Model Transformation
by Partial Evaluation of Model Interpreters

William R. Cook, Benjamin Delaware, Thomas Finsterbusch,
Ali Ibrahim, Ben Wiedermann

Department of Computer Sciences, University of Texas atiAus
{wcook, bendy, tfinster, ai brahi m ben}@s. ut exas. edu

Abstract. In model-driven development, the use of both model traosdaand
model interpreters is widespread. Itis also well-known paatial evaluation can
turn an interpreter into a translator. In this paper we shoat & simple online
partial evaluator is effective at specializing a modelripteter with respect to a
model to create a compiled model interpretation. Data nsopese a particular
problem, because it is not clear what a data model intempvegald do, given
that data is generally considered to be passive. We show ltateamodel inter-
preter can be defined in an object-oriented style as a dynaessage-processing
function. Partial evaluation can then be applied to thisaabdel interpreter to
create a static dispatch function, analogous to a normiéd stass definition. We
also consider the case of user interface model interpretedsshow that partial
evaluation and deforestation can produce good speciatiagd. The user inter-
face interpreter illustrates a solution to integrating twodeling languages. The
system described here is bootstrapped from Scheme, attlibagyoal is to build
a complete software development environment based on nradgbreters.

1 Introduction

Model-driven development is a programming paradigm in Wigarts of a system are
defined by models. Models are usually written in domain-gjgdanguages [25] that
raise the level of description to focus @vhatis needed rather thamow to achieve
the goal. Examples of models include data models (UML Clésgrdms [29], Entity-
Relationship diagrams [5]), finite state machines (Statgst14]), grammars (regular
expressions, Yacc [17]), and user interface models (wagiés, XUL [4]). A model can
have multiple interpretations. Executable interpretatiare particularly useful when
building systems.

Many techniques are being investigated to define the irg&apons of models.
One common approach is to use a translator from one modelirgubge to another
modeling language or to code [21]. Dynamic interpretersadse common in prac-
tice, although they have received less attention in rebgamblications. One point of
confusion is that the term “interpreter” is often used to m&eanslator” in the model-
driven literature [19]. We use the term “interpreter” iniit®re traditional meaning as

! This material is based upon work supported by the Nationi@r8e Foundation under Grants
#0448128 and #0724979.

type Employee

salary: Integer

tax: Integer = salary « 0.3

name: String

manager: Employee

subordinates: many Employee inverse manager

Fig. 1: An employee data model.

a meta-program that executes a program in a given langu8gg][ITranslators have
the advantage that they can produce efficient code and tmgetintime environment.
Interpreters are often easier to write then compilers, ey fare typically slower and
do not necessarily integrate easily with other parts of éesyswhich may be written
in compiled languages.

This paper presents an approach to model transformatieultoespartial evaluation
of model interpreters. We first consider the problem of defjrdata model interpreters.
The issue is that data models dodt anything, so it is not clear what it means to
execute them with an interpreter. We take an object-orievitav of the data and expose
the operational behavior of objects in two steps: execudirass creates an object,
and executing an object means processing a message. Thadoaifehe object for
a given message is defined dynamically by the interpreteefgrence to the object’s
data model. The resulting data model interpreter is a dyoangithod handler. It is a
dynamic version of a traditional encoding of objects in Sohe

To eliminate the overhead of interpretation, we show thatigleevaluation [18]
is effective in specializing model interpreters. Partialaation converts the dynamic
dispatch in the data model interpreter into a form that cangdienized statically. We
also define a user interface model interpreter that integratdata model and a user
interface model.

We have implemented a prototype system for interpretingetspdalledPummel
based on Scheme. Pummelincludes a polyvariant onlineapavtkluator, although de-
tailed description of its capabilities are outside the scofthis paper. One advantage
of our approach is that a system can be run in interpreted nocaleow dynamic model
updates, but translated via partial evaluation for effiokxe@cution if the model is static.
Thus a single system definition supports both the Adaptije€@Model Architectural
Style [36] and traditional static user interfaces. One tiegaf the approach is that
the code generated by the partial evaluator is in Schemddtiyriage of the model
interpreter). The concept of model interpretation andiglaevaluation could be ap-
plied to other languages, or techniques for translatioridcba combined with partial
evaluation [31].

2 Background

To represent data, we use a form of Semantic Data Model [1)r& 1 is arEmployee
data model describing employees and managers. The datd hasdfive attributes or

class Employee {
int salary;
String name;
Employee manager;
Subs subordinates = new Subs();
/I salary getter and setter
int getSalary() { return salary; }
void setSalary(int salary) { this .salary = salary; }
/I name getter and setter
String getName() { return name; }
void setName(String name) { this .name = name; }
/I tax getter
double getTax() { return salary « 0.3; }
/I manager getter and setter
Employee getManager() { return manager; }
void setManager(Employee m) {
/I Handle bidirectionality
if (this .manager != null)
this .manager.subordinates.primitiveRemove(this);
manager = m;
if (manager !=null)
manager.subordinates.primitiveAdd(this);
}

/I subordinates getter
Set<Employee> getSubordinates() { return subordinates; }
/I Specialized set for bidirectional associations
// NOTE: method return types simplified for presentation
private class Subs extends HashSet<Employee> {
private void primitiveAdd(Employee e)
{ super .add(e); }
private void primitiveRemove(Employee e)
{ super .remove(e); }
public void add(Employee e)
{ e.setManager(Employee.this); }
public boolean remove(Employee e)
{ e.setManager(null); }

1

Fig. 2: Employee implementation.

