
Remote Batch Invocation for Web Services
Document-Oriented Web Services with Object-Oriented Interfaces

Ali Ibrahim
Department of Computer Science

University of Texas at Austin
aibrahim@cs.utexas.edu

Yang Jiao
Computer Science Department

Virginia Tech
jiaoyang@cs.vt.edu

Marc Fisher II
Computer Science Department

Virginia Tech
fisherii@cs.vt.edu

William R. Cook
Department of Computer Science

University of Texas at Austin
wcook@cs.utexas.edu

Eli Tilevich
Computer Science Department

Virginia Tech
tilevich@cs.vt.edu

Abstract
The Web Service Description Language defines a service as
a procedure whose inputs and outputs are arbitrarily struc-
tured data values, sometimes calleddocuments. In this paper
we argue that document-oriented interfaces can be viewed as
batches of calls to finer-grained object-oriented interfaces.
Turning this correspondence around, we show that flexible
documents can be specified by converting a block of fine-
grained object-oriented invocations into a batch document.
The statements in the block operate directly on virtual ser-
vice objects, freeing the programmer from the need to ex-
plicitly construct invocation objects and then manually cor-
relate them to results in the response. Batch blocks can also
include conditionals and loops. Our system, Remote Batch
Invocation for Web Services, translates object-oriented inter-
faces into a WSDL describing batches of calls. The WSDL
can be used by standard web service clients, but a wrap-
per library simplifies client invocation in existing languages.
Extending a language with support for remote batches pro-
vides a fully integrated client. The result is a powerful in-
frastructure for web services that directly connects to stan-
dard object-oriented interfaces, with tool support to automat-
ically create and decode documents representing sequences
of method invocations. We have used our infrastructure to
create a Web server wrapper for the Amazon Associates Web
service, which shows that remote batches can support a clean
object-oriented programming model over a stateless web ser-
vice.

[Copyright notice will appear here once ’preprint’ option is removed.]

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Frameworks;
D.1.3 [Programming Techniques]: Distributed Programming

General Terms Languages, Design

Keywords distributed computing, Web services, document-
oriented computing, middleware, service-oriented architec-
ture, language design

1. Introduction
A web serviceis a remote invocation in which the world
wide web is used as the transport protocol. Although some
web services resemble traditional Remote Procedure Calls
(Winer 1999), document-orientedservices (Christensen etal.
2001; Papazoglou et al. 2007) and representation state trans-
fer (REST) (Fielding and Taylor 2000) are becoming more
prevalent. In this paper, we focus on document-oriented web
services that use the Simple Object Access Protocol (SOAP)
to send and receive arbitrarily structured (XML) documents
(Box et al. 2002).

The document-oriented approach is flexible; documents
can represent complex objects (e.g., purchase orders, med-
ical information), complex actions (e.g., creation, multiple
updates, bulk removal, or specialized operations), queries,
or combinations of the preceding. Despite this complex-
ity, there is no standard methodology for detailed design of
service documents. Some support is found in Fowler’s dis-
tribution patterns,Remote Façadeand Data Transfer Ob-
ject (Fowler 2002), which improve performance at the ex-
pense of clean design.

“[With Remote Façade] you give up the clear inten-
tion and fine-grained control you get with small ob-
jects and small methods. Programming becomes more
difficult and your productivity slows.” (Fowler 2002)

Submission to OOPSLA 2009 1 2009/3/25

“In many ways, a Data Transfer Object is one of those
objects our mothers told us never to write.” (Fowler
2002)

Some web services allow multiple actions to be grouped
together into a single input document to improve perfor-
mance. However they usually do not support even simple
dependency between actions, for example, when the result of
the first action is a parameter to the second action. The client
must also decode compound results and associate them to
the original actions.

The desire to improve performance, results in the system
designer specifying more complex input and output docu-
ments. While a simple document may naturally correspond
to making a remote procedure call, programming with such
complex documents is more indirect. Rather than perform-
ing an action on an object, the client must instead create an
object describing an action and send it to the server for inter-
pretation. This indirection complicates client programming
and also introduces a new category of design issues that are
not addressed by standard object-oriented design method-
ologies.

At the performance level, remote procedure calls are not
latency compositional. By this we mean that performing two
remote callsf(g(x), y) incurs the cost of two round trips,
while a specialized procedurefg(x, y) could perform the
same function with only one round trip. Asynchrony is an-
other way to avoid latency costs, but it does not help in
this case because the second call cannot be made until the
first call returns its value (Liskov and Shrira 1988). The Re-
mote Façade pattern requires anticipating all possible client
compositions and building them as separate entry points,
thereby imposing an unreasonable burden on the program-
mer. A cleaner approach to composing web service oper-
ations would enable greater flexibility and maintainability,
without requiring service designers to anticipate all possible
client interactions.

Remote Batch Invocation for Web Services(RBI-WS) is
a new approach to document-oriented web services support-
ing fine-grained object-oriented interfaces. RBI-WS allows
complex interfaces to server objects to be converted into a
web service interface whose instances describe batches of
calls to the server objects.

We demonstrate how RBI-WS can enable the creation
of more flexible and composable web service interfaces
with two automated programming tools. A server tool trans-
lates a set of interfaces to a web service definition language
(WSDL) specification and provides a generic web service
capable of interpreting messages that conform to that speci-
fication. A client tool, a source-to-source translator, converts
Java code with thebatch statement to plain Java which uses
Batch Execution Service and Translation (BEST), our mid-
dleware library for batched execution using SOAP. In addi-
tion to the client tool we provide, users may connect to the
batched web service using their favorite SOAP library and
the WSDL generated by the server tool.

We demonstrate our language extension by looking at
an existing web service and using remote batch invocation

to implement various client use cases. Our demonstration
highlights the expressiveness and flexibility of using RBI-
WS to build web services, while indicating that it could also
provide performance and code size reduction advantages.

We have previously designed a language extension, Re-
mote Batch Invocation (RBI), for use with remote method
invocation (RMI) for Java (Ibrahim et al. 2009). Thus the
main contribution of this paper is not the idea of batching
for remote services, but the exploration of three new ideas:

1. A discussion of the relationship between document-
oriented web services and traditional object-oriented in-
terfaces.

2. An algorithm for translating a set of object-oriented inter-
faces into input and output documents that support differ-
ent forms of compositionality.

3. An application of RBI-WS to a real-world web service
and a study of its usefulness.

2. Documents and Interfaces
One might wonder whether it is reasonable to consider col-
lections of operations as documents? Conversely, is it rea-
sonable for documents to be understood as batches of oper-
ations? To address these questions, we first consider what a
“document” is and how it is used. The interface of a web ser-
vice defines alanguageof legal inputs. A document is a sen-
tence in this language. The key point is that the server must
interpret the input document to determine which actions it
should perform. If the document represents a purchase or-
der, then the various parts of the document are interpreted to
specify parts of the order and perform the requisite actions
on the server. Thus a document can be viewed as a sentence
of a domain-specific language specialized to represent calls
to a particular API. The language defines how the calls may
be composed and what output the client expects. The sepa-
ration of the language into API calls and composition oper-
ators is subjective; one can view the composition operators
as part of the API. We will consider control flow operators
and naming services as external to the API. Unlike a general
programming language, most domain-specific languages as-
sociated with web services allow only limited composition
such as, perhaps, sequencing of unrelated API calls.

2.1 Documents as Collections of Calls

To illustrate the correspondence between documents and
calls on an API, we will examine a couple of real-world in-
put documents. The code listing in Figure 1 shows a sample
input document a client could send to the Amazon Asso-
ciates Web Service (AWS). We will look at this web service
in more detail in Section 5. This request selects two Amazon
items by their ASIN ids and requests their Amazon sales
ranks and images. Although not shown here, there may be
multiple lookup requests as well as multiple operations in a
single input document.

