
Model Transformation
by Partial Evaluation of Model Interpreters

William R. Cook, Benjamin Delaware, Thomas Finsterbusch,
Ali Ibrahim, Ben Wiedermann

Department of Computer Sciences, University of Texas at Austin
{wcook,bendy,tfinster,aibrahim,ben}@cs.utexas.edu

Abstract. In model-driven development, the use of both model translators and
model interpreters is widespread. It is also well-known that partial evaluation can
turn an interpreter into a translator. In this paper we show that a simple online
partial evaluator is effective at specializing a model interpreter with respect to a
model to create a compiled model interpretation. Data models pose a particular
problem, because it is not clear what a data model interpreter would do, given
that data is generally considered to be passive. We show how adata model inter-
preter can be defined in an object-oriented style as a dynamicmessage-processing
function. Partial evaluation can then be applied to this data model interpreter to
create a static dispatch function, analogous to a normal static class definition. We
also consider the case of user interface model interpreters, and show that partial
evaluation and deforestation can produce good specializedcode. The user inter-
face interpreter illustrates a solution to integrating twomodeling languages. The
system described here is bootstrapped from Scheme, although the goal is to build
a complete software development environment based on modelinterpreters.

1 Introduction

Model-driven development is a programming paradigm in which parts of a system are
defined by models. Models are usually written in domain-specific languages [25] that
raise the level of description to focus onwhat is needed rather thanhow to achieve
the goal. Examples of models include data models (UML Class diagrams [29], Entity-
Relationship diagrams [5]), finite state machines (Statecharts [14]), grammars (regular
expressions, Yacc [17]), and user interface models (wire-frames, XUL [4]). A model can
have multiple interpretations. Executable interpretations are particularly useful when
building systems.

Many techniques are being investigated to define the interpretations of models.
One common approach is to use a translator from one modeling language to another
modeling language or to code [21]. Dynamic interpreters arealso common in prac-
tice, although they have received less attention in research publications. One point of
confusion is that the term “interpreter” is often used to mean “translator” in the model-
driven literature [19]. We use the term “interpreter” in itsmore traditional meaning as

1 This material is based upon work supported by the National Science Foundation under Grants
#0448128 and #0724979.

type Employee
salary: Integer
tax: Integer = salary * 0.3
name: String
manager: Employee
subordinates: many Employee inverse manager

Fig. 1: An employee data model.

a meta-program that executes a program in a given language [18, 1]. Translators have
the advantage that they can produce efficient code and targetany runtime environment.
Interpreters are often easier to write then compilers, but they are typically slower and
do not necessarily integrate easily with other parts of a system, which may be written
in compiled languages.

This paper presents an approach to model transformation based on partial evaluation
of model interpreters. We first consider the problem of defining data model interpreters.
The issue is that data models don’tdo anything, so it is not clear what it means to
execute them with an interpreter. We take an object-oriented view of the data and expose
the operational behavior of objects in two steps: executinga class creates an object,
and executing an object means processing a message. The behavior of the object for
a given message is defined dynamically by the interpreter by reference to the object’s
data model. The resulting data model interpreter is a dynamic method handler. It is a
dynamic version of a traditional encoding of objects in Scheme.

To eliminate the overhead of interpretation, we show that partial evaluation [18]
is effective in specializing model interpreters. Partial evaluation converts the dynamic
dispatch in the data model interpreter into a form that can beoptimized statically. We
also define a user interface model interpreter that integrates a data model and a user
interface model.

We have implemented a prototype system for interpreting models, calledPummel,
based on Scheme. Pummel includes a polyvariant online partial evaluator, although de-
tailed description of its capabilities are outside the scope of this paper. One advantage
of our approach is that a system can be run in interpreted modeto allow dynamic model
updates, but translated via partial evaluation for efficient execution if the model is static.
Thus a single system definition supports both the Adaptive Object-Model Architectural
Style [36] and traditional static user interfaces. One negative of the approach is that
the code generated by the partial evaluator is in Scheme (thelanguage of the model
interpreter). The concept of model interpretation and partial evaluation could be ap-
plied to other languages, or techniques for translation could be combined with partial
evaluation [31].

2 Background

To represent data, we use a form of Semantic Data Model [13]. Figure 1 is anEmployee
data model describing employees and managers. The data model has five attributes or

class Employee {
int salary;
String name;
Employee manager;
Subs subordinates = new Subs();
// salary getter and setter
int getSalary() { return salary; }
void setSalary(int salary) { this .salary = salary; }
// name getter and setter
String getName() { return name; }
void setName(String name) { this .name = name; }
// tax getter
double getTax() { return salary * 0.3; }
// manager getter and setter
Employee getManager() { return manager; }
void setManager(Employee m) {

// Handle bidirectionality
if (this .manager != null)

this .manager.subordinates.primitiveRemove(this);
manager = m;
if (manager != null)

manager.subordinates.primitiveAdd(this);
}
// subordinates getter
Set<Employee> getSubordinates() { return subordinates; }
// Specialized set for bidirectional associations
// NOTE: method return types simplified for presentation
private class Subs extends HashSet<Employee> {

private void primitiveAdd(Employee e)
{ super .add(e); }

private void primitiveRemove(Employee e)
{ super .remove(e); }

public void add(Employee e)
{ e.setManager(Employee.this); }

public boolean remove(Employee e)
{ e.setManager(null); }

}}

Fig. 2: Employee implementation.