Field
{inverse.owner = type}

Type -type 1

-name : String .
-primitive : boolean l.sowner __-fields|-name : String 0..1
0..* [-expression : String
-read-only : Boolean
-many : Boolean

0..1 inverse

Fig. 3: Meta-model of data models.

fields. Thesalary andname fields are mutable fields representing the salary and full
name of the employee respectively. Tiae field is a derived or computed value. The
manager andsubordinates fields represent the two sides of a one-to-many bidirectiona
relationship.

One possible implementation &mployee in Java is given in Figure 2. This code
embodies the common object-oriented strategy of hiddea atith accessor methods.
Each field has a getter. Each field which is not read-only, edeth or multi-valued
has a setter. The code in thranager getter and setter and in thebordinate collection
maintains the consistency of the bidirectional assoaiagach side of the relationship
sends appropriate (primitive) messages to the other s@@je [1

There are well-known techniques for generating the Jawsekin Figure 2 from
the data model in Figure 1. To implement a transformatiomfeodata model to code,
the data model is represented as an instancendta-modelor data model describing
data models, e.g. the Meta Object Facility (MOF) in UML [1Ejgure 3 gives a sim-
ple meta-model for data models. Tlields attribute on theType type has typeFields
indicating that the value is zero or more values of tygd. The fieldowner on Field
gives the type that a field belongs to, fidds andowner are the two sides of a bidirec-
tional relationship. This data model can also be implentitelava, using the same
strategy as that used in creating Figure 2; the code is aifitben this presentation in
the interest of space.

Using this data model, a transformation from data model V@& & given in Fig-
ure 4. The transformation given here is text-based; it iy éapresent without addi-
tional background. The figure omits some of the complexitifandling many-valued
fields, computed fields, and bidirectional relationshipsréisophisticated transforma-
tion engines can generate abstract syntax for Java or athgrggmming languages, thus
allowing the transformation writer to ignore details of 8ctic encoding.

2.1 Partial Evaluation

Itis well-known that interpreters can be optimized by @dmtvaluation [9, 18]. Given a
programP and interpretef, the execution of the program on input dd¥ds (P, D).
Since a program is usually run many times on different dagats P is calledstaticrel-
ative to thedynamicinput D. A partial evaluator, traditionally calleabix, can special-

SimpleTransJava(Type T) {
write ("class” + T.name + " {");
/I generate member variables
for (Field Fin T.fields)
write (" private " + fieldType(F)
+7 " + F.name + ”;\n");
/I omit generation of constructor...
/I generate methods
for (Field Fin T.fields) {
write(” public " + F.type.name
+ " get” + capitalize (F.name) +"() {\n");
if (F.expression)
write (" return ” + genCode(F.expression) + ";\n");
else if (F.many)
/I omit many-valued code generator...
else
write (" return ” + F.name + ";\n");
write (" }\n");
if (—F.read-only A —F.expression A —F.many) {
write (" public void set” + capitalize (F.name)
+ (" + F.type.name + " val) {\n");
write (" " + t.name +" =val;\n");
write ("}\n");

write ("}\n");

1}

Fig. 4: Data model to Java translator.

ize the interpreter on the static argumérb create a compiled versi@n = mixz(1, P)

of P with the property tha€'(D) = I(P, D). mix evaluates function calls and condi-
tional tests in/ that depend only on the static input. The resulting spexgdlprogram
C'is called thaesidualprogram.

3 Interpreting Data Models

We present a technique basedinterpretinga data model rather than transforming it
to code. A traditional approach to transforming a data mades the following steps:

l inst tiat .
Data Model ‘224" Code "***224'**° Object

An interpreter, on the other hand, does not generate cosledd, it directly inter-
prets the data model to create objects:

interpret

Data Model "— " Object

It is not clear what it means for an interpreter to execute ta daodel, because
data models are passive. The approach taken here is to tethgl@iperational behavior
of objects agnessage processing functiofifat is, an object is a function, where the
argument is a message. This approach can be used to createdypdut lightweight
object model in Scheme [2]. Using this approach, the type ddta model interpreter
is:

interpret process

Data Model "—= ~ (message " — result)

where an object is a value of type (messageesult). It is usually convenient to pro-
vide some initialization data for the newly created obj&tiese can either be supplied
by processing an “init” message, or else passed to the neterpivhen creating the ob-
ject. A simple data model interpreter is defined in Figure [ge Thterpreter is written
in Pummel, which is defined in the next section. The followssgtion describe how
Pummel is used to implement the interpreter.

3.1 Pummel Language

Pummelis a first-order subset of imperative Scheme [20] @bflects and monoid com-
prehensions [8]. First-class functions are avoided inmiasimplify partial evaluation,
although they appear in restricted form in the definitionlnjeots.

Monoid comprehensions are a first-order notation for tetirgd, filtering, and com-
bining a list of items [8]. Translation, or mapping, is ackdd by evaluating an expres-
sion for each element of the list. Filtering is achieved Hypwing the translation ex-
pression to be conditional; if it returskip the element is ignored. The results can be
combined by applying a binary operator to each translatmeht and the result of the
rest of the list. A base value is used as the result for the gligpt The concrete syntax
for this operation is:

(for wvar list op element base)

The effectis to calbp(element, rest) to combine the results of evaluatingment
with var bound to each item ifist, with the results from theest of the list. Ifelement
returnsskip then that item of the list is ignored. Finally, at the end o tist rest =
base. If op is non-strict in its second argument, then the rest of thteniay not be
computed.

