
Service Oriented Computing and Applications manuscript No.
(will be inserted by the editor)

Which Middleware Platform Should You Choose for
Your Next Remote Service?

Young-Woo Kwon · Eli Tilevich · William R. Cook

Received: date / Accepted: date

Abstract Due to the shift from software-as-a-product

(SaaP) to software-as-a-service (SaaS), software com-

ponents that were developed to run in a single address

space must increasingly be accessed remotely across the

network. Distribution middleware is frequently used to

facilitate this transition. Yet a range of middleware

platforms exist, and there are few existing guidelines

to help the programmer choose an appropriate mid-

dleware platform to achieve desired goals for perfor-

mance, conciseness, intuitiveness, and reliability. To ad-

dress this limitation, in this article, we describe a case

study of transitioning an Open Service Gateway Ini-

tiative (OSGi) service from local to remote access. In

our case study, we evaluate five remote versions of this

service, constructed using different distribution mid-

dleware platforms. These platforms are implemented
by widely-used commercial technologies or have been

proposed as improvements on the state of the art. In

particular, we implemented a service-oriented version

of our own Remote Batch Invocation abstraction. We

compare and contrast these implementations in terms

of their respective performance, conciseness, complex-

ity, and reliability. Our results can help remote service
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programmers make informed decisions when choosing

middleware platforms for their applications.1
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1 Introduction

The next couple of years will see a fundamental shift

in how the average user takes advantage of computing

resources. Traditional shrink-wrapped software applica-

tions will move in the direction of a computation model

dominated by cloud computing [8,38]. In this shift, the

provisioning of software will evolve from software-as-a-

product (SaaP) to software-as-a-service (SaaS). For ex-

ample, a desktop application could be modified so that

much of its execution takes place at a remote server in

the cloud, with only the GUI rendered locally. The GUI

part is likely to run on a mobile device, for example a

smart phone.

Two levels of infrastructure are needed to realize

this vision of software services. Firstly, component mod-

els are needed to define services and their interfaces.

The Open Service Gateway Initiative (OSGi) [18] pro-

vides a platform for defining and managing components

that can be used as services. It is used by developers

to package features as components for separate deploy-

ment, and by end users to select components they need.

Secondly, middleware infrastructure is needed to allow

services to be accessed remotely. There are several dif-

ferent kinds of middleware, and each has different per-

formance, conciseness, complexity, and reliability char-

1 This is a revised and extended version of a paper pre-
sented at the Services Computing Conference (SCC 2010) in
Miami, FL [13].
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acteristics. Middleware can be based on messaging, re-

mote procedure calls, or remote evaluation, with the

option of asynchronous processing. The trade-offs be-

tween these approaches have not been properly exam-

ined and, as a result, are poorly understood.

To address this lack of understanding, in this article

we describe a case study we have conducted to examine

the trade-offs of using different middleware platforms

of accessing services remotely. For the case study, we

chose a realistic OSGi service that has been integrated

into several commercial applications. This service is the

Lucene search engine library [29] that provides func-

tionality to index and search text files in Java. For the

case study, we implemented a simple dictionary appli-

cation that can search and return definitions, find syn-

onyms, as well as suggest corrections for misspelled or

partially-specified words.

We have implemented three Lucene-based services

using five different middleware platforms: TCP sockets,

synchronous and asynchronous remote calls in R-OSGi

[22], Message Oriented Middleware (MOM) [1], and Re-

mote Batch Invocation (RBI) [9]. For each implementa-

tion, we measured: (1) the total number of lines of un-

commented code and its cyclomatic complexity, (2) the

aggregate latency of invoking remote service methods,

and (3) the degree of reliability of remote service meth-

ods in the presence of network volatility. The amount

of code and its cyclomatic complexity are two standard

software engineering metrics most commonly used to

assess the complexity and quality of a software artifact

[20]. The aggregate latency of invoking a service is a

performance metrics that indicates how long it takes for

the clients to derive the expected benefits when using

the service. This metrics comprehensively assesses the

Quality of Service (QoS) from the end user’s perspec-

tive. Finally, the ability of a remote service to cope with

network volatility is critical to maintaining the required

QoS in the majority of realistic network environments.

One of the evaluated middleware platforms is our

own Remote Batch Invocation (RBI), a distributed pro-

gramming abstraction and a middleware system we have

recently introduced [9]. In RBI, a batch is a collec-

tion of method calls, conditional statements, and loops

that is transfered in bulk to the server, which executes

the collection and returns the results to be assigned

to local variables. Although RBI clients resemble tra-

ditional RPC clients, they have a fundamentally dif-

ferent, service-oriented execution model. As such, our

implementation of OSGi in RBI is the first non-RPC

implementation of the OSGi R4.2 specification, which

codifies how OSGi bundles should be accessed remotely.

