table. This is a binding-time contraidic; an
early-stage structure cannot normally contain valuededsat later
stages.

However, there is a one-to-one correspondence betweect®bje
created by the reader and parts of the storage data. Thus it ig
possible to create a static name for each dynamically atedgject.
These names can then be inserted into the static fixup table, t
uniquely identify object values. To achieve this goal, wedduce
a new expression to create static names for dynamic values:

(future (var exp body)

The future expression bindvar to a staticfuture identifier

(define (create-DataModel factory)
(define FM (make-table))
(let ((obj (: factory 'DataModel '())))
(: obj 'set-name “DataModel")
(: (: obj 'types) 'insert
(let ((objl (: factory 'Type '())))
(: objl 'set-name “DataModel”)
(table-set! FM 1 obj1)
(: (: obj1 'fields) 'insert
(let ((obj2 (: factory 'Field '())))
(: obj2 'set-name “name”)
(table-set! FM 2 obj2)
ob2))
(: (: objl 'fields) 'insert
(let ((obj3 (: factory 'Field '())))
(: obj3 'set-name “types”)
(table-set! FM 3 obj3)
(: obj3 'set-many #t)
obj3))
obj1))
(: (table-ref FM 1) 'set-key (lookup-Type-name obj))
(: (table-ref FM 2) 'set-type (lookup-String obj))
(: (table-ref FM 3) 'set-type (lookup-Type obj))

ob}))
(define (lookup-Type-name obj)
(let ((obj (: (: obj 'types) 'item “Type")))
(: (: obj 'fields) 'item “name”)))

(define (lookup-Type obj)
(: (: obj 'types) 'item “Type"))

(define (lookup-String obj)
(: (¢ obj 'types) 'item “String"))

representing the dynamixpthat will exist in the residual code.

Thevaris bound withinbody: The future identifier is created only if
valueis dynamic. The entiréuture construct is always dynamic. If
the partial evaluator could return both a static value angnaihic
effect, then the future construct could be simplifiedficcure exp),
where the future identified is returned rather than bounds iEha
direction for future research. The semantics of future V@mgiin
Figure 12.

A dynamic table is created to map future references to thesr t
dynamic values. The future values are the keys of this mager\gh
future value is used in a dynamic context, a lookup is insiri®
the code to return the dynamic value associated with theaede.
The reader can now be fixed to support specialization odaits
argument, as shown in Figure 10.

A part of the resulting create script for tfataModel in Fig-
ure 8 is given in Figure 11. All of the method calls are statien
the traversal of the paths from the storage data.AMedable could
be replaced by a collection of local variables or an arrag fEsult
would more closely resemble what a programmer would write.

4.3 Equality

A generic model-driven equality function takes three argots: a
model and two values, where the model is a description ofelee r
vant properties of the values. The relevant informatiorefquality
is primarily structural: what observations can be made entifo
values so they can be compared. A simple model-driven dguali
function is given in Figure 13. This function is sufficientd¢om-
pute equality ofTree values.

The functionEqual creates a hash table to check for circularity
in the structures. It then caligjuall, which does most of the work.

Figure 11. Partial listing of generateBataModel create script

Pldynamic op(es...en) when(e...ep,)] =

{ [op(Pler], - - ., Plen])]

Plop(er...en)]
Plindirect z = ejines] =

{

Ple] = { Elook:up

Ji : Plei] ¢ Value
otherwise

Pllet z = erin es]
[store(z, Plei]); Pllz — z]ez]]

Ple1] € Value
where z is fresh

(2)] when lifted to a dynamic context
in a static context

Figure 12. Partial evaluation of future and conditional dynamic

If type is primitive it compares the primitive values directly; b
then the values must be objects. It checks to see if the atijeste
been tested before, and if so uses the hash table to ensttheha
cycles are equivalent. Otherwise it adds an entry to thetdbén
compares each of the fields of the objects. The equality fumct
resembles a bisimulation check, although it also checktifgeof
objects on cycles.