Monoid comprehensions are similar to list comprehensid8g put allow replace-
ment of the normal cons/nil operations for constructingréfmilt list. For example, the
following expressions perform simple mapping and reduatiba list:

(for x'(123)cons (*xx)’()) = (149
(for x’(1 2 3) +x0) =6

It is sometimes convenient to omit the base value, and uséaaltgalue appro-
priate to each operator. Fopns, the default base value is the empty list. Rorthe
default value i9), and forbegin it is void.

(for x (1 2 3) begin (print x)) = prints 1, 2, 3
(for x ’(1 2 3) cons (if (odd? x) x (- x))) = (1 -2 3)

An explicit base value is useful in some cases. For examplerdpend items to a
list:

(for x'(123)cons (-x)’'(45)) = (-1-2-345)

The operator is required to be the name of a binary operatbgmexplicit lambda
expression. Common operators aens, +, and, or, begin, andfirst. The operator
first is a non-strict function that returns its first argumdfirst(a, b) = a. If a more
complex combination function is needed, the comprehensiost be rewritten as an
explicit recursive function.

To filter the list, the element expression can return theiapealueskip, indicating
that this value should not be included in the output:

(for x’(1 2 3) cons (if (odd? x) x skip)) = (1 3)

We sometimes omit thekip expression from the else clause of iexpression.
Finally, monoid comprehensions support finding the firainit@ a list that meets a
condition.

(for x (1 2 3) first (if (even? x) x skip) (error)) = 2

This is used to implement a common form of “the trick” for biingl type improve-
ment before partial evaluation [18]: lookup of a dynamicuealn a static structure is
rewritten as a loop over the static items with a test agaivestiiynamic value. Because
first is non-strict, theerror) expression is only evaluated if no even item is found.

One way to understand these monoid comprehensions is midten to Scheme [22],
as in Figure 6. The primary difficulty is the interpretatidrstip. Thefilter macro dis-
tributes the an operatiarp and a loop continuatiorest over theif so that the operation
is called if the condition result is nakip, and the loop is called only for strict opera-
tions.

One thing that cannot be done with the monoid comprehensiefised here is to
iterate over two lists, either in pairs or as nested iteratitt would certainly be possible
to extend the syntax to multiple parallel variable bindirigghe style oflet.

Pummel also has a macro to define objects [2]. In this casesarelds returned as
a value. The fornfobject (msg arg) body) defines an object (closure) identified this
with a dispatch functiorilambda (msg . arg) body). The: function sends a message to
an object; it applies the object to the arguments.

(define (Instantiate T)
; create local state
(let ((data (make-hash)))
; initialize the data state
(for F (: T *fields) begin
(hash-set! data (: F 'name) (default-val (: F 'type)))
; return the object dispatch
(object (msg args)
(for F (: T *fields) first
; check for get message
(if (eq? msg (: F 'name))
(if (defined? (: F 'expression))
(eval (: field 'expression) type)
(hash-ref data (: F 'name))
; check for set message, if not read only
(if (and (not (: F 'read-only)) (not (: F 'many))
(not (defined? (: F 'expression))))
(if (eg? msg (string-append “set-" (: F 'name)))
(if (defined? (: F 'inverse))
; see Figure 7 for setting relationships
(handleRelationship field data args)
(hash-set! data (: F 'name) (car args))))))))
; no message found
(error “Message not understood: " msg)))))

Fig. 5: A Data Model Interpreter in Pummel (static computasi underlined).

3.2 DataMode Interpreter in Pummel

The Data Model Interpreter in Figure 5 takes a tyipas in input. It first allocates a
private hash table to store the private data of the objednitializes the table with
default values that are appropriate for the type of each.field

The interpreter then returns an object represented by afass message-processing
function. The body of the function handles messages by exiamthe fields in the type
T. For each field, the object acceptget message andset message if the field is not
read-only. The message name is either the field name in casgegfor the field name
prefixed byset. Theget message simply returns the current field value from the f@iva
data.

Semantic data models can include computed fields, which eldsfiwvhose values
are not stored but are computed on demand. A computed fiekbigesented in the
schema by an expression which is non-null. The interpresadiesget messages for
computed fields by computing the result and returning its®iinple interpreter does
not handle the case where computed fields have a cyclic depend

Computed values illustrate the essential idea of includipgcialized code in a
model, which is executed by the interpreter at the appraptimes. This is essential
because not all aspects of a system can be realized using @rdspecific modeling
language.

(define-syntax for
(syntax-rules ()
((for var items op elem base)
(let loop ((scan items))
(if (null? scan)
base ; at the end of the list, evaluate the base value
(let ((var (car scan)))
(filter op elem (loop (cdr scan))))))))) ; filter the result, calling loop as needed

(define-syntax filter
(syntax-rules (if let skip)
((filter op skip rest)
rest) ; do not perform operation, just return rest of list
((filter op (if a b c) rest)
(if a (filter op b rest) (filter op c rest))) ; distribute over if
((filter op (let bindings body) rest)
(let bindings (filter op body rest))) ; distribute over let
((filter op elem rest)
(op elem rest)))) ; apply the operation

Fig. 6: Macros to define Monoid Comprehensions

The object interpreter implements a form of dynamic dispatehere the set of
messages is based on typérhis interpreter is very simple, in that it only supportsada
models with single-valued attributes. Figure 7 gives theegie code for interpreting
bidirectional relationships. It handles the case of onaitmy relationships, as in the
employee/manager relationship, and also one-to-oneéaedtips. The strategy is for
both sides of the relationship to send primitive update egss to the other side. Some
corner cases, for example assignment of a relationshiptbeidil , have been omitted
in the interest of space.