One can imagine how this interface would look if it were
designed as a set of fine-grained local object-oriented inter-
faces. There possible set of interfaces is given in Figure 2.

Submission to OOPSLA 2009 2 2009/3/25

<ItemLookup>
<AWSAccessKeyId>XYZ</AWSAccessKeyId>

<Request>

<ItemIds>

<ItemId>1</ItemId>
<ItemId>2</ItemId>

</ItemIds>

<IdType>ASIN</ItemIdType>

<ResponseGroup>SalesRank</ResponseGroup>
<ResponseGroup>Images</ResponseGroup>

</Request>

</ItemLookup>

Figure 1: Example request document for AWS

interface Amazon {

void login(String awsAccessKey) ;

Item getItem(String ASIN);
...

}

interface Item {

int getSalesRank();
Image getSmallImage();

...

}

// calls specified in document
aws.login("XYZ");

Item a = aws.getItem("1");

Item b = aws.getItem("2");

return new Object[] {

a.getSalesRank(), a.getSmallImage(),
b.getSalesRank(), b.getSmallImage() }

Figure 2: Interfaces and calls to represent Figure 1

The document in Figure 1 can be viewed as a script that
specifies a sequence of calls to the corresponding methods
in the interfaces in Figure 2. TheItemId tags represent calls
to getItem and theResponseGroup tags specify which acces-
sors to invoke on each item that is located. The interpretation
of the document is fairly complex, and the result is also a
complex structure whose form depends upon the input doc-
ument. The input document is in effect a kind of query.

Documents which specify updates can also be naturally
supported by a set of fine-grained interfaces. The XML doc-
ument in Figure 3 shows a request to modify an Amazon
shopping cart. The interfaces in Figure 4 are one way to
capture the fine-grained server methods that this document
might invoke.

We believe that many service documents can be under-
stood as specifying a pattern of calls to fine-grained server
objects. As web service interfaces become more sophisti-
cated (e.g. Amazon Associates Web Service), the documents
begin to resemble scripts in a small specialized program-
ming language.

<CartModify>
<AWSAccessKeyId>ABC</AWSAccessKeyId>

<Request><CartId>0</CartId>

<HMAC>XYZ</HMAC>

<Items>
<Item>

<Action>MoveToCart</Action>

<CartItemId>0</CartItemId>

<Quantity>1</Quantity>
</Item>

<Item>

<Action>SaveForLater</Action>

<CartItemId>1</CartItemId>
</Item>

</Items>

</Request>

</CartModify>

Figure 3: Sample AWS update request document

interface Amazon {

void login(String awsAccessKeyId) ;
Cart getCart(String cartId, String HMAC);

...

}

interface Cart {
void moveToCart(CartItem item, int quantity);

void saveForLater(CartItem item);

CartItem getCartItem(CartItemId itemId) ;

...
}

// calls specified in document
aws.login("ABC");

Cart cart = aws.getCart("0","XYZ");
cart.moveToCart(cart.getCartItem(0), 1);

cart.saveForLater(cart.getCartItem(1));

Figure 4: Interfaces and calls to represent Figure 3

2.2 Blocks with Control Flow as Documents

If we can think of documents as representing a set of calls on
object-oriented interfaces, it is natural to think of the reverse
correspondence. Given a set of object-oriented interfaces,
can we produce a XML schema which describes documents
used to encode blocks of operations on those interfaces?
We would like this domain specific language to have the
following properties:

1. The language should allow the clients to specify batches
of method invocations with support for let assignment,
conditionals, loops, and exceptions. These constructs al-
low flexible composition of operations on the remote in-
terfaces.

2. The language should specify as much information as pos-
sible about the set of interfaces including type informa-
tion. This design allows the web service definition lan-

Submission to OOPSLA 2009 3 2009/3/25

n ∈ Name

l ∈ V ariable

c ∈ C : Boolean+ Number+ String

+ Collection[C]

binop ∈ {+,−, ∗, /,∨,∧, >, =}

unop ∈ {−, not}

E = root | l | E binop E | unop E | c

| E.m1(E1, . . . , Ej1) | . . . | E.mn(E1, . . . , Ejn)

S = E

| S1; S2

| let l = E in S

| let* l = E in S

| if S1 S2 S3

| for (v ∈ E) S

Figure 5: Domain Specific Language for Web Services

guage description to provide as much information as pos-
sible about the service to clients.

3. The XML schema corresponding to the language should
produce a reasonable set of DTO’s when given to stan-
dard code generator tools such as Axis and Microsoft
Visual Studio. This property is a practical consideration
given we would like programmers to use our domain spe-
cific language without the need for special tools.

4. The XML schema corresponding to the language should
be human readable.

The last two points will be addressed in the next sub-
section. Figure 5 shows the structure of the family of lan-
guages we chose to represent document-oriented web ser-
vices.

The language contains basic control structures for se-
quencing, naming, branching, and looping. Thelet* con-
struct behaves similar to the normal bindinglet construct,
but additionally marks that binding as required at the client.
The keywordroot represents the root service object. The
language is statically typed. Although not shown in the fig-
ure, the primitive types of this language are booleans, inte-
gers, doubles, and strings. The language includes some sim-
ple arithmetic and logical operators to operate over the prim-
itive types. The method callsm1 . . . mn represent the inter-
face methods.

What is interesting about this family of DSL is that they
are limited compared to general purpose languages. There
are no abstraction mechanisms and no module system. Since
we see these languages as glue languages, this seems reason-
able. There are a couple of other interesting design choices.
The language does not provide a natural way to perform ag-
gregation, although it can be done if the service API helps

out. There is only one numeric type instead of the standard
numeric types defined in SOAP web services. Both these de-
sign choices are ones we plan on revisiting after more case
study evaluations. Another interesting omission is the lack
of constructors. Instead the language relies on the web ser-
vice providing factory methods for constructing objects of
interest.

One issue we are avoiding in this paper is security, since
we feel it is mostly orthogonal to the idea of web service
documents as batching. Our current implementation allows
a client to invoke any method on any object that isreachable
from the root service object. An object is reachable if it is the
return value of a method on another reachable object. There
are many ideas for limiting accessibility further such as lim-
iting the methods which can be invoked or explicitly defin-
ing which set of objects can be manipulated by clients. Our
language may also make it easier to execute denial of ser-
vice attacks on the web service because of the ability to use
loops. One simple approach may be to limit the number of
stepsthat a batch executes. A single step may be defined as
one reduction in the operational semantics of the language.

2.3 Encoding Interfaces as XML Schema

There are many possible encodings of a web service DSL
into an XML schema. The specification of the language is
constrained by the abilities of XML schemas. For exam-
ple, XML schemas have support for single inheritance, but
no support for multiple inheritance or parameterized types.
We are also restricted by the capabilities of existing WSDL
code generation tools. For example, an early iteration of the
encoding used substitution groups which allow transparent
polymorphism, i.e. documents do not need to specify a type
attribute indicating the actual type of the element. Unfortu-
nately, neither of our WSDL code generation tools (Axis 2
and Microsoft Visual Studio) could recognize polymorphism
expressed in this fashion.

Our final encoding can be divided into a generic part
which is the same for all sets of interfaces and a specific part
which is unique for a set of interfaces. The general structure
of our XML schema encoding is to represent each interface
and basic type with a schema type. Every expression encod-
ing enforces the type of its sub-expressions and itself extends
the schema type which corresponds to its own type. This en-
coding enforces type safety and provides the client with type
information about the web service.