Fig. 3: Meta-model of data models.

fields. Thesalary andname fields are mutable fields representing the salary and full
name of the employee respectively. Thetax field is a derived or computed value. The
manager andsubordinates fields represent the two sides of a one-to-many bidirectional
relationship.

One possible implementation ofEmployee in Java is given in Figure 2. This code
embodies the common object-oriented strategy of hidden state with accessor methods.
Each field has a getter. Each field which is not read-only, computed, or multi-valued
has a setter. The code in themanager getter and setter and in thesubordinate collection
maintains the consistency of the bidirectional association; each side of the relationship
sends appropriate (primitive) messages to the other side [10].

There are well-known techniques for generating the Java classes in Figure 2 from
the data model in Figure 1. To implement a transformation from a data model to code,
the data model is represented as an instance of ameta-model, or data model describing
data models, e.g. the Meta Object Facility (MOF) in UML [11].Figure 3 gives a sim-
ple meta-model for data models. Thefields attribute on theType type has typeField*
indicating that the value is zero or more values of typeField. The fieldowner on Field
gives the type that a field belongs to, asfields andowner are the two sides of a bidirec-
tional relationship. This data model can also be implemented in Java, using the same
strategy as that used in creating Figure 2; the code is omitted from this presentation in
the interest of space.

Using this data model, a transformation from data model to Java is given in Fig-
ure 4. The transformation given here is text-based; it is easy to present without addi-
tional background. The figure omits some of the complexity inhandling many-valued
fields, computed fields, and bidirectional relationships. More sophisticated transforma-
tion engines can generate abstract syntax for Java or other programming languages, thus
allowing the transformation writer to ignore details of syntactic encoding.

2.1 Partial Evaluation

It is well-known that interpreters can be optimized by partial evaluation [9, 18]. Given a
programP and interpreterI, the execution of the program on input dataD is I(P, D).
Since a program is usually run many times on different data inputs,P is calledstaticrel-
ative to thedynamicinputD. A partial evaluator, traditionally calledmix, can special-

SimpleTransJava(Type T) {
write(”class” + T.name + ” {”);
// generate member variables
for (Field F in T. fields)

write(” private ” + fieldType(F)
+ ” ” + F.name + ”;\n”);

// omit generation of constructor...
// generate methods
for (Field F in T. fields) {

write(” public ” + F.type.name
+ ” get” + capitalize (F.name) + ”() {\n”);

if (F.expression)
write(” return ” + genCode(F.expression) + ”;\n”);

else if (F.many)
// omit many-valued code generator...
else

write(” return ” + F.name + ”;\n”);
write(” }\n”);
if (¬F.read-only ∧ ¬F.expression ∧ ¬F.many) {

write(” public void set” + capitalize (F.name)
+ ” (” + F.type.name + ” val) {\n”);

write(” ” + t .name + ” = val ;\n”);
write(”}\n”);

}
write(”}\n”);

}}

Fig. 4: Data model to Java translator.

ize the interpreter on the static argumentP to create a compiled versionC = mix(I, P)
of P with the property thatC(D) = I(P, D). mix evaluates function calls and condi-
tional tests inI that depend only on the static input. The resulting specialized program
C is called theresidualprogram.

3 Interpreting Data Models

We present a technique based oninterpretinga data model rather than transforming it
to code. A traditional approach to transforming a data modeluses the following steps:

Data Model translate
−→ Code instantiate

−→ Object

An interpreter, on the other hand, does not generate code. Instead, it directly inter-
prets the data model to create objects:

Data Model
interpret
−→ Object

It is not clear what it means for an interpreter to execute a data model, because
data models are passive. The approach taken here is to exploit the operational behavior
of objects asmessage processing functions. That is, an object is a function, where the
argument is a message. This approach can be used to create a powerful but lightweight
object model in Scheme [2]. Using this approach, the type of adata model interpreter
is:

Data Model
interpret
−→ (message

process
−→ result)

where an object is a value of type (message→ result). It is usually convenient to pro-
vide some initialization data for the newly created object.These can either be supplied
by processing an “init” message, or else passed to the interpreter when creating the ob-
ject. A simple data model interpreter is defined in Figure 5. The interpreter is written
in Pummel, which is defined in the next section. The followingsection describe how
Pummel is used to implement the interpreter.

3.1 Pummel Language

Pummel is a first-order subset of imperative Scheme [20] withobjects and monoid com-
prehensions [8]. First-class functions are avoided in order to simplify partial evaluation,
although they appear in restricted form in the definition of objects.

Monoid comprehensions are a first-order notation for translating, filtering, and com-
bining a list of items [8]. Translation, or mapping, is achieved by evaluating an expres-
sion for each element of the list. Filtering is achieved by allowing the translation ex-
pression to be conditional; if it returnsskip the element is ignored. The results can be
combined by applying a binary operator to each translated element and the result of the
rest of the list. A base value is used as the result for the empty list. The concrete syntax
for this operation is:

(for var list op element base)

The effect is to callop(element, rest) to combine the results of evaluatingelement

with var bound to each item inlist, with the results from therest of the list. Ifelement

returnsskip then that item of the list is ignored. Finally, at the end of the list rest =
base. If op is non-strict in its second argument, then the rest of the list may not be
computed.