This interpreter creates in-memory objects. Another priegation could create ob-
jects that interface to a relational database.

3.3 Compiling Model Interpretersby Partial Evaluation

Unless they are compiled, interpreted data abstractionslawer than hand-written
versions. There is significant overhead due to interprdtiegdata model and in the
dynamic dispatch for each method. A model interpreter capdogally evaluated with
respect to the model to create a compiled program that repiethe interpretation of
that model. Figure 8 gives the result of partially evalugtine data model interpreter
in Figure 5 with respect to themployee model in Figure 1. Generated code is outlined
with a box to distinguish it from user-defined code. The rnesiccode resembles an
ordinary class definition. In particular, it would be possito create a static dispatch
for the methods, rather than using a rdvstatement.

The type parametarhas been completely eliminated from the residual code.dn th
current version of our system, the partial evaluator rexguihat the models be elimi-

; Code fragment setting relationship field in Figure 5
(define (handleRelationship field data args)
(let ((inv (: (: field 'inverse) 'name)))
(if (: (: field 'inverse) 'many)
(let ((new (car args))
(old (table-ref data (: field 'name))))
(if (defined? old)
(: (: old inv) 'prim-remove this)
(table-set! data (: field 'name) new)
(if (defined? new)
(: (: new inv) 'prim-add this))))
; else: single-valued inverse
(let ((new (car args)))
(table-set! data (: field 'name) new)
(if (defined? new)
(: new (string-append “set-" inv) this)))))

; Default value for many-valued relationship field
; Owner is object on which the collection field is defined
(define (collection field owner)
(let ((data (make-base-collection))
(inv (string-append “set-" (: (: field 'inverse) 'name))))
(object (msg args)
(if (eq? msg 'prim-add)
(: data’insert (car args))
(if (eq? msg 'prim-remove)
(: data 'remove (car args))
(if (eg? msg 'insert)
(: (car args) inv owner)
(if (eq? msg remove)
(: (car args) inv (void))

M)

Fig. 7: Interpretation of relationship fields.

nated; an error is signaled if a program use objects from theefrin the residual code
(although primitive values are allowed). In some cases#tsires programs to be writ-
ten in a non-intuitive fashion, to enable complete partral@ation. One common situa-
tion is accessing a finite static mapusing a dynamic inded, asin(f (: m 'lookup d)).
This expression cannot be simplified statically becaligedynamic. Converting the
lookup to an iteration

(for (k v) (¢ m’items) first (if (= k d) (f v)))
allows specialization by expanding the finite set of paks) in the map. This is a
standard application of “the trick”, or binding time impreawent [18].

Models are inherently finite, so if no model data is createdngduspecialization
then the process will terminate. With these two conditiaves have found that partial
evaluation of model interpreters is effective but not dipestt.

(define (Instantiate-Employee)
(let ((state (make-hash)))
(hash-set! state 'name nil)
(hash-set! state 'salary 0)
(hash-set! state 'manager nil)
(hash-set! state 'subordinates
(Collection-Subordinates state))
(object (msg args)
(if (eg? msg 'name) (hash-ref state 'name)
(if (eq? msg 'set-name)
(hash-set! state 'name (car args))))
(if (eg? msqg 'salary) (hash-ref state 'salary)
(if (eq? msg 'set-salary)
(hash-set! state 'salary (car args))))
(if (eg? msg 'tax) (* 0.3 (hash-ref state 'salary))
(if (eg? msg 'manager) (hash-ref state 'manager)
(if (eg? msg 'set-manager)
(let ((old (table-ref data 'manager)) (new (car args)))
(if (defined? old)
(: (: old 'subordinates) 'prim-remove this)
(table-set! data 'manager new)
(if (defined? new)
(: : new 'subordinates) 'prim-add this)))
(error “Message not understood: ” msg)))))))))
; Specialized collection class generated for subordinates
(define (Collection-Subordinates owner)
(let ((data (make-base-collection)))
(object (msg args)
(if (eq? msg 'prim-add)
(: data’insert (car args))
(if (eg? msg 'prim-remove)
(: data remove (car args))
(if (eq? msg 'insert)
(: (car args) 'set-manager owner)
(if (eq? msg remove)
(: (car args) 'set-manager (void)))))))))

Fig. 8: Instantiate specialized t&Employee (Generated code is placed in a box).

4 Interpreting User Interfaces

Models are frequently used to generate user interfaceai@] are also interpreted dy-
namically [35], although without partial evaluation. A uggerface typically has many
pages that are all different, but share an overall stratet}ysir construction. One prob-
lem in user interface implementation is to select and omgaparts of the data model
into a collection of pages that may be requested by a user.

Although HTML is a useful basis for layout, it does not haveleao model of
nested alternative layers. The set of pages can be condidestack of alternatives,

where each page is a two-dimensional layout. A page can alstaio alternatives,
which create variations on the main page.

Layout K= I 1
— View | | Edit | |Wrapper <=
-label : String DataList| | DataPages
-data : String
=] -variable : String
T 1 -content
1. Container [I 1
< obeled - Boolean List Pages DataTable
-contents -variable : String

Fig. 9: Layout data model.

(List (contents:
(List (labeled: true) (contents:
(View (data: “name”))
(View (data: “salary™))
(View (data: “tax™)))
(View (data: “manager”)))
(DataTable (data: “subordinates”) (contents:
(View) ; view current object
(View (data: “salary™))))))

Fig. 10: Presentation fd&Employee.