The generic schema is shared among all web services
and describes naming, control flow, basic data types, ex-
ceptions, and output format. Appendix A contains part of
the generic schema; some repetitive sections have been re-
moved for brevity. TheOperationtype is the base type for
all types. Objects are identified byhandles, which represent
the identity of an object or value that exists on the server dur-
ing execution of the batch. The XML attributebindingin the
batch operation tag represents the name of the handle for the
result of that operation. The XML attributeneededLocally
in the batch operation tag allow the programmer to spec-
ify whether the value is needed by the client. TheAny type

Submission to OOPSLA 2009 4 2009/3/25

is the base type for all value types, i.e. all types except for
Void. Control flow structures provided are sequences, con-
ditionals, and loops. The basic data types include numbers,
booleans, and strings. Exceptions contain name and message
strings. The output document is an untyped map from strings
to values of theAnytype.

The batch contains a series of calls to various objects. The
sub-elements of a call represent the arguments to the call,
which can be other calls or handles of previously defined
objects. The target of an object-oriented method invocation
is the first sub-element and is namedthis. An exception to
this rule, is that method invocations on the root object do not
specify thethissub-element.

<batch type="Sequence">
<step type="AmazonService__getItem" binding="a">

<p1 type="String" value="1111" />

</step>

<step type="AmazonService__getCart" binding="b">

<p1 type="String" value="222" />
<p2 type="String" value="xxx" />

</step>

<step type="Cart_add">

<p1 type="Item__Ref" ref="a" />
<p2 type="Number" value="1" />

</step>

</batch>

For example, theAmazonServicegetItemtag represents
a call to the getItem method. Its target is the root object, so
thethissub-element is omitted. It has one parameter, an item
id that specifies which item to retrieve The binding attribute
defines the handle for the method return value, in this case
”a”. Return handles are optional, but they are useful even if
the method returns void; the handle is later used to identify
any exceptions that might return from the call.

Figure 6 shows a formal description of how a set of inter-
faces are translated into the web service specific schema. The
syntax used for XML schema is the compact representation
XSCS (Wilde and Stillhard 2003). To simplify the presenta-
tion, we assume that all interfaces extend an imaginary type
TOP and that the parent type of all interfaces is explicitly
given.

First, we define a pair of helper functions:lookupType
and lookupParent. The lookupType function takes a
type and a set of interfaces and returns the correspond-
ing type schema type. If the type is a primitive type, then
lookupType returns the name of a standard XML schema
type defined independently. If the type is one of the inter-
faces being translated,lookupType returns the name of
the interface. Otherwise, the return value is undefined. The
lookupParent function takes a type and returns the first
ancestor type that is present in the set of interfaces being
translated. If no such ancestor exists, thenlookupParent
returnsbatch:Anyas the parent type.

The translation for a set of interfaces is simply the con-
catenation of translation for each interface. The translation
for each interface produces five schema types related to the
type of the interface.

• A schema type which represents the interface type.

• A schema type which represents references to objects
with interface type.

• A schema type which represents the type of the collection
whose elements have the interface type.

• A schema type which represents references to objects that
are collections whose elements have the interface type.

• A schema type which represents collections of instances
of the interface type.

In addition, a schema type is produced for each method in
the interface. Each method schema type extends the schema
type corresponding to the method return type. This schema
type has child elements for the object to invoke the method
on and for each parameter. If the interface is a root type,
then the object to invoke the method on is optional and if
omitted denotes that the method should be invoked on the
root service object.

3. Batch Service Servers
So far we have presented an algorithm for translating a set of
object-oriented interfaces to a XML schema that describes a
custom DSL for operating over those interfaces. However,
we would like for programmers not to have to write a cus-
tom interpreter for each web service. To that end, we have
implemented a generic interpreter which can be deployed
as an Axis 2 web service. Axis 2 is a popular open source
web service engine that supports SOAP web services. The
programmer supplies our generic interpreter with two pieces
of information: a web service definition language (WSDL)
XML document describing the web service and the name of
a class implementing the root interface for the web service.

The programmer constructs the WSDL by running a cus-
tom Java to WSDL tool. This tool implements the translation
algorithm in Figure 6. The translation algorithm along with
the generic batch XML schema provide the definitions of the
batch input and output documents. The rest of the WSDL de-
fines an executeBatch operation which interprets batch input
documents and produces batch output documents.

The programmer also specifies the class that implements
the root web service interface. This class must have a default
constructor which will be used to create the root service
object. The root service object persists for the lifetime of
a batch execution.

The generic interpreter web service can then be deployed
as a normal Axis 2 service that appropriately interprets batch
requests and delegates method calls to the appropriate ob-
jects.

4. Batch Service Clients
In order for the programmer to gain practical benefits from
using RBI-WS, convenient client bindings must be provided.
What makes the creation of such bindings nontrivial is that
Web services are a language-independentcommunication in-
frastructure, and the same service may need to be invoked
by multiple clients written in different languages. One ad-

Submission to OOPSLA 2009 5 2009/3/25

n, p, a ∈ String

x ∈ Java Base Types: int/Integer, short/Short, long/Long, float/Float

double/Double, boolean/Boolean, String, void/Void

TOP

I : interface name extends parent {m1 . . .mj}

T : I + X

m ∈ M : return name(param1 formal1, . . . , paramk formalk)

s ∈ P (I)

lookupType(T, s) =



























name(I) I = T ∧ I ∈ s

batch:String T = String

batch:Number boxed(T) <: Number

batch:Boolean boxed(T) = Boolean

batch:Void boxed(T) = Void

lookupParent(I, s) =











batch:Any parent(I) = TOP

parent(I) name(J) = parent(I) ∧ J ∈ s

lookupParent(J, s) name(J) = parent(I)∧ /∈ s ∧ I 6= TOP

Translate(I, isRoot, s) →

abstract complexType name(I) extends lookupParent(I, s) {}

complexType name(I) Ref extends name(I) {
attribute val { boolean }

}

∀m ∈ {m1(I), . . . , mj(I)}
abstract complexType name(i) name(m) extends
lookupType(return(m), s) {
(
this { name(I) } if isRoot [0,1],
p1 { lookupType(param1(m), s) }
, ..., pk { lookupType(paramj(m), s) }

)
}
abstract complexType Collection name(I) {}

complexType Collection name(I) Ref extends Collection name(I)
{ attribute val { boolean } }

complexType Collection name(I) Value extends Collection name(I)
{ (item { name(I) } [0,]) }

Figure 6: Interface to XML Schema Translation for Batches

Submission to OOPSLA 2009 6 2009/3/25

...
BatchExecutorStub best =

new BatchExecutorStub(ENDPOINT);

Batch batch = new Batch();

StringValue id = new StringValue();
id.setVal("1");

StringValue name = new StringValue();

name.setVal("John Smith");

AWSE_searchItem search = new AWSE_searchItem();
search.setNeededLocally(true);

search.setBinding("x");

search.setP0(id);

search.setP1(name);
Item__Ref ref = new Item__Ref();

ref.setRef("x");

Item_getName getName = new Item_getName();

getName.set_this(ref);
getName.setNeededLocally(true);

getName.setBinding("y");

Sequence seq = new Sequence();

seq.setStep(new Operation[] {search,getName});
batch.setOp(seq);

Output out = best.executeBatch(batch);

for (OutputBinding binding : out.getBinding()) {
// output the result

}

Figure 7: Code listing for batch client using Axis 2
WSDL2Java generated interface.

vantage of RBI-WS is that its WSDL can be processed by
any standard WSDL client binding generator, making our
approach applicable for any SOAP-enabled client. Although
such default RBI-WS client bindings can be used out-of-
the-box, we have also experimented with two different ap-
proaches for streamlining RBI-WS client programming. The
first approach extends Java with a new keyword,batch.
Since not all client environments lend themselves for extend-
ing their host language, our second approach uses a mid-
dleware platform called Batch Remote Method Invocation
(BRMI). In the following discussion, we first outline the de-
fault client bindings. Then we explain how we have adapted
the batch extension and the BRMI middleware, detailed in
prior publications (Tilevich et al. 2009; Ibrahim et al. 2009),
for the needs of RBI-WS.