Based on the results of our case study, the technical

contributions of this article are as follows:

– The first non-RPC remote implementation of the

OSGi R4.2 specification.

– A comprehensive evaluation of the trade-offs be-

tween the performance, conciseness, complexity, and

reliability of middleware platforms for accessing ser-

vices remotely.

– A systematic analysis of the evaluation that can help

inform a working programmer about which middle-

ware platform should be used to access a given ser-

vice remotely.

The rest of this article is structured as follows. Sec-

tion 2 introduces the concepts and technologies used

in this work. Section 3 describes the implementation of

OSGi in RBI. Section 4 describes our case study and its

results. Section 5 discusses related work, and Section 6

presents future research directions and concluding re-

marks.

2 Background

In the following discussion we describe Service Oriented

Architecture (SOA), OSGi, and middleware platforms,

including R-OSGi and Message Oriented Middleware.

2.1 Service Oriented Architecture

Service Oriented Architectures (SOA) has been recently

employed as a means of providing uniform access to a

variety of computing resources across multiple applica-

tion domains. In SOA, software components are pro-

vided as services, self-encapsulated units of function-

ality accessed through a public interface [19]. Essen-

tial characteristics of service-orientation are platform

independence and support for stateless communication

models.

Services can access each other only via each other’s

public interfaces. Loosely coupled services may be col-

located in the same address space or be geographically

dispersed across the network. Among the software en-

gineering advantages of SOA are strong encapsulation,

loose coupling, ease of reusability, and standardized dis-

covery [6].

OSGi

The Open Service Gateway Initiative (OSGi) provides

a platform for implementing services [18]. It allows any

Java class to be used as a service by publishing it as

a service bundle. OSGi manages published bundles, al-

lowing them to use each other’s services. OSGi manages

the lifecycle of a bundle (i.e., moving between install,
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The OSGi framework provides a local service registry for bundles to commu-
nicate through service objects, where a service is an object that one bundle 
registers and another bundle gets. A distribution provider can use this loose 
coupling between bundles to export a registered service by creating a end-
point. Vice versa, the distribution provider can create a proxy that accesses an 
endpoint and then registers this proxy as an imported service. A Framework 
can contain multiple distribution providers simultaneously, each indepen-
dently importing and exporting services.

An endpoint is a communications access mechanisms to a service in 
another framework, a (web) service, another process, or a queue or topic des-
tination, etc., requiring some protocol for communications. The constella-
tion of the mapping between services and endpoints as well as their 
communication characteristics is called the topology. A common case for dis-
tribution providers is to be present on multiple frameworks importing and 
exporting services; effectively distributing the service registry.

The local architecture for remote services is depicted in Figure 13.1 on page
5.

Figure 13.1 Remote Services Architecture
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Fig. 1 OSGi remote services architecture [18].

start, stop, update, and delete stages) and allows it to

be added and removed at runtime.

OSGi is a mature software component platform. It

has been widely adopted by multiple industry and re-

search stakeholders, organized into the OSGi Alliance.

OSGi is used in large commercial projects, including

the Spring framework [25] and Eclipse [35], which use

this platform to update and manage plug-ins. The OSGi

standard is currently implemented by several open-source

projects, including Apache Felix [34], Knopflerfish [36],

and Concierge [21].

2.2 Distribution Middleware

Distribution Middleware provides mechanisms for soft-

ware on one system to invoke operations on a remote

system. Middleware eliminates the need for low-level
network programming and offers convenient building

blocks for constructing distributed systems. There are

several different platforms used in middleware applica-

tions, including messaging, remote procedure calls, and

remote evaluation.

Message Oriented Middleware

Message Oriented Middleware (MOM) is an infrastruc-

ture for distributed communication using messages. Al-

though originally all message based communication was

presumed to follow the asynchronous interaction model,

most MOM systems now support both synchronous and

asynchronous interaction models. In addition, MOM

provides two messaging models, point-to-point and pub-

lish/subscribe. In the point-to-point model, a sender

sends messages to a particular client through a mes-

sage queue. In the publish/subscribe model, a sender

publishes messages to multiple clients through a mes-

sage topic.