Monoid comprehensions are similar to list comprehensions [33]. but allow replace-
ment of the normal cons/nil operations for constructing theresult list. For example, the
following expressions perform simple mapping and reduction of a list:
(for x ’(1 2 3) cons (* x x) ’())⇒ (1 4 9)
(for x ’(1 2 3) + x 0) ⇒ 6

It is sometimes convenient to omit the base value, and use a default value appro-
priate to each operator. Forcons, the default base value is the empty list. For+, the
default value is0, and forbegin it is void.
(for x ’(1 2 3) begin (print x)) ⇒ prints 1, 2, 3
(for x ’(1 2 3) cons (if (odd? x) x (- x)))⇒ (1 -2 3)

An explicit base value is useful in some cases. For example, to prepend items to a
list:
(for x ’(1 2 3) cons (- x) ’(4 5))⇒ (-1 -2 -3 4 5)

The operator is required to be the name of a binary operator, not an explicit lambda
expression. Common operators arecons, +, and, or, begin, andfirst. The operator
first is a non-strict function that returns its first argument:first(a, b) = a. If a more
complex combination function is needed, the comprehensionmust be rewritten as an
explicit recursive function.

To filter the list, the element expression can return the special valueskip, indicating
that this value should not be included in the output:
(for x ’(1 2 3) cons (if (odd? x) x skip))⇒ (1 3)

We sometimes omit theskip expression from the else clause of anif expression.
Finally, monoid comprehensions support finding the first item in a list that meets a
condition.
(for x ’(1 2 3) first (if (even? x) x skip) (error))⇒ 2

This is used to implement a common form of “the trick” for binding type improve-
ment before partial evaluation [18]: lookup of a dynamic value in a static structure is
rewritten as a loop over the static items with a test against the dynamic value. Because
first is non-strict, the(error) expression is only evaluated if no even item is found.

One way to understand these monoid comprehensions is via translation to Scheme [22],
as in Figure 6. The primary difficulty is the interpretation of skip. Thefilter macro dis-
tributes the an operationop and a loop continuationrest over theif so that the operation
is called if the condition result is notskip, and the loop is called only for strict opera-
tions.

One thing that cannot be done with the monoid comprehensionsdefined here is to
iterate over two lists, either in pairs or as nested iterations. It would certainly be possible
to extend the syntax to multiple parallel variable bindings, in the style oflet.

Pummel also has a macro to define objects [2]. In this case a closure is returned as
a value. The form(object (msg arg) body) defines an object (closure) identified bythis
with a dispatch function(lambda (msg . arg) body). The : function sends a message to
an object; it applies the object to the arguments.

(define (Instantiate T)
; create local state
(let ((data (make-hash)))

; initialize the data state
(for F (: T ’fields) begin

(hash-set! data (: F ’name) (default-val (: F ’type)))
; return the object dispatch
(object (msg args)

(for F (: T ’fields) first
; check for get message
(if (eq? msg (: F ’name))

(if (defined? (: F ’expression))
(eval (: field ’expression) type)
(hash-ref data (: F ’name))

; check for set message, if not read only
(if (and (not (: F ’read-only)) (not (: F ’many))

(not (defined? (: F ’expression))))
(if (eq? msg (string-append “set-” (: F ’name)))

(if (defined? (: F ’inverse))
; see Figure 7 for setting relationships
(handleRelationship field data args)
(hash-set! data (: F ’name) (car args))))))))

; no message found
(error “Message not understood: ” msg)))))

Fig. 5: A Data Model Interpreter in Pummel (static computations underlined).

3.2 Data Model Interpreter in Pummel

The Data Model Interpreter in Figure 5 takes a typeT as in input. It first allocates a
private hash table to store the private data of the object. Itinitializes the table with
default values that are appropriate for the type of each field.

The interpreter then returns an object represented by a first-class message-processing
function. The body of the function handles messages by examining the fields in the type
T. For each field, the object accepts aget message and aset message if the field is not
read-only. The message name is either the field name in case ofaget, or the field name
prefixed byset. Theget message simply returns the current field value from the private
data.

Semantic data models can include computed fields, which are fields whose values
are not stored but are computed on demand. A computed field is represented in the
schema by an expression which is non-null. The interpreter handlesget messages for
computed fields by computing the result and returning it. This simple interpreter does
not handle the case where computed fields have a cyclic dependency.

Computed values illustrate the essential idea of includingspecialized code in a
model, which is executed by the interpreter at the appropriate times. This is essential
because not all aspects of a system can be realized using a domain-specific modeling
language.

(define-syntax for
(syntax-rules ()

((for var items op elem base)
(let loop ((scan items))

(if (null? scan)
base ; at the end of the list, evaluate the base value
(let ((var (car scan)))

(filter op elem (loop (cdr scan))))))))) ; filter the result, calling loop as needed

(define-syntax filter
(syntax-rules (if let skip)

((filter op skip rest)
rest) ; do not perform operation, just return rest of list

((filter op (if a b c) rest)
(if a (filter op b rest) (filter op c rest))) ; distribute over if

((filter op (let bindings body) rest)
(let bindings (filter op body rest))) ; distribute over let

((filter op elem rest)
(op elem rest)))) ; apply the operation

Fig. 6: Macros to define Monoid Comprehensions

The object interpreter implements a form of dynamic dispatch, where the set of
messages is based on typeT. This interpreter is very simple, in that it only supports data
models with single-valued attributes. Figure 7 gives the generic code for interpreting
bidirectional relationships. It handles the case of one-to-many relationships, as in the
employee/manager relationship, and also one-to-one relationships. The strategy is for
both sides of the relationship to send primitive update messages to the other side. Some
corner cases, for example assignment of a relationship fieldto null , have been omitted
in the interest of space.