4.1 Default Clients

The WSDL created by the interface translation can be im-
ported by standard web service clients, including Apache
Axis 2 and Microsoft Visual StudioTM.

The client code fragment in Figure 4.1 connects to the
Amazon web service, looks up a merchandise item by its
name and id, and returns the results back to the client.

Unfortunately, the code in Figure 4.1 obscures the pro-
grammer’s intentions. The reason for poor readability is that
this code creates abstract syntax objects, which representthe
sequence of calls given in Section 2.1, and as such it is indi-

BatchClient amazonService

= new BatchClient(SERVER);

batch(AmazonService service : amazonService) {

final Item x = service.searchItem("1", "John Smith");
final String y = x.getName();

// output result
}

Figure 8: Code listing for batch client using batch language
extension.

rect and reflective. In fact, this code is even somewhat more
complex than the code for invoking the standard Amazon
Web service. One reason for the extra complexity is that the
code uses separate steps to construct the parameters and set
their values, before passing the parameters to service meth-
ods. To hide some of this complexity, we next describe two
approaches that can smooth away the rough edges of the de-
fault RBI-WS client bindings.

4.2 The Batch Extension

One approach we took is to extend the Java language with
new syntax that supports defining a batch with a mix of local
and remote operations (Ibrahim et al. 2009). The program-
mer generates the interfaces to a web service by running a
custom tool which takes a WSDL and reverses the transla-
tion in Figure 6. Using those interfaces, the programmer can
invoke remote operations on remote objects inside the batch
block. An object is remote if it is the root remote service
object or if it is obtained from a remote operation. The com-
piler separates the remote and local operations producing a
partitioned program that may have been difficult for the pro-
grammer to write by hand because of interactions between
the remote control flow and the remote-to-local dataflow.
At runtime the remote operations are executed as a single
batch and the results are threaded into the local operationsas
needed. Figure 8 shows how to rewrite the example in Fig-
ure 4.1 using the batch syntax. Using the batch syntax, the
programmer intent is clearer and the code is more succint.

Remote Batch Invocation uses the following syntax:

batch (Type Identifier : Expression) Block

The Identifier specifies the name of the root remote object.
TheExpressionspecifies the service which will provide the
root remote object. TheBlockspecifies both remote and lo-
cal operations. A remote operation is an expression or state-
ment executed on the server. All remote operations inside the
batch block are executed in sequence followed by the local
operations in sequence. A single remote call is made which
contains all of the remote operations. This is the key prop-
erty, as it provides a strong performance model to the pro-
grammer albeit lexically scoped (Gabriel 1992). Exceptions
in a remote operation are re-thrown in the local operation
sequence at the original location of the remote operation. If

Submission to OOPSLA 2009 7 2009/3/25

the remote operations fail due to a network error, then an
exception is thrown before any of the local operations exe-
cute. Operations inside the batch block are reordered and it
is possible that the block executes differently as a batch than
it normally would. The compiler does try to identify some
of these cases and warn the programmer; however, it is up to
the programmer to be aware of the different Java semantics
inside the batch block.

The compiler partitions operations inside the batch block
by marking them aslocal or remote. Remote expressions ex-
ecute on the server, possibly with input from static local ex-
pressions. Local expressions execute on the client, possibly
with output from remote expressions.

Remote Batch Invocation does not support remoting of
many Java constructs, including casts,while loops, for
loops, remote assignments, constructor calls, etc. Although
some of these constructs can be used inside thebatch block,
they will be executed locally. If using these constructs would
interfere with the remote batch execution, the batch trans-
lator will raise an error. Future work may relax some of
these restrictions. If remote assignments were allowed, then
it would be possible to aggregate (e.g. sum or average) over
collections remotely (we currently have an alternative solu-
tion to this problem). General loops could also be supported
without significant changes to the model.

Exceptions are a special case. The remote batch cannot
catch exceptions remotely, but it does propagate them to the
client in the original location of the remote operation that
produced the exception. In this way, the client can catch
exceptions raised remotely and handle them locally.

In our previous work, thebatch keyword was imple-
mented for Java Remote Method Invocation (RMI) which
is more powerful in many ways than SOAP web services.
For example, our implementation of batching for RMI
supported sending any Java object which implements the
Serializable interface to and from the server. On the other
hand, SOAP web services only allow defined record-like
types and certain primitive types to be transferred. We did
think of allowing the transfer of Java types which are just
data-holders (sometimes called beans, DTOs, or value ob-
jects), but we decided against it, since the web service can
easily provide methods to construct the data-holder on the
server directly. For RBI-WS, we modified the compiler to
restrict input and output to the batch to primitive types and
strings.

4.3 The BRMI Middleware Library

Batch Remote Method Invocation (Tilevich et al. 2009) was
originally created as a middleware mechanism for optimiz-
ing Java RMI. We are in the process of implementing our
BRMI library for RBI-WS in C#.

BRMI provides a library for expressing a collection of
remote methods that are recorded on the client, sent to the
server in bulk, executed by the server, and return results
to the client in bulk. BRMI also provides facilities for ex-
pressing conditionals and loops. A key concept of BRMI
is a batch interface, in which all methods return either a

Future object or another batch interface. AFuture is a
placeholder for a result of a remote method. By returning
futures, batch interface methods can be used for recording a
sequence of remote invocations. An explicit call to theflush

method launches the execution of a batch. After this method
is called, the future objects can be queried for the actual val-
ues they hold.

As a specific example, a batch interface for classItem of
the Amazon service can be specified in C# as follows:

namespace BatchWS
{

public interface Item : Batch

{

...
Future<boolean> isAvailable();

Future<string> getTitle();

}

}

A client can use this batch interface to express that a
collection of remote methods be invoked in bulk on the
server as follows:

...
Item item = amazon.getItem(asin);

...

Future<bool> res = amazon.rIf(item.isAvailable());

Future<string> title = item.getTitle();
amazon.rEnd();

amazon.flush();

if (res.get())

System.Console.WriteLine(title.get(),
" is available");

...

The code snippet above uses the root batch interface to
obtain anItem batch interface for a particular item. Then
it checks whether the item is available, and if this is the
case, obtains the item’s title. All the remote invocations are
performed in one batch, including the remote conditional.
Because C# is not an extensible language, BRMI provides
conditional constructs as library calls–rIf andrEnd.

To integrate BRMI with RBI-WS, our infrastructure will
provide a generator taking a WSDL interface as input and
creating a corresponding version of C# batch interfaces. A
call made through a batch interface will be forwarded to
a module encoding all batch calls into a RMI-WS SOAP
request. When the SOAP request returns, the same module
decodes the results and updates the future objects involved.

The translation module will be general and will work with
any RBI-WS WSDL/batch interfaces. Because BRMI pro-
vides a natural object-oriented interface for batching remote
invocations, it exemplifies how a library-based approach can
be leveraged for streamlining client-side RMI-WS program-
ming. Even though our prototype implementation is C# spe-
cific, we envision that a BRMI interface can be easily pro-
vided in most object-oriented languages.