(define (Equal type a b)
(Equall type (dynamic (create-hash '())) a b))

(define (Equall type hash a b)
(if (: type 'primitive)
(equal? a b) ; base types
(if (defined? (table-ref hash a (void)))
(eq? b (table-ref hash a)) ; already checked
(begin ; add to table and check
(table-set! hash a b)
(for field (: type 'fields) and
(if (not (: field 'many))
; a.(field.name) = b.(field.name)
(Equall (: field 'type) hash
(: a (: field 'name))
(: b (: field 'name)))
; many-valued
(and ; a.(field.name).size = b.(field.name).size
(eq? (: (: a (: field 'name)) 'size)
(: (: b (: field 'name)) 'size))
(let ((key (: (: field 'type) 'key)))
(for e (: a (: field 'name)) and
; e = b.(field.name)[e.(key.name)]
(Equall (: field 'type) hash
e
(: (: b (: field 'name))
'item

(: e (: key 'name)))))))

Figure 13. Generic equality function.

5. Related work

This paper is a continuation of work on applying partial eailon
to model interpreters [5]. One of the advantages of exptictel
transformation is that the target language is defined byrtest
formation. With partial evaluation, the residual prograraiways
defined in the same language as the interpreter, althougé ihe
some work on overcoming this limitation [31].

5.1 Reflection

Reflection is a technique for reifying the state of a runnimg-p
gram [29]. In object-oriented programming, reflection a#oin-
trospection over the structure of classes and the runtiawk sThe
class structure is an example of a meta-model, a data steuttat
describes a class. The original idea of reflection also epessed
making changes to these representations, and even magifyen
interpreter that executes the current program. As is corhmused,
in Java and C#, reflection is used to retrieve a model tharitbesc
code structure, and then invoke operations dynamically.

Model interpreters invert this relationship; rather thaniek re-
flective information from code, Partial evaluation thenides code
from models. The desire to have more modeling information is
driving the inclusion of extensible attributes on classed meth-
ods. Ruby on Rails [21] and other object-oriented framewarke
this technique. However, the focus is still on code, not ordet®
in and of themselves.

The Walkabout technique allows a generic equality to be-writ
ten using the reflective API in Java [26]. The validate operain
Section 5 is very close in structure to the Walkabout classaksY
bout does not need an explicit model argument, as in modied+dr
generic equality, because it can be derived via reflectiom fthe
values being compared. The explicit separation of modelq dy+

namic) data presented here is important because it faegifzartial
evaluation. From the viewpoint of partial evaluation, die static
models from dynamic objects by reflection is a binding time er
ror. Given a static model, partial evaluation can convertadtyic
method invocations to static calls.

5.2 Datatype Generic Programming

Datatype generic programming allows generic functionsetavtit-
ten that work on any data type [12]. Existing approaches viagrk
defining generic functions for the type constructors (orctors)
that are used to create types. The generic function for afgpec
type is created by assembling the appropriate generic coemi®
based on the particular structure of the type. Examplestaftype
generic programming include Generic Haskell [11], PolyR][2
and Scrap Your Boilerplate (SYB) [17], and Adaptive Program
ming [25]. The entire system can be type-checked in advamce t
ensure that all generic function instances will be well-akdfi

Generic model-driven operations, as described in thismpape
low generic functions to be written over arbitrary data typghich
are described by data models. The generic function computrs
the data model itself, not the constructors used to creatpea t

Models are more general than a types, in that it can include
attributes or constraints that influence the semantics eftype.
Polytypic programming also uses specialization to cre@tances
of a generic function, but it does not allow arbitrary congtian
over the structure of a type. The downside is that Pummel does
currently provide static type safety. It is an open questitrether
the generic operations in this paper can be type-checked.

5.3 Metaprogramming

Sheard discusses a number of approaches to metaprograf@®jng
The generic model-driveBqual function does not use what is tra-
ditionally called metaprogramming, because it neitherdpoes
nor computes over explicit representations of programsvéyer,

it does use the modal, which is in some sense a meta-level value,
since it is a description of andb. But the key point is that the
model-generic function just does the work of comparing tak v
ues, while the equality generator function writes a progtaat
does this work.

Template metaprogramming C++ provides a Turing-complete
language for writing a form of metaprogram or generic tem-
plate [6]. Templates are instantiated at compile time, hygh-
eral and specific template instances may be defined. Encéding
computation in templates is awkward, since it does not halezm
representation of data at the meta-level. It is also notiplesfor

a template to add arbitrary methods (with computed names) to
generated class.