Figure 9 gives the data model for layouts. The abstract ahaapper represents
layouts that have a single sub-layout, whilentainer is for layouts with multiple sub-

layouts. A user interface is a projection of data into a spdq@esentations with links
between them.

Figure 10 gives an example page presentingloyee values of the schema data
model of Figure 1. This user interface description can berpreted to create web
pages, but it could also be interpreted to create a deskiapon.

4.1 Web Interpreter

A web interpreter generates a user interface for an apjitdefined by models, with
a given state and user request:

web : (Layout, Type, DB, Dataltem, Request) — HTML-list

The first two inputs of theveb interpreter are models for describing layout and data.
The last three inputs are the current data (database), thentitem of the database,
and an HTTP request for a specific part of the Ul. The web ingtep has cases for
each different kind of layout:

(define (web layout type db data request)
(let ((kind (: layout 'type)))

The presentation of a field can frequently be derived autiabt by reference to
the data model, as defined below. A primitive value is simplydered as text. Single-
valued relationships generate a link:

(if (equal? kind “View”")
(if (: type 'primitive)
‘(,(to-string data))
(if (defined? data)
‘((A ((HREF ("page=",(: data 'type)
"&id=",(: data 'key))))
,(: data 'name)))

‘0))

This simple web strategy uses the name as the link text, agcifigs a target of
page=type&id=key wheretype is the type of the object being shown, ak&y is the key
of the data object. Instead of just using the name, the ptatsen to be used for links
of a given type could be specified in the layout. For simpléssaalues, the data model
could specify the size of the field.

Edit layouts illustrate the tight integration of the useteifiace model with the data
model. The user interface simply requests an edit field,imiparticular formating of
the field is defined by examining the type of the field in the datalel. Edit layouts use
either an input box for primitive values, or a select menusfogle-valued relationships.

(let ((fieldName (: layout 'data)))
(let ((field (: (: type 'fields) 'item fieldName)))
(let ((partType (: field 'type))
(part (: data fieldName)))
(if (: partType 'primitive)
‘(INPUT ((TYPE text)
(NAME ,fieldName)
(ID (,(: data 'full-key) - fieldName))
(VALUE ,part))))
(if (not (: field 'many))
‘((SELECT ((NAME ,fieldName)
(ID (,(: data 'full-key) ’- ,fieldName))
(VALUE ,part))
,@(for option (: (: db (: layout 'range)) 'items) list
‘(OPTION ((VALUE ,(: option "full-key))
,@(if (egq? option part)
"((SELECTED)) '()))
,(: option 'name)))))

However, if there are more than 30 data values (all employegsompany) then a
drop-down is awkward. More complex user interfaces coulddmerated in this case,
with a “set” button that links to a hew window in which a valugncbe selected. For
many-valued fields, there are many alternatives, and theypeaselected by the web
interpreter as appropriate.

There are two ways to create composite layouts: either byidgfmultiple static
sub-layouts within the user interface, or by iterating alatydynamically for each item
in the data being presented. A static layout presents a pfetaa in multiple ways; that
is, each sub-layout presents a different part of the dats.i$hhe typical presentation
for a form page, which displays the fields of an object. In general thedacan be
a table, with single rows or columns being typical specialesa TheList renders its
contents, a set of sub-layouts, as a list of elements:

(if (equal? kind “List")
(for component (: layout 'contents) cons
(web component type db data request)))

A dynamic list layout, on the other hand, presents multi@ms of data by repeated
occurrences of a singl®ntent layout:

(if (equal? kind “DataList”)
(for item data cons
(web (: layout 'content) type db item request)))

Another kind of static layout is beledlayout, which produces the familiar col-
umn of label: datapairs found in many forms. The key point is that the labels are
computed from the data:

(if (and (equal? kind “List”) (: layout 'labeled))
‘((TABLE ()
,@(for sub (: layout 'contents) cons
‘(TR () (TD () ,(: sub 'data))
(TD () ,@(web sub type db data request))))))

A dynamic labeled layout is a data table, with a sub-layouefch column, with a
label, and a row for each dynamic data item:

(if (equal? kind “DataTable”)
‘((TABLE ()
(TR () ,@(for sub (: layout 'contents) cons
(TD () ,(: sub 'data))))
,@(for item data cons
(TR () ,@(for sub (: layout 'contents) cons
(TD () ,@(web sub type db item request)))))))

Finally, a page is a set of alternatives where only one ofales is showing at
a time. Pages can also appear inside another page, wherakieethe form of tabbed
layouts. Pages can either be statically defined, or cregteahdically one for each value
in a list of data.

(let ((bind (: (: request 'arguments)
‘lookup (: layout 'variable) (void))))
(if (equal? kind “Pages”)
(for sub (: layout 'contents) first
(if (eg-sym? (: bind 'value) (: sub ’label))
(web sub type db data request))
(if (equal? kind “DataPages”)
(let ((item (: data 'lookup (: bind 'value))))
(web (: layout 'content) type db item request))

The complete web interpreter must also handle buttongyragtand interpret data
that is posted to the server.

Model interpreters naturally handle one of the key probléemssing domain spe-
cific languages: how to integrate multiple languages.wétefunction uses information
from both the user interface and data models in order to gém@ages. No informa-
tion is specified more than once. Scheme macros can alsorimeptemini-languages,
which can be optimized by partial evaluation [15], but theuhlanguage of one macro
is typically not accessible during processing of anothecnmalhe integration of the
two languages takes place at the level of generated codat tiw level of models.