Java Message Service (JMS) [15] is a standard API

from Sun Microsystems that enables Java programs

to use message based communications. JMS is imple-

mented in widely used MOM infrastructures, including

Apache’s ActiveMQ [32] and JBoss Messaging [10]. For

the purposes of this article, we evaluate the publish/-

subscribe model of ActiveMQ.

2.3 Remote Procedure Calls

Remote Procedure Calls (RPC) are the basis for a wide

range of middleware implementations. In this model,

each call to a remote interface is transfered from the

client to the server for execution, and the results re-

turned to the client. RPC has been extended to sup-

port object-oriented programming by introducing ob-

ject proxies, which forward calls from client to server.

This approach is the basis for DCOM [2] and CORBA

[16].

Remote OSGi (R-OSGi) [22] is an RPC-based mid-

dleware platform for OSGi. The initial OSGi specifi-

cation codifies inter-bundle communication as occur-

ring within a single host. The R-OSGi distribution in-

frastructure allows accessing OSGi services remotely

through a proxy-based approach, with proxies exposed

as standard OSGi bundles. R-OSGi is based on RPC,

but allows both synchronous and asynchronous calls,

which can reduce latency. The distributed service reg-

istry of R-OSGi makes it possible to treat remote and

local services uniformly.

More recently, the OSGi alliance released the OSGi

R4.2 specification that describes how remote OSGi ser-

vices can be discovered and used [18]. Its architecture

is depicted in Figure 1. The OSGi R4.2 specification

does not specify how remote OSGi services should be

accessed. Instead, the specification codifies only how
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remote service interfaces should be discovered and re-

trieved. Once a remote service interface is obtained, it

is up to the implementor of this specification how in-

terface methods are to be invoked at a remote OSGi

framework and how their results are to be transferred

back to the caller.

The first reference implementation of R4.2 is D-

OSGi [33], which implements the specification as Web

services, using SOAP over HTTP for transmission and

WSDL contracts for exposing services. This implemen-

tation is also RPC-based.

Although an RPC-based implementation naturally

satisfies the method calling semantics of OSGi service

interfaces, other middleware abstractions can also be

used to implement R4.2.

2.4 Remote Batch Invocation

Remote Batch Invocation (RBI) [9] is a distributed

middleware abstraction based on partitioning blocks of

code into remote and local parts, while performing all

communication in bulk. Batches are specified using a

batch statement. The body of a batch statement com-

bines remote and local computation. In Java, a batch

block looks like a collection of remote method calls but

is executed using remote evaluation [26], in which all

the remote calls are sent in a single batch script. In ad-

dition, data is moved in bulk between client and server.

RBI differs from RPC in that the unit of distribution

is a block of code rather than a single procedure call.

The details of RBI are discussed in the following sec-

tion, which also shows how RBI can be used to provide

remote access to OSGi services.

3 OSGi in RBI

RBI introduces a batch statement that executes multi-

ple remote calls using a single remote round trip to the

server. Figure 3 shows how the Lucene OSGi service

can be accessed with RBI. Note that the batch block

includes looping and conditional statements. The batch

language extension is transformed into standard Java.2

The RBI runtime executes multiple calls (combined

with conditional and looping constructs) to a given re-

mote service. Finally, RBI/OSGi does not require any

changes to remote service interfaces, which are discov-

ered and bound using a standard OSGi registry.

The runtime architecture of RBI, shown in Figure 2,

consists of a service consumer, service provider, batch

2 Please refer to our ECOOP 2009 papers for translation
details [9].

1 //Get BundleContext object from the Activator class
2 BundleContext ct = ... ;
3

4 //Retrieve the remote service object
5 ServiceReference sref = ct. getServiceReference (
6 RSearchIFace. class .getName());
7 RSearchIFace rs = context. getService ( sref );
8

9 //Instantiate Service object for batch
10 Service service = new Service(rs, RSearchIFace. class );
11

12 //Prepare the search query
13 Term term = new Term(DEFINITION, word);
14 Query query = new TermQuery(term);
15

16 batch (Lucene ls : service ) {
17 //Invoke the remote search function
18 final TopDocs topDocs = ls.search(query);
19 StringBuffer defBuffer = new StringBuffer();
20

21 //Retrieve meanings from the search result
22 for (ScoreDoc hits : topDocs.scoreDocs) {
23 Document doc = ls.doc(hits.doc);
24 if (doc != null) {
25 defBuffer .append(doc.getValues(DEFINITION));
26 } //if end
27 } //for end
28 } //batch end

Fig. 3 Example of batch invocation.

processor, and distribution provider. Once the service

provider registers a service in the OSGi framework,

the distribution provider instantiates a server that can

be accessed remotely. The service consumer discovers

and retrieves the remote service, and then the distri-

bution provider creates a proxy for importing the ser-

vice. Upon the service consumer making remote calls,

the batch processor aggregates them into a single de-

scriptor, which is transmitted across the network to the

service provider. The service provider’s batch processor

interprets the descriptor, invoking the appropriate ser-

vice methods, and sends the results back to the service

consumer.