Submission to OOPSLA 2009 8 2009/3/25

5. Case Study: Amazon Associates Web
Service

To gain insight into how real-world web services are actu-
ally implemented and used, we examined the Amazon Asso-
ciates Web Service (AWS).1 AWS is primarily intended for
individuals who want to earn product referral fees by provid-
ing links to Amazon products on their web sites. AWS in-
cludes operations for browsing the Amazon catalog, search-
ing for products sold by Amazon and Amazon marketplace
sellers, looking up product and seller information, and man-
aging a shopping cart.

The left side of Figure 11 shows a typical sequence of
calls to AWS. This sequence corresponds to two calls to
AWS. The first call (lines 7-13) performs a search for books
about dogs. Lines 14-21 output all of the offers for the
found books. The user is then assumed to select one of these
offers to purchase (lines 24-25). A new shopping cart is then
created containing one copy of the selected item (lines 29-
41), and the cart contents, total price, and a link to complete
the purchase are displayed to the user (lines 44-52).

5.1 A Batched Amazon Web Service

The first goal of our case study is to determine if we can
build an efficient batched web service that provides similar
functionality to AWS. Therefore we have prototyped a batch
web service based on AWS. To prototype the service rapidly,
we created a set of server object classes that access the exist-
ing Amazon web service. Figure 10 shows the architecture
of our service.

OurBatched Amazon Serverconsists of three main com-
ponents. TheJAX-WS Amazon Client Libraryis a set of
classes generated using Sun’s wsimport tool. This tool takes
as input a WSDL file describing a web service and produces
a set of classes for accessing the web service. We then build a
set ofServer Object Classeson top of the library. This set of
12 Java classes provides an object-oriented interface to the
product search, browse node hierarchy, seller information,
and shopping cart functionality of the Amazon Associates
web service. This functionality corresponds to 8 of the 22
operations defined by the Amazon Associates web service.
Figure 9 gives interfaces for five of the classes central to the
item search and shopping cart functionality provided by our
service.

The right side of Figure 11 shows the same shopping se-
quence as the left side, but implemented for the Batched
Amazon Server using the batch keyword. Of particular in-
terest is the portion of the code responsible for adding the
item to the cart (lines 29-41). For the batched version of the
API, only three statements are required as compared to the
Amazon version of the API which requires nine statements.
These savings come from removing the need to create a doc-
ument describing the cart operation, and shows the type of
advantage that can be gained from using our batched API
even for simple cases.

1http://aws.amazon.com/associates/

interface AmazonService {

void login(String awsAccessKey) ;

Cart createCart(Offer offer, int quantity) ;
Cart getCart(String cartId, String HMAC) ;

SearchCriteria createSearchCriteria() ;

Item[] search(SearchCriteria criteria) ;

Item getItem(String ASIN);
BrowseNode getBrowseNode(String browseNodeId) ;

Offer getOffer(String ASIN, String offerListingId) ;

}

interface Cart {

String getCartId() ;

String getHMAC() ;

CartItem[] getCartItems() ;
CartItem[] getSavedForLaterItems() ;

Price getSubTotal() ;

String getPurchaseURL();

void add(Offer offer, int quantity) ;

void clear() ;
void remove(CartItem item) ;

void moveToCart(CartItem item, int quantity) ;

void saveForLater(CartItem item) ;

}

interface CartItem {

String getCartItemId() ;

Item getItem() ;
int getQuantity() ;

Price getItemTotal() ;

void setQuantity(int quantity) ;

}

interface Item {

String getASIN();

String getDetailPageURL();
String getSalesRank();

Image getSmallImage();

Image getLargeImage();

Offer[] getOffers();
String getTitle();

BrowseNode[] getBrowseNodes();

}

interface Offer {

Seller getSeller();

Item getItem() ;

String getOfferListingId();
Price getPrice();

String getAvailability();

String getQuantity();

boolean isEligibleForSuperSaverShipping();

boolean isEligibleForPrime();
}

Figure 9: Amazon Fine-Grained Interfaces

Submission to OOPSLA 2009 9 2009/3/25

Java using JAX-WS and standard Amazon Associates API Java using batched API and batch keyword

1 void shoppingSequence() {

2 AWSECommerceService service

3 = new AWSECommerceService() ;
4 AWSECommerceServicePortType port

5 = service.getAWSECommerceServicePort() ;

6

7 ItemSearchRequest search
8 = new ItemSearchRequest() ;

9 search.setSearchIndex("Books") ;

10 search.setKeywords("Dogs") ;

11 Holder<Items> items = new Holder<List<Items>>() ;
12

13 port.itemSearch(awsAccessKey, request, items) ;

14 for(Item item : items.value.getItem()) {

15 out.print(item.getASIN()) ;
16 out.print(item.getTitle()) ;

17 for(Offer offer : item.getOffers().getOffer()) {

18 out.print(offer.getOfferListingId()) ;

19 out.pring(offer.getPrice().getAmount()) ;
20 }

21 }

22

23

24 String ASIN = // user selected product
25 String offerListingId = // user selected offer
26 String cartId = null ;

27 String HMAC = null ;

28

29 CartCreateRequest cartRequest

30 = new CartCreateRequest() ;

31 CartCreateRequest.Items.Item cartItem

32 = new CartCreateRequest.Items.Item() ;
33 cartItem.setOfferListingId(offerListingId) ;

34 cartItem.setQuantity(1) ;

35 CartCreateRequest.Items cartItems

36 = new CartCreateRequest.Items() ;
37 cartItems.getItem().add(cartItem) ;

38 cartRequest.setItems(cartItems) ;

39 Holder<Cart> cart = new Holder<Cart>() ;

40

41 port.cartCreate(awsAccessKey, cartRequest, cart) ;

42 cartId = cart.getCartId() ;

43 HMAC = cart.getHMAC() ;

44 for(CartItem item :
45 cart.getCartItems().getCartItem()) {

46 out.print(item.getItem().getASIN()) ;

47 out.print(item.getItem().getTitle()) ;

48 out.print(item.getPrice().getAmount()) ;
49 out.print(item.getQuantity()) ;

50 }

51 out.print(cart.getSubtotal().getAmount()) ;

52 out.print(cart.getPurchaseURL()) ;
53 }

1 void shoppingSequence() {

2 BatchClient amazonService

3 = new BatchClient(SERVER) ;
4

5

6

7 batch(AmazonService service : amazonService) {
8 service.login(awsAccessKey) ;

9 final SearchCriteria crit =

10 service.createSearchCriteria() ;

11 crit.setSearchIndex("Books") ;
12 crit.setKeywords("Dogs") ;

13

14 for(final Item item : service.search(crit)) {

15 out.print(item.getASIN()) ;
16 out.print(item.getTitle()) ;

17 for(final Offer offer : item.getOffers()) {

18 out.print(offer.getOfferListingId()) ;

19 out.pring(offer.getPrice().getAmount()) ;
20 }

21 }

22 }

23

24 String ASIN = // user selected product
25 String offerListingId = // user selected offer
26 String cartId = null ;

27 String HMAC = null ;

28

29 batch(AmazonService service : amazonService) {

30 service.login(awsAccessKey) ;

31 final Offer offer =

32 service.getOffer(ASIN, offerListingId) ;
33

34

35

36

37

38

39

40

41 final Cart cart = service.createCart(offer, 1) ;

42 cartId = cart.getCartId() ;

43 HMAC = cart.getHMAC() ;

44 for(final CartItem item : cart.getCartItems()) {
45 out.print(item.getItem().getASIN()) ;

46 out.print(item.getItem().getTitle()) ;

47 out.print(item.getPrice().getAmount()) ;

48 out.print(item.getQuantity()) ;
49 }

50 out.print(cart.getSubtotal().getAmount()) ;

51 out.print(cart.getPurchaseURL()) ;

52 }
53 }

Figure 11: Example clients in Java

Submission to OOPSLA 2009 10 2009/3/25

Figure 10: Architecture of Batched Amazon Web Service

5.2 Batching Mechanisms

Examining the AWS API and its accompanying documen-
tation indicates that Amazon is concerned about the ability
of their service to handle large numbers of small requests.
Specifically, Amazon limits access to AWS to at most one
request per second per IP address. To prevent this constraint
from impeding the use of AWS, the API includes three dif-
ferent methods for submitting multiple requests in a single
transaction. The first method isbatch requests, which allow
up to two separate requests involving the same operation to
be combined into a single transaction. The second method is
theMultiOperation operation, allowing up to two different
basic operations to be included in one transaction, with up
to two different requests for one of those operations. This
method effectively allows up to three requests, one for one
operation and two for another operation, to be combined into
a single transaction to the web service. The final mechanism
for batching is unique to theItemLookup operation; up to ten
item ids can be included in a singleItemLookup request.