This interpreter creates in-memory objects. Another interpretation could create ob-
jects that interface to a relational database.

3.3 Compiling Model Interpreters by Partial Evaluation

Unless they are compiled, interpreted data abstractions are slower than hand-written
versions. There is significant overhead due to interpretingthe data model and in the
dynamic dispatch for each method. A model interpreter can bepartially evaluated with
respect to the model to create a compiled program that represents the interpretation of
that model. Figure 8 gives the result of partially evaluating the data model interpreter
in Figure 5 with respect to theEmployee model in Figure 1. Generated code is outlined
with a box to distinguish it from user-defined code. The residual code resembles an
ordinary class definition. In particular, it would be possible to create a static dispatch
for the methods, rather than using a rawif statement.

The type parameterT has been completely eliminated from the residual code. In the
current version of our system, the partial evaluator requires that the models be elimi-

; Code fragment setting relationship field in Figure 5
(define (handleRelationship field data args)

(let ((inv (: (: field ’inverse) ’name)))
(if (: (: field ’inverse) ’many)

(let ((new (car args))
(old (table-ref data (: field ’name))))

(if (defined? old)
(: (: old inv) ’prim-remove this)

(table-set! data (: field ’name) new)
(if (defined? new)

(: (: new inv) ’prim-add this))))
; else: single-valued inverse
(let ((new (car args)))

(table-set! data (: field ’name) new)
(if (defined? new)

(: new (string-append “set-” inv) this)))))

; Default value for many-valued relationship field
; Owner is object on which the collection field is defined
(define (collection field owner)

(let ((data (make-base-collection))
(inv (string-append “set-” (: (: field ’inverse) ’name))))

(object (msg args)
(if (eq? msg ’prim-add)

(: data ’insert (car args))
(if (eq? msg ’prim-remove)

(: data ’remove (car args))
(if (eq? msg ’insert)

(: (car args) inv owner)
(if (eq? msg ’remove)

(: (car args) inv (void))
)))))))

Fig. 7: Interpretation of relationship fields.

nated; an error is signaled if a program use objects from the model in the residual code
(although primitive values are allowed). In some cases thisrequires programs to be writ-
ten in a non-intuitive fashion, to enable complete partial evaluation. One common situa-
tion is accessing a finite static mapm using a dynamic indexd, as in(f (: m ’lookup d)).
This expression cannot be simplified statically becaused is dynamic. Converting the
lookup to an iteration

(for (k v) (: m ’items) first (if (= k d) (f v)))

allows specialization by expanding the finite set of pairs(k,v) in the map. This is a
standard application of “the trick”, or binding time improvement [18].

Models are inherently finite, so if no model data is created during specialization
then the process will terminate. With these two conditions,we have found that partial
evaluation of model interpreters is effective but not divergent.

(define (Instantiate-Employee)
(let ((state (make-hash)))

(hash-set! state ’name nil)
(hash-set! state ’salary 0)
(hash-set! state ’manager nil)
(hash-set! state ’subordinates

(Collection-Subordinates state))
(object (msg args)

(if (eq? msg ’name) (hash-ref state ’name)
(if (eq? msg ’set-name)

(hash-set! state ’name (car args))))
(if (eq? msg ’salary) (hash-ref state ’salary)
(if (eq? msg ’set-salary)

(hash-set! state ’salary (car args))))
(if (eq? msg ’tax) (* 0.3 (hash-ref state ’salary))
(if (eq? msg ’manager) (hash-ref state ’manager)
(if (eq? msg ’set-manager)

(let ((old (table-ref data ’manager)) (new (car args)))
(if (defined? old)

(: (: old ’subordinates) ’prim-remove this)
(table-set! data ’manager new)
(if (defined? new)

(: (: new ’subordinates) ’prim-add this)))
(error “Message not understood: ” msg)))))))))

; Specialized collection class generated for subordinates
(define (Collection-Subordinates owner)

(let ((data (make-base-collection)))
(object (msg args)

(if (eq? msg ’prim-add)
(: data ’insert (car args))

(if (eq? msg ’prim-remove)
(: data ’remove (car args))

(if (eq? msg ’insert)
(: (car args) ’set-manager owner)

(if (eq? msg ’remove)
(: (car args) ’set-manager (void)))))))))

Fig. 8: Instantiate specialized toEmployee (Generated code is placed in a box).

4 Interpreting User Interfaces

Models are frequently used to generate user interfaces [6],and are also interpreted dy-
namically [35], although without partial evaluation. A user interface typically has many
pages that are all different, but share an overall strategy in their construction. One prob-
lem in user interface implementation is to select and organize parts of the data model
into a collection of pages that may be requested by a user.

Although HTML is a useful basis for layout, it does not have a clean model of
nested alternative layers. The set of pages can be considered a stack of alternatives,
where each page is a two-dimensional layout. A page can also contain alternatives,
which create variations on the main page.

Fig. 9: Layout data model.

(List (contents:
(List (labeled: true) (contents:

(View (data: “name”))
(View (data: “salary”))
(View (data: “tax”)))

(View (data: “manager”)))
(DataTable (data: “subordinates”) (contents:

(View) ; view current object
(View (data: “salary”))))))

Fig. 10: Presentation forEmployee.

Figure 9 gives the data model for layouts. The abstract classWrapper represents
layouts that have a single sub-layout, whileContainer is for layouts with multiple sub-
layouts. A user interface is a projection of data into a spaceof presentations with links
between them.