3.1 RBI Runtime System

To integrate OSGi with RBI, we connected RBI to the

standard OSGi services, ServiceListener and Service-

Hook. Once a ServiceListener is registered with OSGi,

it starts receiving lifecycle change events for the regis-

tered service. The distribution provider uses a Service-

Listener to determine when a server must be instan-

tiated to process remote requests. The Service Hook

service, introduced only in the OSGi R4.2 specification,

intercepts service events, raised in response to the ser-
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vice consumer retrieving the remote service, and creates

a proxy for accessing services remotely.

The ServiceHook service makes it possible to treat

local and remote services uniformly, with the only dif-

ference concerning their configuration. In other words,

switching from using the local version of a service to

a remote version and vice verse does not require any

source code changes, which are confined to configu-

ration files. Because the OSGi R4.2 specification re-

quires that remote service interfaces be decoupled from

their implementations, the ServiceHook service accom-

plishes that by making it possible to switch implemen-

tations through a simple configuration file change.

Figure 4 demonstrates how straightforward the RBI/

OSGi architecture makes it to export a remote ser-

vice. All it takes to register a remote service is to de-

fine its RBI/OSGi properties, including the remote ser-

vice’s interface name, the local address, and the lo-

cal port number. Specifically, the service.exporte-

d.interfaces property defines the exported interfaces.

The service.exported.configs property specifies the

available distribution provider such as RBI. Once the

local address and port number are specified, the service

can be assessed remotely.

1 Dictionary props = new Hashtable();
2 props.put(” service .exported. interfaces ”, ∗);
3 props.put(” service .exported. configs ”,
4 ”edu.vt . cs . dosgi . rbi . rs”);
5 props.put(”edu.vt . cs . dosgi . rbi . rs . url ”, local address );
6 props.put(”edu.vt . cs . dosgi . rbi . rs . port”, local port );
7

8 context . registerService (RSearchIFace. class .getName(),
9 new RSearchImpl(), props);

Fig. 4 Example configuration for exporting remote services.

For a client to import a remote service, an XML con-

figuration file must be provided. Figure 5 provides an

example of such a configuration file. Mirroring the prop-

erties used to export the remote service, the XML con-

figuration file specifies them in the same order, starting

with service.exported.configs, followed by service.-

exported.interfaces. We are currently implementing

a design in which RBI/OSGi server and client modules

can use either an XML-based or a hard-coded config-

uration. This design provides significant flexibility ad-

vantages: since RBI/OSGi can work with regular Java

interfaces or classes (also known as Plain Old Java Ob-

jects or POJOs), any standard OSGi service will be

able to export and import RBI/OSGi remote services

by means of a configuration file.

1 <service−descriptions xmlns=
2 ‘‘ http ://www.osgi.org/xmlns/sd/v1.0.0”>
3 <service−description>
4 <provide interface =RSearchIFace/>
5 <property name=service.exported. interfaces >∗
6 </property>
7 <property name=service.exported.configs>
8 edu.vt . cs . dosgi . rbi . rs
9 </property>

10 <property name=edu.vt.cs.dosgi. rbi . rs . address>
11 remote address
12 </property>
13 <property name=edu.vt.cs.dosgi. rbi . rs . port>
14 remote port
15 </property>
16 </service−description>
17 </service−descriptions>

Fig. 5 Example configuration file for importing remote ser-
vices.

4 Case study

To compare different middleware platforms, we com-

pared remote access to a set of three services packaged
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as an OSGi bundle. We chose the Lucene search en-

gine library, which is distributed as an OSGi bundle,

thus providing a service interface. The Lucene search

services have been used in real-world applications in

domains including Web search frameworks (e.g., Nutch

[30]) and enterprise systems (e.g., Solr [31]). Using Lucene,

we implemented three services to search for (1) a word’s

definition, (2) a word’s list of synonyms, and (3) a

list of spelling suggestions for a misspelled word. Note

that service (2) extends the functionality of service (1),

and service (3) extends the functionality of service (2).

Thus, service (2) includes all the functionality of service

(1), and service (3) includes that of services (1) and (2).