Theweb function can be partially evaluated with respect to a giveertnterface
and data models to produce static pages, or it can be exedyagnically. The latter
allows the user interface to lynamicfor users — so that users can edit the Ul of

(TABLE () ; Labeled list: name, salary, tax
(TR () (TD () “name™) (TD () “John Smith™))
(TR () (TD () “salary”) (TD () “1000007))
(TR () (TD () “tax™) (TD () “300007)))
(TABLE () ; DataTable: name, salary
(TR () (TD () “name”) (TD () “type”))
(TRQO
(TD () (A ((HREF ("?page=Employee&id=JaneSmith”)))
“Jane Smith”))
(TD () “70000™))
(TRO
(TD () (A ((HREF ("?page=Employee&id=JackSmith")))
“Jack Smith™))
(TD () *700007))))

Fig. 11: Generated HTML structure.

a page they are viewing, then refresh immediately to see ¢heWl. This approach

implements the Adaptive Object-Model Architectural St{aé]. One of the benefits of

using partial evaluation is that both adaptive and compitedles of execution can be
supported in a single application framework. Finally, ityn@dso be possible to create
agui interpreter that presents the same Ul model as a desktojeatiqh, rather than a

web application.

4.2 GeneratingHTML

The output of the rendering function is a labeled tree (ofow#lls) of the form

(tag (attribute...) child...).

Figure 11 gives the output rendering the layout in FiguredtQtie typeEmployee.

Thus the output is essentially another model, in this cadé¢TaviL model of a web
document. This outputis a Scheme S-expression, it is not HiEMt. Thehtml function
in Figure 12 writes such S-expressions out as text, usttigpéay function that prints all
its arguments to an output stream. Thal function is an approximation of a complete
function to encode S-expressions as text, with full ch&araehcoding. This illustrates
an important separation of concerns: the web renderingifumdoes not need to worry
about the encoding of HTML structure as text.

The problem with this arrangement is that the intermedia¢@ession structure
is only used to communicate a result frevab to html; it is thrown away immediately
after the page is output. We have combined a deforestatibmigue with partial eval-
uation to eliminate the intermediate data structure, sintd Sorensen’s approach [30].
The result of partially evaluating theeb function with respect to the Ul model in Fig-
ure 10 is given in Figure 13 (after some manual clean-up otlte for presentation).
The output code is similar to what a programmer might havétevriby hand for this
page. The example illustrates the ability to generate apeed code while preserving
modularity of the input program.

(define (html x)
(if (not (pair? x))

(display x)
(begin

(display “<” (car x))

(if (pair? (cadr x))

(for attr (cadr x) begin
(display " " (car attr) “=\"" (cadr attr) “\"")))

(display “>")
(for elem (cddr x) begin (html elem))
(display “</” (car x) “>\n"))))

Fig. 12: HTML structure to text conversion.

5 Implementation

We are implementing a system for interpreting models. Thaesy is being boot-
strapped on top of Scheme, but it is being implemented iff ésemuch as possible,
i.e. all data structures are described as semantic datalsnadd generic operations are
used pervasively.

We have implemented a fully polyvariant online partial exdibr for Scheme with
mutable state. This form of partial evaluator was chosemb®e it is simple to write
and modify. The full partial evaluator is 700 lines of Schecode, and includes a post-
processing step to normalize and optimize the residual.code

6 Evaluation & Related Work

We evaluate our approach by discussing related approacditethan comparing the
approaches according to several aspects.

The view of programming presented here touches on a numiendémental con-
cepts that appear frequently in computer science reseaaels, reflective/descriptive
meta-data, domain-specific languages, generic functiotespreters, and compilation.
To limit scope, we discuss only approaches aimed at mod#&imguages which are
generallynot Turing-complete, thus avoiding issues of true programntamguages.
We use the term ‘model’ to refer to any text or structure egpee in a modeling lan-
guage.

DSL TranslationDSL Translation includes domain-specific language enging¢32],
model-driven architecture [27], and hygienic macros [34je key characteristic of
transformational approaches is that they are a form of explieta-programmingpro-
grams that generate programs. Some systems generatetbghtax rather than con-
crete syntactic text. Other systems allow type-checkinpefgenerator (guaranteeing
safety of generated code) while others only type-check émeated code, or have no
type-checking at all. If transforming from one model to drestis useful, then compila-
tion can be viewed as model transformation, where impleat&mt code is just another

(define (web-P1-html data http-request)
(let* ((id (: (: http-request 'arguments) 'lookup 'id))
((data (: (: data 'employees) 'lookup id)))
(display “<TABLE><TR><TD>name</TD><TD>")
(display (: data 'name))
(display “</TD></TR><TR><TD>salary</TD><TD>")
(display (: data 'salary))
(display “</TD></TR><TR><TD>tax</TD><TD>")
(display (: data 'tax))
(display “</TD></TR></TABLE>")
(display “<TABLE><TR><TD>name</TD>
<TD>salary</TD></TR>")
(for field (: data 'subordinates) begin
(display “<TR><TD><A HREF="?page=Employee&id=")
(display (: (: field 'type) 'key)) (display “'>")
(display (: (: field 'type) 'name))
(display “</TD><TD>") (display (: field 'name))
(display “</TD></TR>"))
(display “</TABLE>")

Fig. 13: Generated web code.

model. Model transformation is a form of compilation, whére transformation gen-
erates code, while an interpretation focuses on behavior.