While allowing some performance gain, the ad-hoc batch-
ing mechanisms provided by Amazon severely constrain the
types of interactions that can be represented in a single trans-
action. A batching mechanism such as RBI-WS allows for
a much wider range of interactions to be represented within
a transaction. However, there are potential disadvantagesto
adopting a more general batching mechanism. As mentioned
earlier, the unconstrained nature of our batches could allow
for denial of service attacks in which a batch uses excessive
resources. Since AWS’s batching mechanisms all have spe-
cific, small upper-bounds on the number of batched opera-
tions, combined with various other bounds in the system, one
can infer that Amazon is concerned about the resource uti-
lization of individual transactions. Therefore, as suggested
earlier, some mechanism for limiting the resource usage of a
batch may be necessary.

5.3 Server-side Aggregation

In the current batch model, a remote variable can only be
assigned once and only at its declaration point. This model
limits the ability to express aggregation over collectionsof
objects on the server. The absence of aggregation makes it
difficult to express certain types of remote operations natu-
rally. For example, consider an application for the Amazon
service that attempts to add the cheapest offer for a partic-
ular product to a shopping cart. Such an application would
naturally be expressed as follows:

batch(AmazonService service : amazonService) {

final Item item = service.getItem(ASIN) ;

Offer minOffer = null;

for(final Offer offer : item.getOffers()) {

if(minOffer == null ||

offer.getPrice() < minOffer.getPrice()) {
minOffer = offer ;

}

}

service.getCart(cartId, HMAC).add(minOffer, 1) ;
}

For this batch to execute successfully, the variableminOffer

must be a remote variable. However, this requiresminOffer

to be declared as final, and therefore the assignment inside
of the if-statement would raise a compiler error. One ap-
proach to address this limitation is to add dedicated aggre-
gator classes. In this case, we can define a class with the
following interface and an appropriate factory method on
theAmazonService class:

interface OfferHolder {

void setOffer(Offer offer) ;

Offer getOffer() ;
boolean hasOffer() ;

}

Now we can change the batch above to the following:

batch(AmazonService service : amazonService) {
final Item item = service.getItem(ASIN) ;

fina OfferHolder minOffer = service

.createOfferHolder() ;

for(final Offer offer : item.getOffers()) {

if(!minOffer.hasOffer() || offer.getPrice()

< minOffer.getOffer().getPrice()) {
minOffer.setOffer(offer) ;

}

}

service.getCart(cartId, HMAC)
.add(minOffer.getOffer(), 1) ;

}

Similar classes can be defined for any of the service
interfaces for which aggregation might be desired as well
as for the basic data-types. Unfortunately, this requires that
the web service programmer have the foresight to provide
these aggregator classes.

6. Related Work
Remote Batch Invocation for Web Services (RBI-WS) ex-
poses to the programmer a new programming abstraction
that aims at providing greater expressiveness without jeop-
ardizing performance. Addressing the challenges of dis-
tributed computing through intuitive programming abstrac-
tions has been the target of numerous prior research efforts.
Since the research literature on the topic covers a wide and

Submission to OOPSLA 2009 11 2009/3/25

diverse spectrum of ideas and approaches, we only compare
RBI-WS with closely related state of the art.

Although Remote Procedure Call (RPC) (Tay and Ananda
1990) has been one of the most prevalent communication ab-
stractions for constructing distributed systems, its shortcom-
ing and limitations have been continuously highlighted by
different researchers (Tanenbaum and Renesse 1988; Waldo
et al. 1994; Saif and Greaves 2001), and some of them sug-
gest that RPC has had harmful influence on the develop-
ment of distributed systems (Vinoski 2005). The document-
oriented interfaces of Web services have been promoted as
an alternative to RPC. Despite the criticisms of RPC and
its object-oriented counterparts, accessing distributedfunc-
tionality through a familiar method call paradigm provides
unquestionable convenience advantages. RBI-WS enables
the programmer to leverage the performance advantages
of document-oriented interfaces by using easy-to-compose
object-oriented interfaces.

The design of document-oriented web services is a com-
plex area that involves many factors, including technology,
interoperability, and transactions (Papazoglou et al. 2007;
Singh et al. 2004; Dijkman et al. 2003; Fielding et al. 2002).
A primary concern is thegranularity of service requests.
Sun’s Java Blueprints (Singh et al. 2004) advises to “con-
solidate related fine-grained operations into more coarse-
grained ones to minimize expensive remote method calls”,
warns that “too much consolidation leads to inefficiencies”,
and concludes that designers should “ensure that the Web
service operations are sufficiently coarse grained”. The con-
tradiction between these recommendations stems from the
impossibility of creating a single level of granularity that
will work for all clients. Explicit batches solve this prob-
lem by allowing clients to perform operations at the required
level of granularity.

The SOAP Bundling Framework (Takase and Tajima
2007) is a web service proxy that allows sequential batches
of multiple calls to an underlying web service. The calls are
independent and do not support loops or conditionals.

Representational State Transfer (REST) is an archi-
tectural model that is an alternative to SOAP web ser-
vices (Fielding and Taylor 2000). REST web services rely
as much as possible on web protocols for handling caching,
security, naming, etc. A REST request is an URL with a
path and form parameters, which are frequently interpreted
as an object address and method parameters. As such REST
resembles a very abstract fine-grained RPC, or a shell com-
mand. The output can be any valid hypertext media such as
HTML or images. REST has a simpler request model than
XML, and this ease of use contributes to its popularity. Al-
though contracts are often promoted as one of the benefits
of service-orientation, REST does not currently support for-
mal interface specifications, analogous to WSDL. The main
problem is that REST, like RPC, is not latency composi-
tional. URLs do not naturally combine to form compound
requests. While defining composite URLs is certainly possi-
ble, we find it easier to define composition in SOAP services,
since XML is naturally compositional.

Software design patterns (Fowler 2002) forRemote Façade
andData Transfer Object(also called Value Objects (Alur
et al. 2003)) can be used to optimize remote communication.
A Remote Façadeallows a service to support specific client
call patterns using a single remote invocation. Different Re-
mote Façades may be needed for different clients. RBI-WS
enables the creation of a custom Remote Façade for each
client as long as the client call pattern is supported as a single
batch. AData Transfer Objectis aSerializable class that
provides block transfer of data between client and server. As
with the Remote Façade, different kinds of Data Transfer
Objects may be needed by different clients. RBI-WS con-
structs a value object on the fly, automatically, exactly as
needed in a particular situation. RBI-WS also generalizes
the concept of a data transfer object to support transfer of
data from arbitrary collections of objects.