For our case study, we examined how these services

can be accessed remotely using five different middle-

ware platforms. To that end, we compared each of the

five implementations in terms of their respective per-

formance, conciseness, complexity, and reliability.

For the purposes of this study, we define our metrics

as follows:

– Performance: the total execution time it takes to

execute a service, including both network latency

and business processing.

– Conciseness: the total of Uncommented Lines of

Code (ULOC) it takes to write the service.

– Complexity: the McCabe cyclomatic complexity

(MCC) [14].

– Reliability: the ability to withstand temporary net-

work volatility, when the communication network

experiences an outage [12].

In this benchmark, we compare these metrics for

five middleware platforms: (1) synchronous R-OSGi,

(2) asynchronous R-OSGi, (3) Message-Oriented Mid-

dleware, (4) raw sockets, and (5) our own RBI imple-

mentation to OSGi.

4.1 Experimental Setup

All the experiments were conducted on the client ma-

chine running 3.0 GHz Intel Dual-Core CPU, 2 GB

RAM, Windows XP, JVM 1.6.0 13 (build 1.6.0 13-b03),

and the server machine running 1.8 GHz Intel Dual-

Core CPU, 2.5 GB RAM, Windows 7, JVM 1.6.0 16

(build 1.6.0 16-b01), connected via a local area net-

work (LAN) with a 100Mbps bandwidth, and 1ms la-

tency. Our results may not be applicable for Wide Area

Network (WAN) environments, which are characterized

by higher levels of volatility and latency. In fact, some

of the middleware mechanisms we have evaluated (e.g.,

synchronous RPC) are known to have been ineffective

in such environments [5].

Figure 6 depicts a diagram describing the specifics

of our experimental setup. The Lucene OSGi bundle is
located on a separate node (server) and is accessed re-

motely from another node (client). To start the bench-

marking of a given setup, we constructed a simple Web

client that communicates with the client node through

HTTP. By navigating a Web browser to a URL associ-

ated with any of the five middleware implementations,

a servlet at the client node invokes its corresponding

benchmark method.

4.2 Performance

Each benchmark method calls three services in sequence,

repeating each service call 1,000 times and then re-

porting the averaged time. Only the time to invoke the

Lucene-based services is taken into account, while the

HTTP communication to trigger different benchmarks

is omitted.

Figure 7 shows the averaged performance for each

service. Because each of the three services takes an in-
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creasing number of remote roundtrips, for each mid-

dleware platform, the total execution time grows for

services 2 and 3.
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For each service, raw sockets provide the best per-

formance. Asynchronous R-OSGi comes close second.

RBI/OSGi using synchronous communication comes quite

close to asynchronous R-OSGi. Synchronous R-OSGi is

always slower than RBI/OSGi, due to the latter mid-

dleware platform aggregating multiple remote calls and

invoking them in bulk.

Surprisingly, our MOM-based implementation con-

sistently showed the poorest results across all bench-

marks. The reason is because the implementation we

used, ActiveMQ, is based on a publish-subscribe rather

than a point-to-point communication model. Although

MOM-based platforms with point-to-point communica-

tion models have been described in the literature [15],
the commercial MOM implementations tend to commu-

nicate through a publish-subscribe mechanism. While

ActiveMQ offers a point-to-point communication op-

tion, it is realized as a layer on top of the publish-

subscribe infrastructure, with both options offering the

same performance results. Publish-subscribe models are

beneficial when messages have to be broadcast to a large

number of recipients. In our setup, when using MOM

for client-server communication, the overhead of involv-

ing a message queue was never amortized.

4.3 Conciseness and Complexity

Table 1 shows the total uncommented lines of code

(ULOC) it takes to implement each of the three ser-

vices using different middleware platforms. The ability

to express the same functionality in fewer lines of code

has tangible Software Engineering benefits. If the prob-

ability of introducing software defects is proportional

to the size of a program, fewer lines of code implies a

lower defect probability.3

The table also shows their McCabe Cyclomatic met-

ric (MCC).4 The MCC metric is commonly employed

to assess the complexity of a codebase. Intuitively, the

MCC is indicative of the programming effort required

to implement and understand a piece of code. Thus, if a

middleware usage scenario produces a lower MCC met-

ric, the complexity will be reduced, as the programmer

is likely to exert less effort to produce or modify the

code.

The ULOC numbers in Table 1 combine the client

and server portions, while excluding 1918 ULOC that

it takes to implement the functional processing part of

all the remotely-accessed services.

Table 1 Conciseness and Complexity Comparison.