Figure 10 gives an example page presentingEmployee values of the schema data
model of Figure 1. This user interface description can be interpreted to create web
pages, but it could also be interpreted to create a desktop application.

4.1 Web Interpreter

A web interpreter generates a user interface for an application defined by models, with
a given state and user request:

web : (Layout, Type, DB, DataItem, Request) → HTML-list

The first two inputs of theweb interpreter are models for describing layout and data.
The last three inputs are the current data (database), the current item of the database,
and an HTTP request for a specific part of the UI. The web interpreter has cases for
each different kind of layout:

(define (web layout type db data request)
(let ((kind (: layout ’type)))

The presentation of a field can frequently be derived automatically by reference to
the data model, as defined below. A primitive value is simply rendered as text. Single-
valued relationships generate a link:

(if (equal? kind “View”)
(if (: type ’primitive)

‘(,(to-string data))
(if (defined? data)

‘((A ((HREF (”page=” ,(: data ’type)
”&id=” ,(: data ’key))))

,(: data ’name)))
‘())))

This simple web strategy uses the name as the link text, and specifies a target of
page=type&id=key wheretype is the type of the object being shown, andkey is the key
of the data object. Instead of just using the name, the presentation to be used for links
of a given type could be specified in the layout. For simple scalar values, the data model
could specify the size of the field.

Edit layouts illustrate the tight integration of the user interface model with the data
model. The user interface simply requests an edit field, but the particular formating of
the field is defined by examining the type of the field in the datamodel. Edit layouts use
either an input box for primitive values, or a select menu forsingle-valued relationships.

(let ((fieldName (: layout ’data)))
(let ((field (: (: type ’fields) ’item fieldName)))

(let ((partType (: field ’type))
(part (: data fieldName)))

(if (: partType ’primitive)
‘((INPUT ((TYPE text)

(NAME ,fieldName)
(ID (,(: data ’full-key) ’- ,fieldName))
(VALUE ,part))))

(if (not (: field ’many))
‘((SELECT ((NAME ,fieldName)

(ID (,(: data ’full-key) ’- ,fieldName))
(VALUE ,part))

,@(for option (: (: db (: layout ’range)) ’items) list
‘(OPTION ((VALUE ,(: option ’full-key))

,@(if (eq? option part)
’((SELECTED)) ’()))

,(: option ’name)))))

However, if there are more than 30 data values (all employeesin a company) then a
drop-down is awkward. More complex user interfaces could begenerated in this case,
with a “set” button that links to a new window in which a value can be selected. For
many-valued fields, there are many alternatives, and they can be selected by the web
interpreter as appropriate.

There are two ways to create composite layouts: either by defining multiple static
sub-layouts within the user interface, or by iterating a layout dynamically for each item
in the data being presented. A static layout presents a pieceof data in multiple ways; that
is, each sub-layout presents a different part of the data. This is the typical presentation
for a form page, which displays the fields of an object. In general the layout can be
a table, with single rows or columns being typical special cases. TheList renders its
contents, a set of sub-layouts, as a list of elements:

(if (equal? kind “List”)
(for component (: layout ’contents) cons

(web component type db data request)))

A dynamic list layout, on the other hand, presents multiple items of data by repeated
occurrences of a singlecontent layout:

(if (equal? kind “DataList”)
(for item data cons

(web (: layout ’content) type db item request)))

Another kind of static layout is alabeledlayout, which produces the familiar col-
umn of label: data pairs found in many forms. The key point is that the labels are
computed from the data:

(if (and (equal? kind “List”) (: layout ’labeled))
‘((TABLE ()

,@(for sub (: layout ’contents) cons
‘(TR () (TD () ,(: sub ’data))

(TD () ,@(web sub type db data request))))))

A dynamic labeled layout is a data table, with a sub-layout for each column, with a
label, and a row for each dynamic data item:

(if (equal? kind “DataTable”)
‘((TABLE ()

(TR () ,@(for sub (: layout ’contents) cons
‘(TD () ,(: sub ’data))))

,@(for item data cons
‘(TR () ,@(for sub (: layout ’contents) cons

‘(TD () ,@(web sub type db item request)))))))

Finally, a page is a set of alternatives where only one of its cases is showing at
a time. Pages can also appear inside another page, where theytake the form of tabbed
layouts. Pages can either be statically defined, or created dynamically one for each value
in a list of data.

(let ((bind (: (: request ’arguments)
’lookup (: layout ’variable) (void))))

(if (equal? kind “Pages”)
(for sub (: layout ’contents) first

(if (eq-sym? (: bind ’value) (: sub ’label))
(web sub type db data request))

(if (equal? kind “DataPages”)
(let ((item (: data ’lookup (: bind ’value))))

(web (: layout ’content) type db item request))

The complete web interpreter must also handle buttons, actions, and interpret data
that is posted to the server.

Model interpreters naturally handle one of the key problemsin using domain spe-
cific languages: how to integrate multiple languages. Theweb function uses information
from both the user interface and data models in order to generate pages. No informa-
tion is specified more than once. Scheme macros can also implement mini-languages,
which can be optimized by partial evaluation [15], but the input language of one macro
is typically not accessible during processing of another macro. The integration of the
two languages takes place at the level of generated code, notat the level of models.