Multi-stage programming Multi-stage programming allows pro-
grams to write programs. It is closely related to partiall@exaon.
Many partial evaluation systems create an explicit muégs pro-
gram, also called a two-level calculus, that is run to gemeettae
residual program. Since the first phase of partial evalnatidich
creates the multi-stage program, is often the most prolilema
it can sometimes be more effective to write the multi-stage p
gram manually. Type systems have also been developed fa mul
stage programming languages, although there is some dalfiate
whether these type systems prohibit some typical kinds dfimu
stage programs.

However, it is quite difficult to write multi-stage programft
the same time, the need to write explicit programs is lesbéye
the increasing effectiveness of partial evaluation, nogtil above.

6. Conclusion

This work is part of a larger effort to develop a programming

environment based on partial evaluation of model integuseand
generic operations. The programming language and enveogm
called Pummel, is implemented in itself. If successful, Puenmel
environment will be a demonstration of the power of modébeair

development, in the same way that Smalltalk demonstrates th

power of object-oriented programming.

We show that a simple online partial evaluator is sufficient t

specialize generic operations over data models, for viadidaread-
ing, and equality. Other operations, for differencing, pasition

and writing can also be defined. One of the benefits of this-tech

nigue is that it avoids the use of explicit metaprogramming a
staging that are commonly used in model-directed programgmi

There are many issues remaining to be resolved. Future work

will consider how to type-check generic model operationke T

residual code could given here could in most cases be aedotat

with types so that a traditional static type-checker coutdify
type safety. But type-checking the generic operationfiisehore
difficult. Validation is similar to type-checking.

Specializing model interpreters and generic model opmrati
may be a “sweet spot” for partial evaluation, because these-f
tions tend to be simpler than interpreters of Turning coneplien-
guages. It is not necessary to have a self-applicable pavatua-
tor, because we are only interested in creating compiledstapdot
creating compilers. To control partial evaluation furthee pro-
hibit static objects from being residualized, as a resely tihust be
fully consumed during partial evaluation.

References

[1] N. Adams and J. Rees. Object-oriented programming ire8e&h In
Proc. of the ACM Conf. on Lisp and Functional Programmipgges
277-288, 1988.

[2] S. Ahmed and G. Ashraf. Model-based user interface agging
with design patterns.Journal of Systems and Softwata Press,
Corrected Proof.

[3] K. Asai, H. Masuhara, and A. Yonezawa. Partial evaluaid call-
by-value\-calculus with side-effects. IACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Marzitoh
(PEPM '97, pages 12-21, 1997.

[4] P. P. Chen. The entity-relationship model - toward a edifview of
data. ACM Transactions on Database Systems (TQDR&)):9-36,
1976.

[5] W. R. Cook, B. Delaware, T. Finsterbusch, A. Ibrahim, and
B. Wiedermann. Strategic programming by model interpi@tat
and partial evaluation. (Submitted for publication to ICEID9).

[6] K. Czarnecki, J. O'Donnell, J. Striegnitz, and W. Taha&NCS 3016
chapter DSL Implementation in MetaOCaml, Template Haskeltl
C++. Springer Verlag, 2004.

[7] L. Fegaras and D. Maier. Towards an effective calculusofgject
query languages. IACM SIGMOD International Conference on
Management of Datgpages 47-58, 1995.

[8] Y. Futamura. Partial evaluation of computation process approach
to a compiler-compiler. Systems, Computers, Contro&s45-50,
1971.

[9] M. Hammer and D. McLeod. The semantic data model: a mivdgll
mechanism for data base applications SIGMOD '78: Proceedings
of the 1978 ACM SIGMOD international conference on manageme
of datg pages 26-36, New York, NY, USA, 1978. ACM Press.

[10] D. Harel and A. Naamad. The statemate semantics ofctiates.
ACM Transactions on Software Engineering and Methodol6gy4—
64, 1996.

[11] R. Hinze and J. Jeuring. Generic haskell: practice aedry. Inin
Generic Programming, Advanced Lectures, volume 2793 of3.NC

pages 1-56. Springer-Verlag, 2003.

[12] R. Hinze, J. Jeuring, and A. Ldh. Comparing approadbeseneric
programming in Haskell. Irspring School on Datatype-Generic
Programming 2006.

[13] N. D. Jones, C. K. Gomard, and P. Sestd?artial evaluation and
automatic program generationPrentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1993.