Stratego is a good example for comparison because it hasussehto develop
DSLs for data models and web applications [32]. Strategs tmeriting to transform
one language into another. WebDSL has a low-level page septation that can be
translated directly to HTML. Higher-level page construcas also be defined by ex-
tending the syntax and then giving rewrite rules to conveethigh-level form to its
representation in the lower-level language. This appreapharates the concerns of ren-
dering HTML from the processing of higher-level constru€ise advantage of Stratego
is that it is able to generate code in existing web framewdike Struts. The primary
difference is that our approach uses model interpretatather than transformation/-
compilation.

ReflectionGeneric operations, like equality, can be implementedgusgfiection [26].
Generic programs can also interpret special attributegtad to classes, as in Ruby
on Rails [24]. Reflection can also be used to generate codbeofiyt implementing
model transformations as described above. Despite théasitieis, there are two pri-
mary differences between reflective approaches and moepnetation. The first is
that reflection is normally defined to derive meta-data frarde; while our approach
uses independently defined models. Extensible code a#slanie one way to add more
semantics to code. The second is that partial evaluatiore hifficult with reflection,
because the static meta-data is derived from dynamic values

DSL EmbeddingDomain specific languages can be naturally embedded witlanya
functional language [16, 23]. The basic concepts of the D@&Lhaodeled as functions,

and the DSL’s syntactic structures are then defined as higiterr combinators. The net
effectis a modular interpreter that is deeply embeddeddmtst language. Hudak used
partial evaluation to achieve dramatic speedups, but thien@ation involved manual
steps because he did not have a partial evaluator for Haskell

Staged InterpretersRather than rely on a partial evaluator to distinguish statid
dynamic computations in an interpreter, a staged langubayessa programmer to sep-
arate computations explicitly in multi-stage code [7].§approach retains some of the
simplicity of writing interpreters, while providing mord the manual control found in
translation-based systems.

6.1 Comparison

Partial evaluation and explicit model transformation heeey different characteristics.

Target languageThe code generated by partial evaluation is normally in #reeslan-
guage as the interpreter. The interpreters given in thi®mpape written in Scheme,
so the residual code (which can be thought of as a compiledir@tion of an in-
terpreter and a model) is also in Scheme. Model transfoomatin the other hand,
can target any programming language. It may be possibleitbiz® partial evalua-
tion with cross-compilation [31] to convert the residuabirgeneric) Scheme code to
another language. On the other hand, the target languadpe afeb interpreter is an
HTML document (a model of a page), so model interpreters duesiones act as model
transformations.

Transformation LanguageThere has been significant work on domain-specific lan-
guages for model transformation, under the heading Quemi/Vransform (QVT)
languages [12], although many other approaches are beusdoged, including graph
transformers [3] and operational semantics [28].

Multiple LanguagesOne of the key problems in model-driven development is irsteg

tion of multiple models and modeling languages. Models meagésted or side-by-side.
Nested models include using an expression model for conttiiaside a semantic data
model. User interfaces and data models are generally sicidie models. For side-

by-side models, one fundamental question is whether tgiate target programs or
models. The former works well with procedural interfacesaeen target programs,
while the latter supports linguistic integration at theigadevel. With an interpreter

written in a general-purpose language, it is easy to maaipuhultiple models at the

same time. It is also possible in translators written in geRpurpose languages, but
may be more difficult in syntax-directed translation langes[32] or embedded lan-
guages [16].

7 Conclusion

Partial evaluation of model interpreters is a promisingrapph to implementing model
transformations. We showed how to define a data model irgBrpas a message pro-

cessing function. We demonstrated that data model intengran this style can be par-
tially evaluated to create static message dispatchers.aiediso defined an intepreter
that combines a user interface model with a data model. Weapplied partial evalu-
ation and deforestation to generate code for web pageseTtess have been realized
in Pummel, a working prototype based on Scheme.

We envision Pummel as a complete, self-contained systeme isgtirit of SmallTalk.
When complete, it will include a range of useful modelingdaages, including data,
persistence (SQL), security, user interfaces (web and &t workflow, that can be
used to build complete applications. At this level the systesembles a rapid appli-
cation development (RAD) tool, analogous to FileMaker, BxdBuilder, or Microsoft
Access. Programmers will also be able to modify and custethie model interpreters,
however, allowing them to redefine completely the behaviothe system to meet
specific needs, as is common when developing applicatioestt)i in Java or other
general-purpose languages. Our future research incluefesrd) aspects via extensi-
ble interpreters, type-checking and verification, modehposition and evolution, and
security and workflow models.

Acknowledgmentd hanks to Don Batory, Martin Gannholm, Sol Greenspan, Warre
Harris, Shriram Krishnamurthi, Greg Nelson, Jayadev MiBieug Smith, Eelco Visser,
IFIP WG 2.3 and WG 2.11, and previous anonymous reviewers.

References

1. Harold Abelson and Gerald J. Sussmatructure and Interpretation of Computer Programs
Mit Press, 1985.

2. Norman Adams and Jonathan Rees. Object-oriented pragiragrin Scheme. IfProc. of
the ACM Conf. on Lisp and Functional Programmijpgges 277—-288, 1988.

3. Aditya Agrawal, Tihamer Levendovszky, Jon Sprinkle, §&i, and Gabor Karsai. Gener-
ative programming via graph transformations in the moded architecture. Iin OOP-
SLA, Workshop on Generative Techniques in the Context oéNDmiven Architecture2002.

4. Seffah Ahmed and Gaffar Ashraf. Model-based user interémgineering with design pat-
terns.Journal of Systems and Softwahe Press, Corrected Proof, 2006.