The web function can be partially evaluated with respect to a given user interface
and data models to produce static pages, or it can be executeddynamically. The latter
allows the user interface to bedynamicfor users — so that users can edit the UI of

(TABLE () ; Labeled list: name, salary, tax
(TR () (TD () “name”) (TD () “John Smith”))
(TR () (TD () “salary”) (TD () “100000”))
(TR () (TD () “tax”) (TD () “30000”)))

(TABLE () ; DataTable: name, salary
(TR () (TD () “name”) (TD () “type”))
(TR ()

(TD () (A ((HREF (”?page=Employee&id=JaneSmith”)))
“Jane Smith”))

(TD () “70000”))
(TR ()

(TD () (A ((HREF (”?page=Employee&id=JackSmith”)))
“Jack Smith”))

(TD () “70000”))))

Fig. 11: Generated HTML structure.

a page they are viewing, then refresh immediately to see the new UI. This approach
implements the Adaptive Object-Model Architectural Style[36]. One of the benefits of
using partial evaluation is that both adaptive and compiledmodes of execution can be
supported in a single application framework. Finally, it may also be possible to create
a gui interpreter that presents the same UI model as a desktop application, rather than a
web application.

4.2 Generating HTML

The output of the rendering function is a labeled tree (of cons cells) of the form
(tag (attribute...) child...).

Figure 11 gives the output rendering the layout in Figure 10 for the typeEmployee.
Thus the output is essentially another model, in this case anHTML model of a web

document. This output is a Scheme S-expression, it is not HTML text. Thehtml function
in Figure 12 writes such S-expressions out as text, using adisplay function that prints all
its arguments to an output stream. Thehtml function is an approximation of a complete
function to encode S-expressions as text, with full character encoding. This illustrates
an important separation of concerns: the web rendering function does not need to worry
about the encoding of HTML structure as text.

The problem with this arrangement is that the intermediate S-expression structure
is only used to communicate a result fromweb to html; it is thrown away immediately
after the page is output. We have combined a deforestation technique with partial eval-
uation to eliminate the intermediate data structure, similar to Sorensen’s approach [30].
The result of partially evaluating theweb function with respect to the UI model in Fig-
ure 10 is given in Figure 13 (after some manual clean-up of thecode for presentation).
The output code is similar to what a programmer might have written by hand for this
page. The example illustrates the ability to generate specialized code while preserving
modularity of the input program.

(define (html x)
(if (not (pair? x))

(display x)
(begin

(display “<” (car x))
(if (pair? (cadr x))

(for attr (cadr x) begin
(display ” ” (car attr) “=\“” (cadr attr) “\””)))

(display “>”)
(for elem (cddr x) begin (html elem))
(display “</” (car x) “>\n”))))

Fig. 12: HTML structure to text conversion.

5 Implementation

We are implementing a system for interpreting models. The system is being boot-
strapped on top of Scheme, but it is being implemented in itself as much as possible,
i.e. all data structures are described as semantic data models, and generic operations are
used pervasively.

We have implemented a fully polyvariant online partial evaluator for Scheme with
mutable state. This form of partial evaluator was chosen because it is simple to write
and modify. The full partial evaluator is 700 lines of Schemecode, and includes a post-
processing step to normalize and optimize the residual code.

6 Evaluation & Related Work

We evaluate our approach by discussing related approaches and then comparing the
approaches according to several aspects.

The view of programming presented here touches on a number offundamental con-
cepts that appear frequently in computer science research:models, reflective/descriptive
meta-data, domain-specific languages, generic functions,interpreters, and compilation.
To limit scope, we discuss only approaches aimed at modelinglanguages which are
generallynot Turing-complete, thus avoiding issues of true programminglanguages.
We use the term ‘model’ to refer to any text or structure expressed in a modeling lan-
guage.

DSL TranslationDSL Translation includes domain-specific language engineering [32],
model-driven architecture [27], and hygienic macros [34].The key characteristic of
transformational approaches is that they are a form of explicit meta-programming: pro-
grams that generate programs. Some systems generate abstract syntax rather than con-
crete syntactic text. Other systems allow type-checking ofthe generator (guaranteeing
safety of generated code) while others only type-check the generated code, or have no
type-checking at all. If transforming from one model to another is useful, then compila-
tion can be viewed as model transformation, where implementation code is just another

(define (web-P1-html data http-request)
(let* ((id (: (: http-request ’arguments) ’lookup ’id))

((data (: (: data ’employees) ’lookup id)))
(display “<TABLE><TR><TD>name</TD><TD>”)
(display (: data ’name))
(display “</TD></TR><TR><TD>salary</TD><TD>”)
(display (: data ’salary))
(display “</TD></TR><TR><TD>tax</TD><TD>”)
(display (: data ’tax))
(display “</TD></TR></TABLE>”)
(display “<TABLE><TR><TD>name</TD>

<TD>salary</TD></TR>”)
(for field (: data ’subordinates) begin

(display “<TR><TD><A HREF=’?page=Employee&id=”)
(display (: (: field ’type) ’key)) (display “’>”)
(display (: (: field ’type) ’name))

(display “</TD><TD>”) (display (: field ’name))
(display “</TD></TR>”))

(display “</TABLE>”)

Fig. 13: Generated web code.

model. Model transformation is a form of compilation, wherethe transformation gen-
erates code, while an interpretation focuses on behavior.