Middleware
Service ULOC

Max.
platform MCC

Sync. R-OSGi
Service 1 14 7
Service 2 14 10
Service 3 14 17

Async. R-OSGi
Service 1 148 8
Service 2 170 12
Service 3 212 25

RBI/OSGi
Service 1 23 7
Service 2 27 10
Service 3 33 17

MOM
Service 1 1172 8
Service 2 1207 13
Service 3 1231 23

Sockets
Service 1 2722 8
Service 2 2793 13
Service 3 2839 23

As expected, our sockets-based implementation is

the longest. A programmer has to design and express a

low-level communication protocol, which also includes

the format for each transferred message. In addition,

avoiding deadlocks and ensuring good performance re-

quires that message sending and receiving be handled

by different threads.

The MOM implementation is the second longest. A

programmer has to implement a listener interface and

register it with the messaging system and handle mes-

sages that arrive out of order. In addition, the program-

mer must define the messages and process them at the

application level.

3 Our explicit assumption is that the programmer does not
try to artificially reduce the ULOC numbers.
4 We used Metric 1.3.6 http://metrics.sourceforge.net/ for

the measurements.
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Asynchronous R-OSGi follows next. A programmer

also has to implement a listener, but R-OSGi eliminates

the need for the programmer to implement messages

and setup the communication.

The RBI/OSGi implementation takes about an or-

der of magnitude fewer lines of code than the asyn-

chronous R-OSGi one. RBI/OSGi is a method-based

middleware mechanisms that does not require the pro-

grammer to write any communication-specific code.

The synchronous R-OSGi implementation takes about

the same amount of code as that of RBI/OSGi. RBI

adds a couple of lines of code to setup and express a

batch.

With respect to complexity, the raw sockets, asyn-

chronouns R-OSGi, and MOM implementations have

high MCC, while synchronous R-OSGi and RBI/OSGi

ones have lower MCC.

4.4 Reliability

As it turns out, only our MOM-based implementation

has built-in fault tolerance capabilities provided by Ac-

tiveMQ. It can operate in what is called “persistent

mode” that stores every message to be sent in stable

storage. Upon disconnection, the undelivered messages

are rescheduled for delivery after the network becomes

reconnected.

If reliability in the face of network volatility is re-

quired, Table 2 summarizes how fault handling mecha-

nisms can be adopted in each middleware platform.

Table 2 Reliability Comparison.

Middleware Fault 3rd party
platform handling solution

Sync. R-OSGi N/A DR-OSGi
Async. R-OSGi N/A DR-OSGi

RBI/OSGi N/A DR-OSGi
MOM built-in N/A

Sockets N/A N/A

Even when a middleware mechanism does not have

built-in facilities for dealing with network volatility, our

recent research [12] has shown how such facilities can

be plugged into a middleware infrastructure, thereby

improving reliability in the face of network volatility.

4.5 Discussion

Here we discuss some of the implications of the per-

formance, conciseness, complexity, and reliability mea-

surements presented above. In our discussion, we at-

tempt to provide specific recommendation for the de-

velopers of serviceoriented applications.

Figure 8 depicts the trade-offs between the perfor-

mance, conciseness, complexity, and reliability guaran-

tees offered by each middleware platform. As it turns

out, no platform satisfies all four guarantees. There-

fore, programmers should choose an appropriate plat-

form with the immediate needs of their service applica-

tions and their deployment environments in mind.

Conciseness and Complexity

Performance Reliability

Sync. 
R-OSGiRBI-

OSGi

Java
Socket

Async.
R-OSGi

MOM

Local
Service

Fig. 8 Trade-offs between the performance, conciseness,
complexity, and reliability levels.

Threats to Validity The measurements above are sub-

ject to both internal and external validity threats. The

internal validity is threatened by the way in which we

chose to implement our subject services by using differ-

ent middleware platforms. In our daily programming

practices, we do not regularly use all of the five plat-

forms. Therefore, the way we chose to implement our

service may not be fully optimal, in terms of using the

proven design patterns. We believe, however, that our

programming practices are representative of that of the

common programmer.

Despite the established practice of using the MCC

metric to measure complexity, some experts argue whether

complexity always positively correlates with program-

ming effort. If such a correlation turns to be low, the

internal validity of our measurements would be further

threatened. It is worth noting, however, that defining

and measuring programming effort remains hard, as

this metric is highly subjective.

The external validity is threatened by our choice

of an existing OSGi bundle to be accessed remotely.