5. Peter P. Chen. The entity-relationship model - towardifieghview of data.ACM Transac-
tions on Database Systems (TODR)):9-36, 1976.

6. Eclipse Consortium. Eclipse graphical modeling framdwo (GMF).
www. ecl i pse. or g/ gnf.

7. K. Czarnecki, J.T. O’'Donnell, J. Striegnitz, and W. Tabh&lCS 3016 chapter DSL Imple-
mentation in MetaOCaml, Template Haskell, and C++. SpriMgelag, 2004.

8. Leonidas Fegaras and David Maier. Towards an effectieice for object query languages.
In ACM SIGMOD International Conference on Management of Dpé@es 47-58, 1995.

9. Yoshihiko Futamura. Partial evaluation of computatiomcgss — an approach to a compiler-
compiler. Systems, Computers, Contrd?s45-50, 1971.

10. Gonzalo Génova, Carlos Ruiz del Castillo, and Juarénler Mapping uml associations into
java code.Journal of Object Technolog(5):135-162, 2003.

11. Object Management Group. Mof 2.0 core specification4200

12. Object Management Group. Mof 2.0 query/view/transttian specification, July 2007.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.
28.
29.
30.

31.

32.

33.

Michael Hammer and Dennis McLeod. The semantic data madeodelling mechanism
for data base applications. 8iIGMOD '78: Proceedings of the 1978 ACM SIGMOD inter-
national conference on management of datges 26-36, New York, NY, USA, 1978. ACM
Press.

David Harel and Amnon Naamad. The statemate semanttatethartsACM Transactions
on Software Engineering and Methodology54—64, 1996.

David Herman and Philippe Meunier. Improving the statialysis of embedded languages
via partial evaluationSIGPLAN Not.39(9):16-27, 2004.

Paul Hudak. Modular domain specific languages and tdolén Proceedings of Fifth In-
ternational Conference on Software Reusages 134-142. IEEE Computer Society Press,
1998.

Steven C. Johnson. Yacc: Yet another compiler comditetUNIX Programmer's Manual
volume 2, pages 353-387. Holt, Rinehart, and Winston, Nexk,YaY, USA, 1979.

Neil D. Jones, Carsten K. Gomard, and Peter Sestedirtial evaluation and automatic
program generationPrentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

G. Karsai. Structured specification of model interpet&ngineering of Computer-Based
Systems, 1999. Proceedings. ECBS '99. IEEE Conference arihdp on pages 84-90,
Mar 1999.

Richard Kelsey, William Clinger, and Jonathan Rees. isel5 report on the algorithmic
language schem@&CM SIGPLAN Notices33(9), 1998.

Vinay Kulkarni and Sreedhar Reddy. Separation of carecer model-driven development.
IEEE Software20(5):64-69, 2003.

Guy Lapalme. Implementation of a “Lisp comprehensiomtro. SIGPLAN Lisp Pointers
1IV(2):16-23, 1991.

Daan Leijen and Erik Meijer. Domain specific embeddedmtars. InProceedings of the
2nd conference on Domain-specific languagegjes 109-122. ACM Press, 1999.

Reuven M. Lerner. At the forge: ruby on railsnux J, 2005(138):8, 2005.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. Whaah laow to develop domain-
specific languagesACM Comput. Sury37(4):316-344, 2005.

Jens Palsberg and C. Barry Jay. The essence of the yiaitern. InCOMPSAC '98: Pro-
ceedings of the 22nd International Computer Software angliéqtions Conferencepages
9-15, Washington, DC, USA, 1998. IEEE Computer Society.

John D. Poole. Model-driven architecture: Vision, dands and emerging technologies. In
In ECOOP 2001, Workshop on Metamodeling and Adaptive OMeckels 2001.

Daniel A. Sadilek and Guido Wachsmuth. Prototyping aisuaterpreters and debuggers for
domain-specific modelling languages.BCMDA-FA pages 63—78, 2008.

Rational Software. Whitepaper on the UML and Data Maugl2000.

Morten Heine Sgrensen, Robert Glick, and Neil D. Johewards unifying partial evalua-
tion, deforestation, supercompilation, and gpc.EBOP '94: Proceedings of the 5th Euro-
pean Symposium on Programmjmages 485-500, London, UK, 1994. Springer-Verlag.
Michael Sperber and Peter Thiemann. Two for the priceef oomposing partial evaluation
and compilation. IrProceedings of the ACM SIGPLAN '97 Conference on Programmmin
Language Design and Implementation (PLDI), SIGPLAN Nstipages 215-225. ACM
Press, 1997.

E. Visser. Domain-specific language engineering. In&ninel and J. Saraiva, editoRp-
ceedings of the Summer School on Generative and TransfiomabTechniques in Software
Engineering (GTTSE’07)cns. Springer Verlag, 2007.

Philip Wadler. Comprehending monads. LIRP '90: Proceedings of the 1990 ACM con-
ference on LISP and functional programmjneages 61-78, New York, NY, USA, 1990.
ACM.

34. Noel Welsh, Francisco Solsona, and lan Glover. Scheiheldd SchemeQL: Two little
languages. IThird Workshop on Scheme and Functional Programm?g?2.

35. XULPIlanet.comxul pl anet. com

36. Joseph W. Yoder and Ralph E. Johnson. The adaptive ebjd¢l architectural style. In
WICSA 3: Proceedings of the IFIP 17th World Computer Corggre3C2 Stream / 3rd
IEEE/IFIP Conference on Software Architectumages 3—27, Deventer, The Netherlands,
The Netherlands, 2002. Kluwer, B.V.