Stratego is a good example for comparison because it has beenused to develop
DSLs for data models and web applications [32]. Stratego uses rewriting to transform
one language into another. WebDSL has a low-level page representation that can be
translated directly to HTML. Higher-level page constructscan also be defined by ex-
tending the syntax and then giving rewrite rules to convert the high-level form to its
representation in the lower-level language. This approachseparates the concerns of ren-
dering HTML from the processing of higher-level constructs. One advantage of Stratego
is that it is able to generate code in existing web frameworks, like Struts. The primary
difference is that our approach uses model interpretation,rather than transformation/-
compilation.

ReflectionGeneric operations, like equality, can be implemented using reflection [26].
Generic programs can also interpret special attributes attached to classes, as in Ruby
on Rails [24]. Reflection can also be used to generate code on the fly, implementing
model transformations as described above. Despite the similarities, there are two pri-
mary differences between reflective approaches and model interpretation. The first is
that reflection is normally defined to derive meta-data from code, while our approach
uses independently defined models. Extensible code attributes are one way to add more
semantics to code. The second is that partial evaluation is more difficult with reflection,
because the static meta-data is derived from dynamic values.

DSL EmbeddingDomain specific languages can be naturally embedded within alazy
functional language [16, 23]. The basic concepts of the DSL are modeled as functions,

and the DSL’s syntactic structures are then defined as higher-order combinators. The net
effect is a modular interpreter that is deeply embedded in the host language. Hudak used
partial evaluation to achieve dramatic speedups, but the optimization involved manual
steps because he did not have a partial evaluator for Haskell.

Staged InterpretersRather than rely on a partial evaluator to distinguish static and
dynamic computations in an interpreter, a staged language allows a programmer to sep-
arate computations explicitly in multi-stage code [7]. This approach retains some of the
simplicity of writing interpreters, while providing more of the manual control found in
translation-based systems.

6.1 Comparison

Partial evaluation and explicit model transformation havevery different characteristics.

Target languageThe code generated by partial evaluation is normally in the same lan-
guage as the interpreter. The interpreters given in this paper are written in Scheme,
so the residual code (which can be thought of as a compiled combination of an in-
terpreter and a model) is also in Scheme. Model transformation, on the other hand,
can target any programming language. It may be possible to combine partial evalua-
tion with cross-compilation [31] to convert the residual (non-generic) Scheme code to
another language. On the other hand, the target language of the web interpreter is an
HTML document (a model of a page), so model interpreters do sometimes act as model
transformations.

Transformation LanguageThere has been significant work on domain-specific lan-
guages for model transformation, under the heading Query/View/Transform (QVT)
languages [12], although many other approaches are being developed, including graph
transformers [3] and operational semantics [28].

Multiple LanguagesOne of the key problems in model-driven development is integra-
tion of multiple models and modeling languages. Models may be nested or side-by-side.
Nested models include using an expression model for constraints inside a semantic data
model. User interfaces and data models are generally side-by-side models. For side-
by-side models, one fundamental question is whether to integrate target programs or
models. The former works well with procedural interfaces between target programs,
while the latter supports linguistic integration at the design level. With an interpreter
written in a general-purpose language, it is easy to manipulate multiple models at the
same time. It is also possible in translators written in general-purpose languages, but
may be more difficult in syntax-directed translation languages [32] or embedded lan-
guages [16].

7 Conclusion

Partial evaluation of model interpreters is a promising approach to implementing model
transformations. We showed how to define a data model interpreter as a message pro-

cessing function. We demonstrated that data model interpreters in this style can be par-
tially evaluated to create static message dispatchers. We have also defined an intepreter
that combines a user interface model with a data model. We then applied partial evalu-
ation and deforestation to generate code for web pages. These ideas have been realized
in Pummel, a working prototype based on Scheme.

We envision Pummel as a complete, self-contained system in the spirit of SmallTalk.
When complete, it will include a range of useful modeling languages, including data,
persistence (SQL), security, user interfaces (web and GUI), and workflow, that can be
used to build complete applications. At this level the system resembles a rapid appli-
cation development (RAD) tool, analogous to FileMaker, PowerBuilder, or Microsoft
Access. Programmers will also be able to modify and customize the model interpreters,
however, allowing them to redefine completely the behavior of the system to meet
specific needs, as is common when developing applications directly in Java or other
general-purpose languages. Our future research includes defining aspects via extensi-
ble interpreters, type-checking and verification, model composition and evolution, and
security and workflow models.

AcknowledgmentsThanks to Don Batory, Martin Gannholm, Sol Greenspan, Warren
Harris, Shriram Krishnamurthi, Greg Nelson, Jayadev Misra, Doug Smith, Eelco Visser,
IFIP WG 2.3 and WG 2.11, and previous anonymous reviewers.

References

1. Harold Abelson and Gerald J. Sussman.Structure and Interpretation of Computer Programs.
Mit Press, 1985.

2. Norman Adams and Jonathan Rees. Object-oriented programming in Scheme. InProc. of
the ACM Conf. on Lisp and Functional Programming, pages 277–288, 1988.

3. Aditya Agrawal, Tihamer Levendovszky, Jon Sprinkle, Feng Shi, and Gabor Karsai. Gener-
ative programming via graph transformations in the model-driven architecture. InIn OOP-
SLA, Workshop on Generative Techniques in the Context of Model Driven Architecture, 2002.

4. Seffah Ahmed and Gaffar Ashraf. Model-based user interface engineering with design pat-
terns.Journal of Systems and Software, In Press, Corrected Proof, 2006.

5. Peter P. Chen. The entity-relationship model - toward a unified view of data.ACM Transac-
tions on Database Systems (TODS), 1(1):9–36, 1976.