[14] M. Kaufmann, J. S. Moore, and P. ManoliosComputer-Aided
Reasoning: An ApproachKluwer Academic Publishers, Norwell,
MA, USA, 2000.

[15] R. Kelsey, W. Clinger, and J. Rees. Revised 5 report emlfjorithmic
language Schem@CM SIGPLAN Notices33(9), 1998.

[16] V. Kulkarni and S. Reddy. Separation of concerns in nhaligen
developmentlEEE Software20(5):64-69, 2003.

[17] R. Laemmel and S. P. Jones. Scrap your boilerplate: etipah
approach to generic programming. ThDI 2003 July 2002.

[18] R. Lammel, E. Visser, and J. Visser. The Essence oft&fia
Programming, 2002. Available attp://www.cwi.nl/ ralf.

[19] R. Lammel, E. Visser, and J. Visser. Strategic prograng meets
adaptive programming. IRroceedings of Aspect-Oriented Software
Development (AOSD’03pages 168-177, Boston, USA, March 2003.
ACM Press.

[20] G. Lapalme. Implementation of a “Lisp comprehensiondaro.
SIGPLAN Lisp PointerdV(2):16—23, 1991.

[21] R. M. Lerner. At the forge: Ruby on railsLinux J, 2005(138):8,
2005.

[22] O. management Grou@®MG Unified Modeling Language Specifica-
tion, version 1.30MG, http://www.omg.org, March 2000.

[23] A.-F. L. Meur, J. L. Lawall, and C. Consel. Towards briialg the gap
between programming languages and partial evaluatiorPHRM
'02: Proceedings of the 2002 ACM SIGPLAN workshop on Partial
evaluation and semantics-based program manipulagmages 9-18,
New York, NY, USA, 2002. ACM.

[24] U. Norell and P. Jansson. Polytypic programming in Hisk
In In proceedings of the 15th International Workshop on the
Implementation of Functional Languages (IFL 20pages 168—184,
2003.

[25] D. Orleans and K. Lieberherr. DJ: Dynamic adaptive paogming
in java. InReflection 2001: Meta-level Architectures and Separation
of Crosscutting ConcernsKyoto, Japan, September 2001. Springer
Verlag. 8 pages.

[26] J. Palsberg and C. B. Jay. The essence of the visitoerpattin
COMPSAC '98: Proceedings of the 22nd International Compute
Software and Applications Conferengages 9—-15, Washington, DC,
USA, 1998. IEEE Computer Society.

[27] J. D. Poole. Model-driven architecture: Vision, staris and emerg-
ing technologies. Iin ECOOP 2001, Workshop on Metamodeling
and Adaptive Object Model2001.

[28] T. Sheard. Accomplishments and research challengeneia-
programming. InProceedings of the Second International Work-
shop on Semantics, Applications, and Implementation ofifara
Generation pages 2—44. Springer-Verlag, 2001.

[29] B. Smith. Reflection and semantics in Lisp. In K. Kenneelgitor,
Proc. of the ACM Symp. on Principles of Programming Langsage
pages 23-35. ACM, 1984.

[30] R. Software. Whitepaper on the UML and Data Modelingd@0

[31] M. Sperber and P. Thiemann. Two for the price of one: cosig
partial evaluation and compilation. IRroceedings of the ACM
SIGPLAN '97 Conference on Programming Language Design and
Implementation (PLDI), SIGPLAN Noticesages 215-225. ACM
Press, 1997.

[32] M. Sperber and P. Thiemann. Generation of LR parsersaotigb
evaluation.ACM Trans. Program. Lang. Sys2(2):224-264, 2000.

[33] Sun. Web page for the Java reflection API. Internet, 2003
http://java.sun.com/j2se/1.3/docs/guide/reflection/index.html.

[34] D. Syme. Initializing mutually referential abstradijects: The value
recursion challengeElectr. Notes Theor. Comput. Sc148(2):3-25,
2006.

[35] E. Visser. Domain-specific language engineering. IiL&nmel
and J. Saraiva, editor®roceedings of the Summer School on Gen-
erative and Transformational Techniques in Software Eegjiimg
(GTTSE’'07)Icns. Springer Verlag, 2007.

[36] P. Wadler. Comprehending monads.LRP '90: Proceedings of the
1990 ACM conference on LISP and functional programmpages
61-78, New York, NY, USA, 1990. ACM.