Cook and Barfield (Cook and Barfield 2006) first pointed
out that documents can be viewed as batches of primitive
operations. They showed how a set of hand-written wrap-
pers can provide a mapping between object interfaces and
batched calls expressed as a web service document. RBI-
WS automates the process of creating the wrappers and
generalizes the technique to support remote conditionals
and operations on collections. In essence, RBI-WS program
can scale as well as hand-optimized web services (Demarey
et al. 2005). Web services choreography (Peltz 2003) defines
how Web services interact with each other at the message
level. RBI-WS can be seen as a programming abstraction
for choreographingefficient access to remote object-oriented
services.

7. Future Work
In the future, we plan to continue this work in the follow-
ing directions. First, while designing and developing RBI-
WS, we have made several choices that may have impacted
the usability and expressiveness of our methodology. For in-
stance, we chose to use a single type to represent all num-
bers in a given interface. While this decision has simplified
the interfaces, it can also complicate their use, as the typeno
longer provides any hint about the range or precision of the
expected value. Similarly, the current model allows the con-
struction of relatively unconstrained batches of operations,
which can lead to security problems. Therefore we intend to
investigate how these decisions have impacted various prop-
erties of RBI-WS and improve on them if necessary.

Additionally, our exploration of the Amazon Associates
Web Service revealed various shortcomings of our design
and suggested new features that could be beneficial. As
mentioned in Section 5.3, for many types of use-cases, the
ability to perform aggregation on the server over a set of
objects is necessary. Currently, we have provided an ad-
hoc solution that requires the service developer to create
aggregation objects. A more automatic approach is possible
and should be explored.

Also, AWS includes several different search operations,
many of which include a large number of searching, sort-
ing, and paging parameters. Currently, we use search criteria

Submission to OOPSLA 2009 12 2009/3/25

objects to specify these search parameters. The use of these
objects incurs the disadvantage of separating the act of spec-
ifying search criteria from the act of searching. To address
this issue, we are considering several approaches to specify-
ing search criteria in a more natural manner.

8. Conclusion
This paper has argued that document-oriented interfaces can
be effectively represented as batches of method calls to fine-
grained object-oriented interfaces. An input document can
contain information expressing object instantiation, selec-
tion, access, and update. An output document can encapsu-
late multiple results. In the opposite direction, a document
can be specified by combining a block of fine-grained object-
oriented invocations into a batch. Our approach enables the
programmer to express how the statements in a block oper-
ate directly on virtual service objects, without the need to
explicitly construct invocation objects and correlate them to
the response. In addition, batch blocks can include condi-
tional expressions, loops, and exception handling. Our refer-
ence implementation, Remote Batch Invocation for Web Ser-
vices, represents object-oriented interfaces as a WSDL that
describes a batch of invocations. The WSDL is accessible by
standard web service clients. In addition, we provide two ap-
proaches that streamline such access: a batch Java language
extension and a prototype BRMI C# middleware platform.
Our powerful web services infrastructure directly connects
to object-oriented interfaces, providing tool support forau-
tomatically creating and processing documents that embody
sequences of invocations.

As experimental validation, we have created a Web ser-
vice wrapper for the Amazon Associates Web service, show-
ing how remote batches enable a clean object-oriented style
for programming a stateless web service, without needing
remote object proxies.

All in all, this work explores the following novel ideas.
It discusses the relationship between document-oriented and
object-oriented programming interfaces. It shows how a set
of object-oriented interfaces can be effectively translated
into a web service DSL defined by a XML schema. Finally,
this work demonstrates the utility of RBI-WS by applying it
to a real-world web service.

References
D. Alur, J. Crupi, and D. Malks.Core J2EE Patterns: Best Prac-

tices and Design Strategies. Prentice Hall PTR, 2003.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. F. Nielsen, S. Thatte, and D. Winer. Simple object access
protocol (soap) version 1.1, 2002.

E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web services description language (WSDL) 1.1.
http://www.w3.org/TR/wsdl, 2001. URLhttp://www.w3.
org/TR/wsdl.

W. Cook and J. Barfield. Web Services versus Distributed Objects:
A Case Study of Performance and Interface Design. Inthe IEEE
International Conference on Web Services (ICWS’06), pages
419–426, 2006.

C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle. Benchmark-
ing the Round-Trip Latency of Various Java-Based Middleware
Platforms. Studia Informatica Universalis Regular Issue, 4(1):
7–24, 2005.

R. Dijkman, D. Quartel, L. F. Pires, and M. van Sinderen. The state-
of-the-art in service-oriented computing and design. Techni-
cal Report ArCo Project Deliverable ArCo/WP1/T1/D1/V1.00,
University of Twente, 2003.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee.
UML profile for enterprise distributed object computing. Tech-
nical Report OMG Document ptc/2002-02-05, 2002.

R. T. Fielding and R. N. Taylor. Principled design of the modern
web architecture. InICSE ’00: Proceedings of the 22nd inter-
national conference on Software engineering, pages 407–416,
New York, NY, USA, 2000. ACM. ISBN 1-58113-206-9. doi:
http://doi.acm.org/10.1145/337180.337228.

M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002. ISBN 0321127420.

R. Gabriel. Is worse really better?Journal of Object-Oriented
Programming (JOOP), 5(4):501–538, 1992.

A. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook. Remote
batch invocation for compositional object services. InThe
23rd European Conference on Object-Oriented Programming
(ECOOP 2009), July 2009. URLhttp://www.cs.utexas.
edu/~aibrahim/publications/batches.pdf.

B. Liskov and L. Shrira. Promises: linguistic support for effi-
cient asynchronous procedure calls in distributed systems. In
PLDI 1988: Proceedings of the ACM SIGPLAN 1988 Confer-
ence on Programming Language Design and Implementation,
pages 260–267, New York, NY, USA, 1988. ACM Press. ISBN
0-89791-269-1. doi: http://doi.acm.org/10.1145/53990.54016.

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-oriented computing: State of the art and research chal-
lenges. Computer, 40(11):38–45, 2007. doi: http://dx.doi.org/
10.1109/MC.2007.400. URLhttp://dx.doi.org/10.1109/
MC.2007.400.

C. Peltz. Web services orchestration and choreography.Computer,
36(10):46–52, 2003.

U. Saif and D. Greaves. Communication primitives for ubiquitous
systems or RPC considered harmful. InDistributed Computing
Systems Workshop, 2001 International Conference on, pages
240–245, 2001.

I. Singh, S. Brydon, G. Murray, V. Ramachandran, T. Violleau, and
B. Stearns.Designing Web Services with the J2EE 1.4 Platform:
JAX-RPC, XML Services, and Clients. Pearson Education, 2004.
ISBN 0321205219.

T. Takase and K. Tajima. Efficient web services message exchange
by SOAP bundling framework. InEDOC ’07: Proceedings
of the 11th IEEE International Enterprise Distributed Object
Computing Conference, page 63, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 0-7695-2891-0.

A. S. Tanenbaum and R. v. Renesse. A critique of the remote pro-
cedure call paradigm. InEUTECO 88, pages 775–783. North-
Holland, 1988.

B. Tay and A. Ananda. A survey of remote procedure calls.
Operating Systems Review, 24(3):68–79, 1990.

Submission to OOPSLA 2009 13 2009/3/25

E. Tilevich, W. Cook, and Y. Jiao. Explicit batching for dis-
tributed objects. InThe 29th International Conference on Dis-
tributed Computing Systems, June 2009. URLhttp://www.
cs.utexas.edu/~wcook/Drafts/2008/brmi.pdf.