OSGi public interfaces have been carefully designed to

be coarse-grained, and more naively-designed service

interfaces can have finer granularity. In that case, the
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performance disparities between synchronous R-OSGi

and the asynchronous alternatives would be even more

pronounced.

The external validity of our study is threatened fur-

ther, as our experiments are not particularly large and

varied in terms of the actual services used. Even though

few real applications are composed entirely of services,

some realistic applications may use more services of dif-

ferent kinds than we have done in our studies. Since

not all services are as carefully designed as that of the

Lucene search engine, using a more diverse set of ser-

vices would have likely yielded a greater result variabil-

ity, particularly with respect to performance and relia-

bility. As a future work, we plan to verify our findings

against other service applications.

Performance Even coarser grained service interfaces can-

not completely eliminate latency concerns. As our mea-

surements show, asynchronous communication leads to

better performance. Unfortunately, business logic may

require synchronous service calls. Our RBI/OSGi plat-

form can reduce the aggregate latency of multiple re-

mote service calls without asynchronous processing.

Conciseness and Complexity Despite their performance

advantages, asynchronous designs tend to be more com-

plicated, taking more code that is more complex to

express. RPC-based abstractions, including our RBI/

OSGi, are more straightforward to implement and un-

derstand.

Reliability The reliability of a distributed application

is dependent on the reliability of its constituent com-

ponents, which include both the execution units imple-

menting the application’s functionality and the network

connecting them. One can argue that the ULOC met-

rics is inversely proportional to the level of reliability of

an individual software component. If the probability of

a bug can be expressed in terms of the lines of code and

its complexity (e.g., X% that a software defect exists

within N lines of code), then shorter and less complex

implementations are less likely to contain bugs. In the

light, our ULOC and cyclomatic complexity metrics can

also serve a double duty as local reliability metrics.

With respect to distributed execution, the common

wisdom of distributed system development suggests that

reliability is best implemented on a per-application ba-

sis. There is value, however, in handling system-level er-

rors at the middleware level. In that light, using MOM

leads to applications that can withstand temporary net-

work disconnections. Such fault-tolerance capacities can

be factored into existing systems, as we have demon-

strated in our recent research [12].
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MOM Sockets Sync.
R-OSGi

Async.
R-OSGi
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Price(LOC)-Performance 

Service 1

Service 2

Service 3

Fig. 9 The price(LOC)/performance ratio comparison.

Price/Performance Ratio So far, we compared our dif-

ferent middleware platforms using a single metrics. To

obtain deeper insights, we introduce a new metrics,

price/performance, represented by the following

PP =
RULOC/LULOC

LET/RET

where RULOC and LULOC are local and remote un-

commented lines of code, respectively; and LET and

RET are local and remote execution times, respectively.

The minimum price/performance ratio is 1, which can

only be achieved when no distribution is present. In

other words, the price/performance ratio is minimized

when its numerator and denominator are approaching

1. Since LULOC and LET are fixed, only RET and

RULOC can affect the ratio.

Figure 9 shows that MOM has the largest price(LOC)/

performance ratio, followed by sockets, synchronous R-

OSGi, asynchronous R-OSGi, and RBI/OSGi. The price/

performance ratio of MOM is most likely not fully rep-

resentative; our benchmark does not exercise the ad-

vanced features of ActiveMQ (i.e., efficient broadcast-

ing of messages to multiple receivers).

Although the price/performance ratio depicted in

Figure 9 provides interesting insights, its price compo-

nent is measured exclusively in terms of the number

of lines of implementation code. This assumes that all

code can be treated uniformly: the more lines of code

is used, the higher is price. Nevertheless, when assess-

ing the price of a program feature, we may want to

understand not only how many lines of code it takes

to implement, but also how complex that code is. Intu-

itively, because the complexity of a code base can signif-

icantly affect its maintainability, the complexity should

be included as a factor in the price/performance equa-
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Fig. 10 The price (LOC and MCC)/performance ratio com-
parison.

tion. Recall that the MCC (i.e., McCabe complexity

number) is the commonly-accepted software engineer-

ing complexity measure that we calculated.

