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Abstract
Managed Data is a two-level approach to data abstraction
in which programmers first define data description and ma-
nipulation mechanisms, and then use these mechanisms to
define specific kinds of data. Managed Data allows program-
mers to take control of many important aspects of data, in-
cluding persistence, access/change control, reactivity, log-
ging, bidirectional relationships, resource management, in-
variants and validation. These features are implemented
once as reusable strategies that can apply to many differ-
ent data types. Managed Data is a general concept that can
be implemented in several ways, including reflection, meta-
classes, and macros. In this paper we argue for the impor-
tance of Managed Data and present a novel implementation
of Managed Data based on interpretation of data models. We
show how to inherit and compose interpreters to implement
the features described above. Our approach allows Managed
Data to be used in object-oriented languages that support
reflection over field access (overriding the “dot” operator) or
dynamic method creation. We also show how self-describing
data models are useful for bootstrapping, allowing Man-
aged Data to be used in the definition of Data Managers
themselves. As a case study, we used Managed Data in a
web development framework from the Ensō project to reuse
database management and access control mechanisms across
different data definitions.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Data management

General Terms Data management, Aspect-oriented pro-
gramming, Model-based development

Keywords Schema, Interpretation, Composition
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1. Introduction
Mechanisms for organizing and managing data are a funda-
mental aspect of any programming model. Most program-
ing models provide built-in mechanisms for organizing data.
Well-known approaches include data structure definitions
(as in Pascal, C [16], Haskell [12], ML [20]), object/class
models (as in Java [1], Smalltalk [9], Ruby [30]), and pre-
defined data structures (as in Lisp [25], Matlab [13]). Lan-
guages may also support abstract data types (as in ML,
Modula-2 [34], Ada [33]), or a combination of multiple ap-
proaches (e.g JavaScript [7], Scala [21]). A key character-
istic of all these approaches is that the fundamental mecha-
nisms for structuring and manipulating data are predefined.
Predefined data structuring mechanisms allow programmers
to create specific kinds of data, but they do not allow funda-
mental changes to the underlying data structuring and man-
agement mechanisms themselves.

Predefined data structuring mechanisms are insufficient
to cleanly implement many important and common re-
quirements for data management, including persistence,
caching, serialization, transactions, change logging, access
control, automated traversals, multi-object invariants, and
bi-directional relationships. The difficulty with all these re-
quirements is that they are pervasive features of the underly-
ing data management mechanism, not properties of individ-
ual data types. It is possible to define such features individ-
ually for each particular kind of data in a program, but this
invariably leads to large amounts of repeated code. To imple-
ment these kinds of crosscutting concerns, developers often
resort to preprocessors [14], code generators [26], byte-code
transformation [2], or modified runtimes or compilers [23].
The resulting systems are typically ad-hoc, fragile, poorly
integrated, and difficult to maintain.

This paper presents Managed Data, an approach to data
abstraction that gives programmers control over data struc-
turing mechanisms. Managed Data has three essential com-
ponents: (1) schemas that specify the desired structure and
properties of data, (2) data managers that enable creation
and manipulation of instances of data that conform to the
data specification, and (3) integration with a programming



Figure 1. Traditional Data Mechanisms versus Managed Data

language, so that managed data instances are used in the
same way as ordinary objects. Managed Data has a strong
emphasis on modularity, allowing schemas and data man-
agers to be modularly defined and reused. Additionally,
schemas may also themselves be defined using Managed
Data via a bootstrapping process, extending the benefits of
programmable data structuring to their own implementation.

Figure 1 illustrates the difference between traditional
built-in data structuring mechanisms and Managed Data. In
the traditional approach, the programming language includes
a process and data sublanguages, which are both predefined.
With Managed Data, the data structuring mechanisms are
defined by the programmer by interpretation of data defini-
tions. Since a data definition model is also data, it requires
a meta-definition mechanism. This infinite regress is termi-
nated by a boot-strap data definition that is used to build the
Managed Data system itself.

One way to understand Managed Data is as a design
pattern that allows the programmer to define the behavior of
data manipulation operations traditionally considered built-
in primitives: initialization, field access, type tests, casting,
and pointer equality.

This pattern can be implemented in many different ways
in different languages, or in different programming styles,
including object-oriented or functional. Some programming
systems support a degree of control over the data structuring
mechanisms. Meta-classes in Smalltalk define how classes
are instantiated and compiled [9]. The reflective features
of Ruby, Python and Smalltalk can trap and handle unde-
fined methods and properties, allowing creation of dynamic
proxies or virtual objects [9, 30, 32]. Attributes and byte-
code manipulation can specify and implement pervasive data
management behaviors in Java [2] Scheme macros are often
used to create data structuring mechanisms [15]. For exam-
ple, the defstruct macro defines mutable structures with
a functional interface. The Adaptive Object Model Archi-
tecture [35] provides an architecture for this approach, but
does not discuss how it is bootstrapped or integrated with

existing languages. In general, static languages are less able
to support Managed Data directly, so they require the use
of external code generators. Dynamic languages often pro-
vide reflective hooks that can be used to implement Managed
Data.

Our implementation of Managed Data uses the reflective
capabilities of Ruby. Sections 2 and 3 implement Managed
Data with dynamic proxies, which declare properties and
methods on the fly using Ruby’s method_missing mecha-
nism. A second, more static implementation, introduced in
Section 4, uses define_method to define instance methods
as closures at run-time. Section 5 demonstrates the use of
Managed Data in EnsōWeb, a web development framework.
Managed Data is used to configure pervasive data manage-
ment concerns such as persistence, security and logging in
a data-independent way, without introducing boilerplate into
the specific type definitions. Finally, Section 6 compares and
classifies related work.

