Tactical Synthesis Of Efficient Global Search Algorithms

Srinivas Nedunuri Douglas R. Smith William R. Cook
Dept. of Computer Sciences Kestrel Institute Dept. of Computer Sciences
University of Texas at Austin [smith@kestrel.edu University of Texas at Austin
nedunuri@cs.utexas.edu cook@cs.utexas.edu
Abstract

Algorithm synthesis transforms a formal specification iatoefficient algorithm to solve a prob-
lem. Algorithm synthesis in Specware combines the formeidfzation of a problem with a high-
level algorithm strategy. To derive an efficient algorithandeveloper must define operators that
refine the algorithm by combining the generic operatorséetigorithm with the details of the prob-
lem specification. This derivation requires skill and a deagerstanding of the problem and the
algorithmic strategy. In this paper we introduce two tactic ease this process. The tactics serve
a similar purpose to tactics used for determining indefimtegrals in calculus, that is suggesting
possible ways to attack the problem.

1 Background

There have been a variety of approaches to program syntfeegis see[[Kre98] for a survey). The
focus of this paper is an algorithm class called Global Seé&S) [Smi88]. Using this algorithm class,
Smith and his colleagues have successfully synthesizedndemof practical algorithms, including, in
one case, a scheduler that ran several orders of magnitste than comparable hand-written ones
[SPW95]. The starting point is a specificatidd, R, O), whereD is an input typeR an output type, and
O: D x R— Booleanis an output or correctness condition, along with a globafd®etheory extension
(described below). Then the following program, given anuing returns a solutiorz : R satisfying
the output condition, if one exists (there are some additiconditions orR which will be explained
shortly):

f(x:D) : R =
if propagate(x,rg(x))=None then None else gs(x,r)
gs (x:D, r:R) : R =
let z=Extract(r) in if z/=None && 0(x,z) then z else gsAux(x,Subspaces(r))
gsAux (x:D, subs:{R}) : R =
if subs={} then None
else let (s, rest) = arbsplit(subs) in
if propagate(s) = None then gsAux(x, rest)
else let z= gs(x,s) in
if z = None then gsAux(x,rest) else z
propagate(x, r) = if ®(x,r) then iterateToFixedPoint({/, x, r) else None
iterateToFixedPoint (f, x, r) =
let fr = f(x,r) in if FP?(fr,r) then fr else iterateToFixedPoint(f, x, fr)

The program is a classic search algorithm. It works by takingnitial space of possible solutions
(corresponding to the root node of a search tree), and uihEmsimmediately extract a feasible solution,
partitioning it into subspaces (corresponding to childes)d each of which is searched in turn until a
feasible solution is found. In this paper we provide taclizssynthesizing the operatogand .

The remaining functions are defined in the global searchryhextension,GS-ext,supplied by the
developer, which is an algebra ovRmwith the following operatorsrg : D — R returns a descriptor of
the initial search spac&xtractR — R determines whether the given space is terminal and if sarnet
a solution (otherwise the distinguished element None, tilepan empty spaceSubspacesR — {R}
returns a set of subspaces of the current sgac, x R — Booleanis a necessary filter - those spaces
that do not pas® need not be examined. It can be any predicate Bveatisfyingr = z A O(x,2) =

nedunuri@cs.utexas.edu
smith@kestrel.edu
cook@cs.utexas.edu

Tactical Synthesis of Efficient Global Search Algorithms dduri,Smith,Cook

®(x,r). C is a refinement relation oveR. The intent ofC is that if rC s thens is is a subspace
of r (any solution contained is is contained inr) and is “more defined” than. ¢y : D xR — Ris
called a necessary propagator. It “tightens” a given spacediminate infeasible solutions and can be
any predicate satisfyingzr C zAO(x,2) = Y(x,r) C z When(R C) forms a lattice, Smith et al.
[SPW95] show how a monotone inflationagy can be iterated from any starting space to a fixpoint
which is the tightest possible space that still preserddbalbriginal feasible solutions. That is what the
propagatefunction in the abstract program above does. An axiomafioitien of GS theory and proof
of correctness of the abstract program can be found_ in [Smi88

1.1 A Constraint Satisfaction Theory

We are developing a specialization of Global Search to gmublems that involve multi-variable Con-
straint Satisfaction (CS) [Dec03]. Unlike generic constraolvers [San94], which accept constraints
as input and find a solution, in our approach the constraititeéoutput condition of the problem to be
solved. This constraint is the starting point of algorithpmthesis, not dynamic constraint solving. In
this way, many of the problems we will look at can be solved taystraint satisfaction,[DecD3]. For this
reason, it is useful to have a specialization of the GS clas€bnstraint Satisfaction (CS) problems,
which we can later extend to each specific problem as needed.