6. Eclipse Consortium. Eclipse graphical modeling framework (GMF).
www.eclipse.org/gmf.

7. K. Czarnecki, J.T. O’Donnell, J. Striegnitz, and W. Taha.LNCS 3016, chapter DSL Imple-
mentation in MetaOCaml, Template Haskell, and C++. Springer Verlag, 2004.

8. Leonidas Fegaras and David Maier. Towards an effective calculus for object query languages.
In ACM SIGMOD International Conference on Management of Data, pages 47–58, 1995.

9. Yoshihiko Futamura. Partial evaluation of computation process – an approach to a compiler-
compiler.Systems, Computers, Controls, 2:45–50, 1971.

10. Gonzalo Génova, Carlos Ruiz del Castillo, and Juan Lloréns. Mapping uml associations into
java code.Journal of Object Technology, 2(5):135–162, 2003.

11. Object Management Group. Mof 2.0 core specification, 2004.
12. Object Management Group. Mof 2.0 query/view/transformation specification, July 2007.

13. Michael Hammer and Dennis McLeod. The semantic data model: a modelling mechanism
for data base applications. InSIGMOD ’78: Proceedings of the 1978 ACM SIGMOD inter-
national conference on management of data, pages 26–36, New York, NY, USA, 1978. ACM
Press.

14. David Harel and Amnon Naamad. The statemate semantics ofstatecharts.ACM Transactions
on Software Engineering and Methodology, 5:54–64, 1996.

15. David Herman and Philippe Meunier. Improving the staticanalysis of embedded languages
via partial evaluation.SIGPLAN Not., 39(9):16–27, 2004.

16. Paul Hudak. Modular domain specific languages and tools.In in Proceedings of Fifth In-
ternational Conference on Software Reuse, pages 134–142. IEEE Computer Society Press,
1998.

17. Steven C. Johnson. Yacc: Yet another compiler compiler.In UNIX Programmer’s Manual,
volume 2, pages 353–387. Holt, Rinehart, and Winston, New York, NY, USA, 1979.

18. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.Partial evaluation and automatic
program generation. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

19. G. Karsai. Structured specification of model interpreters. Engineering of Computer-Based
Systems, 1999. Proceedings. ECBS ’99. IEEE Conference and Workshop on, pages 84–90,
Mar 1999.

20. Richard Kelsey, William Clinger, and Jonathan Rees. Revised 5 report on the algorithmic
language scheme.ACM SIGPLAN Notices, 33(9), 1998.

21. Vinay Kulkarni and Sreedhar Reddy. Separation of concerns in model-driven development.
IEEE Software, 20(5):64–69, 2003.

22. Guy Lapalme. Implementation of a “Lisp comprehension” macro. SIGPLAN Lisp Pointers,
IV(2):16–23, 1991.

23. Daan Leijen and Erik Meijer. Domain specific embedded compilers. InProceedings of the
2nd conference on Domain-specific languages, pages 109–122. ACM Press, 1999.

24. Reuven M. Lerner. At the forge: ruby on rails.Linux J., 2005(138):8, 2005.
25. Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-

specific languages.ACM Comput. Surv., 37(4):316–344, 2005.
26. Jens Palsberg and C. Barry Jay. The essence of the visitorpattern. InCOMPSAC ’98: Pro-

ceedings of the 22nd International Computer Software and Applications Conference, pages
9–15, Washington, DC, USA, 1998. IEEE Computer Society.

27. John D. Poole. Model-driven architecture: Vision, standards and emerging technologies. In
In ECOOP 2001, Workshop on Metamodeling and Adaptive ObjectModels, 2001.

28. Daniel A. Sadilek and Guido Wachsmuth. Prototyping visual interpreters and debuggers for
domain-specific modelling languages. InECMDA-FA, pages 63–78, 2008.

29. Rational Software. Whitepaper on the UML and Data Modeling, 2000.
30. Morten Heine Sørensen, Robert Glück, and Neil D. Jones.Towards unifying partial evalua-

tion, deforestation, supercompilation, and gpc. InESOP ’94: Proceedings of the 5th Euro-
pean Symposium on Programming, pages 485–500, London, UK, 1994. Springer-Verlag.

31. Michael Sperber and Peter Thiemann. Two for the price of one: composing partial evaluation
and compilation. InProceedings of the ACM SIGPLAN ’97 Conference on Programming
Language Design and Implementation (PLDI), SIGPLAN Notices, pages 215–225. ACM
Press, 1997.

32. E. Visser. Domain-specific language engineering. In R. Lämmel and J. Saraiva, editors,Pro-
ceedings of the Summer School on Generative and Transformational Techniques in Software
Engineering (GTTSE’07), lcns. Springer Verlag, 2007.

33. Philip Wadler. Comprehending monads. InLFP ’90: Proceedings of the 1990 ACM con-
ference on LISP and functional programming, pages 61–78, New York, NY, USA, 1990.
ACM.

34. Noel Welsh, Francisco Solsona, and Ian Glover. SchemeUnit and SchemeQL: Two little
languages. InThird Workshop on Scheme and Functional Programming, 2002.

35. XULPlanet.com.xulplanet.com.
36. Joseph W. Yoder and Ralph E. Johnson. The adaptive object-model architectural style. In

WICSA 3: Proceedings of the IFIP 17th World Computer Congress - TC2 Stream / 3rd
IEEE/IFIP Conference on Software Architecture, pages 3–27, Deventer, The Netherlands,
The Netherlands, 2002. Kluwer, B.V.

