
A Science of
Programming

Language Design?

William Cook, UT Austin
PLATEAU 2012

Science

create and evaluate
testable models

Design

create artifact
satisfying need or

desire

Science
testable model

Design
satisfy desire

Scientific method
is a test plan:

1. predict
2. observe
3. evaluate

Where do the
 theories, predictions

and experiments
come from?

Scientific method is no help…

Scientists
are

designers

Scientists
design

theories and
experiments

In other words,
the process scientists

use to do science
is not scientific

H. Simon, MIT Press 1969

Optimization
Satisficing

Search

Artifact and Process
Does this apply to PL?

(I don't think so)

Design is
not welcome in

 academia

survives in professional schools:
medicine, law, architecture,
fine arts… elsewhere on fringe

How many
algorithms courses

are about
designing algorithms?

(versus analyzing them)

How many
 PL courses are about

designing PLs?

(versus analyzing them)

How many
 Software Engineering
courses really teach
designing software?

(versus analyzing them)

Not Repeatable

Many design
problems are unique

Not always objective

Design cannot be
defined in a textbook

and taught in a
lecture class

Often
Human Centered

Evaluation
involves humans

(are they satisfied?)

but…

We do teach design:

PhD supervision!

Apprenticeship

Practice
Critique
Reflect

How do we know
good design?

Good Design

Satisfies the human
desire or need

easy to use

high-performance

maintainable

elegant

internally consistent

Objective

 high-performance

 internally consistent

Intermediate

 maintainable

 easy to use

Subjective

 elegant

Wicked Problems

No test for solutions
Cannot enumerate possible solutions
Every problem is unique, no learning
Defining "wicked problem" is a

wicked problem

My Take

Many things we
really care about…

are not
easy/possible
 to measure

Industrial
experimentation

is our current
evaluation
mechanism

Academia should
embrace design

Spectrum of Criteria

Objective

Subjective Allow…
discussion
of entire spectrum

User Studies
Repository Mining

are great
but not only options

Need to expand the
range of acceptable
"tests" for validity

Acceptable Evidence

•!Controlled User Study
•!Case study
•!Historical data mining
•!Reasoned argument
•!Benchmark design problem
•!Structured critique
•!Detailed comparisons

Call to Action:

Formalize
PL design paper
review criteria

Other terms besides
"scientific"

Academically rigorous

Scholarly

IFIP
Working Group 2.16

on
Language Design

approved last year

design

case
studies

AppleScript

•!We did do user studies
•!Weren't sure how to do it!
•!They didn't influence the

language much
•!We still ended up with

 "partial success"

Understanding

Objects
 First-class behaviors (dual of ADTs)

Inheritance
 Open recursion (not just for objects)

See R. Gabriel "The Structure of a Programming
Language Revolution", Onward! 2012

Semantics

Denotational over operational

Operational wins
 typing proofs

 concurrency

Featherweight Java tells you what
inheritance does, not what it means

The PL Wars

No sub-discipline of CS is so
fundamentally at war with itself

(FP, OO, MDD)

Laughingstock?
Motivation?

(see understanding)

Choose Good Examples

Remote Method Call
 local.print(remote.proc(inputs))

Conclusions:
 marshall data
 create remote proxies
 serialize objects

Choose Good Examples

Multiple Remote Method Calls
 local.print(remote.proc1(inputs1))
 local.print(remote.proc2(inputs2))

Conclusions:
 send multiple calls to server at once
 bulk transfer of inputs and results
 no serialization, no proxies
 "batches" include conditionals and loops

Hybridize

Object Algebra

Unify Factories and Visitors

ECOOP 2012 w/Bruno Oliveira

Ens!
(motivation)

with Tijs van der Storm
Alex Loh (see Onward! 2012)

Spectrum of Programming

How
implementation

What
Specification

How
implementation

What
Specification

Z
CASL asm, C

How What

Java
Haskell

Smalltalk

Z
CASL asm, C

Verification

How What

Programming
Languages

Z
CASL

Verification

How What

Programming
Languages

Z
CASL

Synthesis

[Note]

Programming Languages
Grand Challenges panel didn't

even mention synthesis

Verification
Lite

How What

Z
CASL

Types

Programming
Languages

Synthesis

How What

Z
CASL ???? Behavior

Synthesis Lite

How What

Z
CASL DSL Behavior

Synthesis Lite

How What

Z
CASL DSL Behavior

Synthesis Lite

Verification
Lite

Types

Ens! Plan

Integrate and Extend DSLs
Standalone, not embedded
Interpret, not compile/transform
Graphical + Textual
Partial evaluation for speed

Data, Grammars, Security, Workflow,
Diagrams, GUIs, WebUI, Synchonization

Enable Good

Prevent Bad

Bug Finding
Race Detection
Type Checking
etc.

Enable Good

Prevent Bad

New languages?
New features?

For what?

Bug Finding
Race Detection
Type Checking
etc.

Enable Good

Prevent Bad

Advantages:
Measurable
Domain-free

Bug Finding
Race Detection
Type Checking
etc.

New languages?
New features?

For what?

Enable Good

Prevent Bad

If somebody comes up
with the next big

thing after objects…
all bets are off

Lets try to do this!

simplicity
is the
result

of hard work

Embrace Design

Don't fall prey to
"science envy"

academic rigor
not rigor mortis

Don't Design
Your Programs

Program
Your Designs