In a nutshell, constraint satisfaction does the followirgiven a set of variableg,1..maxVag, assign
a value, drawn from some domdiR, to each variable, in a manner that satisfies some set ofraortst
The theory which does this, we call CST, is defined below. &lleo domain specific theories we will
use will monotonically extend this theory.

R+— m:Map(Nat — D) x tbd: {Nat} x ch: Map(Nat— {D,})

D — maxVar: Nat x vals: {Dy}

O+— Ax,z. domzm) = {1.x.maxVar

ro— Ax.{m=0,tbd = {1..xmaxVar,ch = {(v— x.vals)|v € {1..xmaxVan })

Subspaces- Ax,Z. {Z : v= pick(Ztbd) A a€ Zch(v) AZ.m=Zm® {v— a} A Z.tbd=Ztbd— {v}}
Extract— Az if ztbd = 0 thenzelseNone

C—{(2Z)|ZmCZ.m}

& — Ax,Z True

W—AXZ272Z

In this theory, branching occurs via teabspacefunction. Thesubspaceunction, after picking a
variable from the set of variables not yet assigned a vaha®, (returns the subspaces formed by assigning
to v each of the possible values (drawn fronf\h adding each pair to the map and removing/ from
tbd. The initial space, makes all the values irnvals available to every variable. The choice of which
variable to pick does not matter functionally, but can hawggaificant impact on the efficiency of the
actual program. We will often abbrevia®Em(i) asz. Now with a definition forD,, and whatever
conditions are appropriate addedQ@othe abstract program given earlier becomes a working &@nst
satisfaction solver. The key to making it efficient are appiate definitions ford andt/ﬂ . This is what
the next section examines.

2 Tactics

In order to get an efficient final algorithm, the developer typically find good instantiations of the
operatorgd andy. The question of where to begin often arises. For this reasopropose to formulate

10often, further optimizations such as context-dependemplsication, finite differencing, and data structure sétethave
to be carried out before arriving at a final efficient algarithHowever, these latter operations are not the focus optyier.

Tactical Synthesis of Efficient Global Search Algorithms dduri,Smith,Cook

a library oftacticsthat can be used by a developer attempting to instantiateofotiee operators. The
analogy is with tactics used for integration in calculuslikindifferentiation, integration has no straight-
forward algorithm. Rather, there are a number of (some 7 ¢a@)cs such as “integration by parts”,
“integration by partial fractions”, “integration by chamgf variable”, etc., that can be tried in order to try
and determine the integral of a given formula. There are ofsmdifferences. Unlike integration, there
is often no one “correct” answer. Also our tactics are oftepired by technigues used in algorithms in
computer science and operations research, rather thanlu=saldut the basic principle is the same: to
package up a number of tedious calculations into a pattetching rule. Furthermore, by expressing
the technique in more abstract form as atactic, it can beeapfa other problem areasjthout requiring
the developer be familiar with the implicit assumptions anthtions when the technique is buried inside
a specific algorithmThe ultimate goal is that a competent developer will be #blese the approach we
propose here to investigate a variety of solutions to theiblem.

2.1 A Tacticfor Calculating ®

This tactic helps in constructing (necessary) filters when the feasibility constraint takesrgain form.
TAcTIC 1: If a conjunct from O matches the for®;., Fi(z) < K where is a monotone associati
operator, and= forms a meet semi-lattice over rar{§e, then a possibl& is one in which the combin
tion of value assignments in the partial solution combingyiWith the least possible value assignmdpts
for the remaining variables isK.