In light of this observation, we modify our price/per-

formance ration as follows:

PP =
(RULOC/LULOC) ×MCC

LET/RET

Figure 10 depicts the price (LOC and MCC)/perfor-

mance ratio that accounts for both the LOC and MCC

values. When MCC is considered, the order of price/

performance is MOM, sockets, asynchronous R-OSGi,

synchronous R-OSGi, and RBI/OSGi, with the smaller

value being preferred. Compared to the previous model,

asynchronous and synchronous R-OSGi versions have

now switched places. One way to interpret this change

in results is that when taking the code complexity into

consideration, the price of asynchronous processing in-

creases significantly. Indeed, the additional code that

needs to be written to coordinate asynchronous execu-

tion tends to be quite complex, resulting in a higher

overall price/performance value. Thus, when maintain-

ing large code bases that use remote services, the pro-

grammer may choose a synchronous implementation if

the performance alone is not the deciding characteristic.

Based on this analysis, RBI/OSGi represents a highly-

promising alternative to standard middleware, offering

a low price/performance ratio along with an intuitive

programming model.

5 Related Work

The related state of the art includes other studies as-

sessing different properties of middleware platforms as

well as a critical assessment of middleware platforms.

We describe these two directions next.

5.1 Studies of Middleware Platforms

This is not the first effort aimed at comparing and con-

trasting different middleware platforms. Gokhale et al.

[7] assess how the abstraction level of a middleware plat-

form affects its performance. To that end, they measure

the overall execution time of micro benchmarks imple-

mented using different middleware platforms ranging

in their abstraction level, with sockets being the low-

est and CORBA the highest. Their findings confirmed

that abstractions incur performance costs in middle-

ware platforms as they do in other computing arti-

facts. Indeed, lower-level platforms tend to outperform

higher-level ones. Nevertheless, abstractions in middle-

ware are necessary to successfully cope with the com-

plexities of constructing modern distributed applica-

tions.

Demary et al. [4] compare the round-trip latencies

of different configurations of RPC-based middleware

platforms, including different versions of CORBA, Java

RMI, and XML-RPC implementations. They have found

Java RMI to be most efficient and Web services such as

XML-RPC incurring a considerable overhead. The per-

formance overhead of Web services often stems from

the inefficiencies of XML processing, and various op-

timization of XML encoding and decoding have been

proposed in the literature [5].

Juric et al. [11] have compared RMI, RMI tunnel-

ing, and Web services (i.e., SOAP RPC) in terms of

their performance characteristics. Mirroring the results

of other such studies, this study also found RMI having

the best performance in terms of the round-trip latency.

Interestingly, this study also found Web services perfor-

mance to be comparable to that of RMI. Other efforts

focused on evaluating MOM and JMS implementations

in terms of their respective performance, scalability, and

reliability [37,23].

As compared to these studies, this work focuses on

middleware platforms for accessing remote services. In

addition to comparing their respective performance, we

also investigate their standard software engineering met-

rics and reliability. By comparing these platform across

multiple axes of their properties, we aim at obtaining

comprehensive guidelines that can guide programmers

needing to satisfy both system and software engineering

requirements. These guidelines can help programmers

choose an appropriate middleware platform for access-

ing services remotely.
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5.2 Middleware Abstractions and Platforms

Remote Procedure Call (RPC) [28] has been one of the

most prevalent communication abstractions for build-

ing distributed systems. To support distributed object-

based applications, RPC has been extended into various

distributed object systems, including Common Object

Request Broker Architecture (CORBA) [17], the Dis-

tributed Component Object Model (DCOM) [2], and

Java Remote Method Invocation (RMI) [41]. Despite

the ubiquity of RPC, its shortcoming and limitations

have been continuously highlighted [27,40,24]. Some

experts even argue that RPC has been harmful in terms

of its influence on distributed systems development [39].

Asynchronous messaging and events, including publish-

subscribe abstractions [3], are frequently mentioned as

better alternatives to RPC in terms of scalability and

reliability.

As confirmed by our study, exposing distributed func-

tionality through a familiar procedure call paradigm of

RPC and its object-oriented counterparts provides con-

ciseness and ease of implementation advantages. Our

RBI/OSGi middleware is an attempt to address some

of the limitations of RPC, while retaining its advantages

without incurring the complexities of asynchronous pro-

cessing of message- and event-based abstractions.

6 Conclusion

Due to the advantages provided by services, SaaS has

entered the mainstream of commercial software devel-

opment and a growing percentage of computing func-

tionality is becoming accessible as a service. The pro-

grammers who need to access remote services are faced

with the challenges of choosing an appropriate mid-

dleware platform for the task at hand. To assist the

programmers in their decision process, in this article,

we described a case study that compared the perfor-

mance, conciseness, complexity, and reliability of five

different middleware platforms for accessing services re-

motely. Our measurements and analysis not only help

the programmers in choosing between different middle-

ware platforms, but also can inform the design of new

platforms for accessing services remotely.
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