S. Vinoski. RPC Under Fire.IEEE INTERNET COMPUTING,
pages 93–95, 2005.

J. Waldo, A. Wollrath, G. Wyant, and S. Kendall. A Note on
Distributed Computing. Technical report, Sun Microsystems,
Inc. Mountain View, CA, USA, 1994.

E. Wilde and K. Stillhard. Making xml schema easier to read and
write. In WWW 2003, 2003.

D. Winer. XML-RPC Specification, 1999.

A. Appendix A

<schema targetNamespace=
"http://www.cs.utexas.edu/aibrahim/batch"

xmlns:s=
"http://www.w3.org/2001/XMLSchema"

xmlns:batch=
"http://www.cs.utexas.edu/aibrahim/batch">

<s:complexType name="OutputBinding">
<s:sequence>
<s:element name="value" type="batch:Any"

minOccurs="0"
maxOccurs="unbounded"/>

</s:sequence>
<s:attribute name="key" type="s:string"

use="required"/>
</s:complexType>

<s:element name="output">
<s:complexType>
<s:sequence>
<s:element name="binding"

type="batch:OutputBinding"
minOccurs="0"
maxOccurs="unbounded"/>

</s:sequence>
</s:complexType>

</s:element>

<s:element name="batch">
<s:complexType>
<s:sequence>
<s:element name="op"

type="batch:Operation" />
</s:sequence>

</s:complexType>
</s:element>

<s:complexType abstract="true"
name="Operation">

<s:attribute name="binding"
type="s:string"/>

<s:attribute name="neededLocally"

type="s:boolean"
default="false"/>

</s:complexType>

<s:element name="seq"
type="batch:Sequence"/>

<s:complexType abstract="false"
name="Sequence">

<s:complexContent>
<s:extension base="batch:Void">
<s:sequence>
<s:element name="step"

type="batch:Operation"
maxOccurs="unbounded"/>

</s:sequence>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="if" type="batch:IfStmt"/>
<s:complexType abstract="false"

name="IfStmt">
<s:complexContent>
<s:extension base="batch:Void">
<s:sequence>
<s:element name="cond"

type="batch:Boolean"/>
<s:element name="then"

type="batch:Operation"/>
<s:element name="else"

type="batch:Operation"/>
</s:sequence>

</s:extension>
</s:complexContent>

</s:complexType>

<s:element name="cursor"
type="batch:Cursor"/>

<s:complexType abstract="false"
name="Cursor">

<s:complexContent>
<s:extension base="batch:Void">
<s:sequence>
<s:element name="cursorName"

type="s:string"/>
<s:element name="collection"

type="batch:Collection"/>
<s:element name="body"

type="batch:Operation"/>
</s:sequence>

</s:extension>
</s:complexContent>

</s:complexType>

<s:element name="negation"
type="batch:Negation"/>

<s:complexType abstract="false"

Submission to OOPSLA 2009 14 2009/3/25

name="Negation">
<s:complexContent>
<s:extension base="batch:Number">
<s:sequence>
<s:element name="operand"

type="batch:Number"/>
</s:sequence>

</s:extension>
</s:complexContent>

</s:complexType>

<s:element name="not" type="batch:Not"/>
<s:complexType abstract="false" name="Not">
<s:complexContent>
<s:extension base="batch:Boolean">
<s:sequence>
<s:element name="operand"

type="batch:Boolean"/>
</s:sequence>

</s:extension>
</s:complexContent>

</s:complexType>

<s:element name="and" type="batch:And"/>
<s:complexType abstract="false" name="And">
<s:complexContent>
<s:extension base="batch:Boolean">
<s:sequence>
<s:element name="leftOperand"

type="batch:Boolean"/>
<s:element name="rightOperand"

type="batch:Boolean"/>
</s:sequence>

</s:extension>
</s:complexContent>

</s:complexType>

...

<s:element name="greaterThan"
type="batch:GreaterThan"/>

<s:complexType abstract="false"
name="GreaterThan">

<s:complexContent>
<s:extension base="batch:Boolean">
<s:sequence>
<s:element name="leftOperand"

type="batch:Number"/>
<s:element name="rightOperand"

type="batch:Number"/>
</s:sequence>

</s:extension>
</s:complexContent>

</s:complexType>

...

<s:element name="Plus" type="batch:Plus"/>
<s:complexType abstract="false" name="Plus">

<s:complexContent>
<s:extension base="batch:Number">
<s:sequence>
<s:element name="leftOperand"

type="batch:Number"/>
<s:element name="rightOperand"

type="batch:Number"/>
</s:sequence>

</s:extension>
</s:complexContent>

</s:complexType>

...

<s:element name="void" type="batch:Void"/>
<s:complexType abstract="true" name="Void">

<s:complexContent>
<s:extension base="batch:Operation">
<s:sequence/>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="any" type="batch:Any"/>
<s:complexType abstract="true" name="Any">

<s:complexContent>
<s:extension base="batch:Operation">
<s:sequence/>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="null" type="batch:Null"/>
<s:complexType abstract="true" name="Null">

<s:complexContent>
<s:extension base="batch:Any">
<s:sequence/>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="exception"
type="batch:Exception"/>

<s:complexType abstract="false"
name="Exception">

<s:complexContent>
<s:extension base="batch:Any">
<s:sequence/>
<s:attribute name="type" type="s:string"/>
<s:attribute name="msg" type="s:string"/>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="cursorValue"

Submission to OOPSLA 2009 15 2009/3/25

type="batch:CursorValue"/>
<s:complexType abstract="false"

name="CursorValue">
<s:complexContent>
<s:extension base="batch:Any">
<s:sequence>
<s:element name="var" type="s:string"

minOccurs="0" maxOccurs="unbounded"/>
</s:sequence>
<s:attribute name="size" type="s:integer"/>

</s:extension>
</s:complexContent>

</s:complexType>

...

<s:element name="number" type="batch:Number"/>
<s:complexType abstract="true" name="Number">
<s:complexContent>
<s:extension base="batch:Any">
<s:sequence/>

</s:extension>
</s:complexContent>

</s:complexType>

<s:element name="numberRef"
type="batch:Number__Ref"/>

<s:complexType name="Number__Ref">
<s:complexContent>
<s:extension base="batch:Number">
<s:sequence/>
<s:attribute name="ref"

type="s:string"/>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="numberValue"
type="batch:Number__Value"/>

<s:complexType name="Number__Value">
<s:complexContent>
<s:extension base="batch:Number">
<s:sequence/>
<s:attribute name="val"

type="s:string"/>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="coll"
type="batch:Collection"/>

<s:complexType abstract="true"
name="Collection">

<s:complexContent>
<s:extension base="batch:Any">
<s:sequence/>

</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="collNumber"
type="batch:Collection__Number"/>

<s:complexType abstract="true"
name="Collection__Number">

<s:complexContent>
<s:extension base="batch:Collection">
<s:sequence/>

</s:extension>
</s:complexContent>

</s:complexType>

<s:element name="collNumberRef"
type="batch:Collection__Number__Ref"/>

<s:complexType
name="Collection__Number__Ref">
<s:complexContent>
<s:extension
base="batch:Collection__Number">
<s:sequence/>
<s:attribute name="ref"

type="s:string"/>
</s:extension>

</s:complexContent>
</s:complexType>

<s:element name="collNumberValue"
type="batch:Collection__Number__Value"/>

<s:complexType
name="Collection__Number__Value">
<s:complexContent>
<s:extension
base="batch:Collection__Number">
<s:sequence>
<s:element name="item"
type="batch:Number"
maxOccurs="unbounded"/>

</s:sequence>
</s:extension>

</s:complexContent>
</s:complexType>

...

</schema>

Submission to OOPSLA 2009 16 2009/3/25