The tactic is backed by the following theorem. Natedenotes extending a partial solution, that is
Zd emeangz.mUem (unless otherwise stated, we will always be assurdiog(z.m) Nndome.m) = 0)

Theorem 1. If O(x,2) = i F(z) < K for someK, some family of function§F}, ® a monotone
associative operator, an¢lforms a meet semi-lattice oveng(F), then

O(x,zd e) = ® Rz ® fi) X Kwhere f = MacxvaisFi(a)

1<i<#z 1<i<#e

Proof.
O(x,2)
= {assumption}
Qi<i<#Fi(z) 2K
= {z=7Z® eand use associativity of }
R1<i<iFi(Z) ® R1<i<seFi(6) =K
= {replace every (&) with fi = Macxvaiski (@) and use polarity}
R1<i<izF (Z) ® Q1<i<se fi <K

0

Additionally, if F; is monotone, and.vals has a least element, then, using the following Quantifier
Elimination law:Ms<aFi(a) = F (&), we can rewrite the last line above &y, Fi(Z) ® Q1<i<seFi(d) =
K whered'is the least value o € x.vals

A symmetrical result is obtained by replaciagwith =, “meet semi-lattice” with “join semi-lattice”,
a <awith & > a, andr with LI everywhere in the above theorem.

Example 2. 0-1 Integer Linear Programming (01-IL§)

270 simplify the presentation we have omitted the optimzratspect of many of the examples we discuss since none of
our tactics pertain to optimization. In our actual impletation we use a generalization of GS that incorporates apdition.

3

Tactical Synthesis of Efficient Global Search Algorithms dduri,Smith,Cook

A GSO theory for 01-ILP is obtained by extending CST as foidanly the components that differ
from CST are shown)D, — {0,1}, D — CSTD x| : Natx A : Map({1..I} x {1.n} — Real) xb:
Map({1..n} — Real), O— A(x,2). CSTO(x,2) A (X.A)-(zm) <x.b

To apply the tactic above, the operatgy is interpreted a§ andF as (Ay;-) for appropriateh ,
over the lattice(Real <,min,max) . Applying the tactic (but not the final simplification sin¢&p;-) is
not monotone) gives the following filt&:vh.1 <h < 1. ¥icqon(zm) Ahi*Z + Yicdomem) (MiNac (0,1} {Ani-
a}) < bp which is by case analysish.1 <h <I. Yicgomzm) Ahi*Z + ¥ jedomem) (MIN{Ani - 0,Api- 1}) <
by, or after simplifying:

vhii<h<l. % An-z+ Y (min{0,An}) <bn
iedom(zZm) iedomem)

Using the same tactic we have obtained a filter for the VelRdeting Problem (VRP) equivalent to
one used in algorithm textbooks. The next example showdhbajeneralization offered by the tactic is
indeed useful enough to carry over to other qualitativeffedit problems.

Example 3. The Set Covering Problem (SCP)

Suppose we are given a collection of subsets of a set S, eachicti has a certain cost. The SCP
is the problem of determining the minimum cost collectiorsobsets that “covers” the original set, ie.
every element in S is in at least one subset in the resultifigation. The problem has many practical
applications including airline crew scheduling, faciligcation, and logic circuit minimization. A GSO
theory for SCP is obtained by extending CST as follows (ohéydomponents that differ from the base
theory are shown)D, — {False True}, D — CSTD x ss: Map(Nat+— {ld}), O+ A(x,2). CSTO A
UizS=S

Id is some user defined set element typess returns the actual subset given a variable from
{1.xmaxVa. § stands for the subsgtsg(i), andSstands folic 1 xmaxvay S- T0 apply the tactic, we
instantiate® asu, F asAz.z — S|{}, over the join semi-lattice{S}, C, {},{S}). Certainly,U;; S =
SimpliesU;, S 2 Sthatis,J; Fi(z) 2 S Applying the tactic gives us afiltés; F(z) UU; R(S)U{}) 2 S
=UiR(Z)UU;iR(S) 2 S that is if at any point, the union of the selected se@atong with all the re-
maining sets is not at leaSt then the spacgcan be eliminated.

2.2 A Tacticfor Calculating ¢

Observe that in the initial spaceg all value choices (fronD,) are available to every variable. The intent,
though, is that propagation will narrow this set to only #adisat would lead to feasible solutions (anal-
ogous to hyper-arc consistency in CSP). If at any point acghsét becomes empty, then that space can
be abandoned. This is the idea behind the following tactie/fo The tactic applies when the variables
(varg) of the input can be viewed as, or represent, nodes in sondeokigraph structure, so we can talk
about the “neighborhood” around a variable.

TAcTIC 2: If one of the conjuncts of O matches the forine N;.z # z; where Nis some neighborho

of points around i then a possiblg is one in which the choice of values available to variaptibes no
contain the value assigned to variahle

The tactic is backed by the following theorem

Theorem 4. If O(x,z) = Vj € N.z # zjfor some set NC x.vars then

ZC zAO(%,2) = Y(x,2) C zwherey(x,2) =Z{ch(j) =Zch(j) —Z |j € Nj}

Tactical Synthesis of Efficient Global Search Algorithms dduri,Smith,Cook

where the notatiom{ f(i) = v|P(i)} denotes the object obtained by replacing the value oftthe
index of field f of objecto with vwhenP(i) holds. The value is unchanged otherwise.

Example 5. Maximum Independent Segment Sum Problem (MISS), [SHTO0O]

This is a variant of the well-known maximum segment sum @ob(MSS) in which the goal is
to maximize the sum of a selection of elements from a giveayawvith the restriction that no two
adjacent elements can be selected. The specification ofthéem is as followsD, — {False True},
D— CSTD x data: [Int],O— A(X,2). CSTOAVi:1<i<#zm. :Z = -7

Now letN; be the left and right neighbors ofi.e. i — 1 andi + 1, if z and{} otherwise. Then in the
case where; holds, () = Z{ch(i + 1) = ch(i + 1) — {True} } which is justz{ch(i + 1) = {True} }.

Using this tactic we have also derivedpafunction for the Graph Coloring Problem and a variety of
puzzles including n-Queens and Sudoku.

2.3 Summary and Future Work

We have shown how for certain problem types, calculatiorhefdperatorsb and ¢y can be replaced
by pattern matching and substitution. The lesson here fugram synthesis is that narrowing down the
range of problem types can lead to much faster program de¥vgrhave developed a number of other
such tactics, which space does not permit us to describe Werean also handle optimization problems
by incorporating dominance relations [Smi88] and boundtstmto our approach, and have developed a
number of tactics for their calculation. Using one suchitaete have synthesized a previously unpub-
lished greedy solution to the Unbounded Knapsack Problathaaother tactic for dominance relations
led us to fast solutions to variants of the Maximum Segmemh $toblem that improve on the work
of Sasano et al.,[SHT00]. Our eventual goal is to have arljpohtactics sufficient to tackle significant
Global Search problems such as synthesizing fast planndrsfficiently mapping platform independent
models to platform specific models.

Acknowledgment

This material is based upon work supported by the Nation&n8e Foundation under Grant CCF-
0724979

References

[Dec03] R DechterConstraint ProcessingMorgan Kauffman, 2003.

[Kre98] Christoph Kreitz. Program synthesis. In W. Bibetldd Schmitt, editorsAutomated Deduction — A
Basis for Applicationsvolume lll, chapter 111.2.5, pages 105-134. Kluwer, 1998.

[San94] Michael Sannella. The skyblue constraint solvet i applications. IrProceedings of the 1993
Workshop on Principles and Practice of Constraint Programgnpages 385-406. MIT Press, 1994.

[SHTO0O0] Isao Sasano, Zhenjiang Hu, and Masato Takeichi. eMigractical: A generic linear-time algorithm
for solving maximum-weightsum problems. Bmoc. Intl. Conf. on Functional Prog.(ICFR2000.

[Smi88] D R Smith. Structure and design of global searchritlyms. Technical Report Kes.U.87.12, Kestrel
Institute, 1988.

[SPW95] Douglas R. Smith, Eduardo A. Parra, and Stephen dtfold. Synthesis of high-performance trans-
portation schedulers. Technical report, Kestrel Insitd©95.

	Background
	A Constraint Satisfaction Theory

	Tactics
	A Tactic for Calculating
	A Tactic for Calculating
	Summary and Future Work