2. Example of Managed Data
The definition and use of records, or labeled products, pro-
vides a good initial example of Managed Data. Records are
a built-in feature of many languages, including Pascal and
ML. Managed Data can be used to implement similar func-
tionality, although without static type checking. On the other
hand, Managed Data supports dynamic checking of both
types and other invariants. To implement records using man-
aged data, it is necessary to define a schema language that
describes record structures, define data managers that im-
plement the appropriate record behavior, and also specify
hooks into the programming language so that records can
be created and used. The following sections first introduce
a simple schema language, then discuss use of records, and
finally implement a data manager.

2.1 Simple Record Schemas
Record schemas describe the structure of records, which are
mappings from field names to a value of an appropriate type



for each field. A record schema specifies a class of records
that have a given set of field names and types. In this sec-
tion schemas are defined using Ruby hashes. More complex
schema languages, including stand-alone languages, are in-
troduced in Section 4. A schema that describes simple two-
dimensional points is defined as a Ruby hash as follows:

Point = { x: Integer, y: Integer }

Point defines a hash in Ruby 1.9 syntax. The hash is
an object that represents a mapping from values to values.
In this case the keys of the hash are the symbols x and
y. Both these symbols are mapped to the class Integer.
Classes are values in Ruby, as in Smalltalk. Although this
definition appears to be a type, it is actually just a value.
One interpretation of this value as a kind of specification,
or dynamically checked type, but it is important to keep in
mind that Point is just a hash value.

Point describes records with x and y fields whose values
are integers. Point is a simple example of a schema. It is
easy to describe many different kinds of records using this
simple notation. For example, information about persons can
be described by the following record schema:

Person = { name: String,

birthday: Date,

erdos: Integer }

Schemas are not complete specifications without a cor-
responding data manager. In this case a record schema is
a definition of a data type but does not state whether the
records are immutable or mutable, whether they are stored
in a database, or transformed in other ways. Schemas can be
interpreted in many different ways to create different kinds
of records.

2.2 Using Managed Data
Before showing how to implement managed data, it is impor-
tant to consider how managed data is used. This study will
generate the intuitions and requirements needed to guide the
implementation.

The goal is to create objects that conform to the specifica-
tion given by a basic record schema, and which can be easily
used within a programming language. At the same time, the
objects may have additional behavior, such as logging and
access control, as defined by the data manager. Assume we
have a data manager, BasicRecord, which enables creating
and updating basic records, given a schema. Here is an ex-
ample of how this data manager might be used:

p = BasicRecord.new Point

p.x = 3

p.y = -10

print p.x + p.y

In this example, the BasicRecord manager is instantiated
and given the Point schema as an input. The result is a
new point object, that is, an object that conforms to the

point schema. The object p has fields x and y which can be
accessed and assigned.

Attempting to violate the schema results in an error. Some
examples are given below:

print p.z # unknown field z
p.x = "top" # x must have type Integer
p.z = 3 # assigning unknown field z

The BasicRecord manager interprets the Point schema
to manage points. The code illustrates that BasicRecord sup-
ports mutable fields, and that it checks types and validity of
field names. These simple checks are typical of how data is
managed in most object-oriented programming languages.
Later sections consider data managers that implement a va-
riety of features, including immutability, persistence, invari-
ants, etc.

The fields of the managed data object are dereferenced
using the “dot” operator, like in most object-oriented lan-
guages. For languages such as Java, C#, JavaScript, and PHP,
this requires the class the object belongs to statically declare
those fields or methods. However, since the schema that con-
tains those fields is only known dynamically, the data man-
ager must be able to determine the fields and methods of the
managed data object dynamically.

BasicRecord interprets a record schema to create dy-
namic objects that act according to its specification. Exactly
how the data manager is implemented has been left unspeci-
fied. It could work by code generation, reflection, byte-code
manipulation, or other techniques. The next section presents
a implementation based on dynamic method handling. Sec-
tion 4.3 illustrates an alternative implementation based on
dynamic method creation from closures. Both of these im-
plementation techniques avoid any form of explicit code
generation.

2.3 Implementing a Data Manager
A reflective data manager for records is defined in Fig-
ure 2. The class BasicRecord is defined as a subclass of
BasicObject, a minimal base class that only defines prim-
itive equality and some reflective methods.

The schema is passed to the constructor of the basic
record, as shown in the previous section. The initialize

method stores the schema in a member variable and creates
an empty hash {} to store the field values for this record.
Finally, it initializes the fields to default values appropriate
for the field’s type. BasicRecord does not allow fields to be
undefined.

BasicRecord includes two generic getter and setter meth-
ods, _get and _set, which access and update a field by
name. The _get method looks up the field name in the
schema and returns an error if the field is not defined. If the
field does exist, then the current value of the field is returned
from the @values hash.

The _set method takes the field name and the new value
as inputs. The _set method also checks that the field is



defined, and that the new value is of the appropriate type. If
the field exists and the value has the right type, then the _set

method updates the @values hash to store the new value.
The _get and _set method provide the necessary func-

tionality to create and use records, but calling them explicitly
is cumbersome. What is needed is for methods to be called
implicitly when fields are accessed or updated.

2.4 Managed Data as Ruby Objects
To allow basic records to be used as if they were ordinary
Ruby objects, BasicRecord uses the reflective capabilities
of Ruby.

When an unknown method or property is accessed, or
an unknown field is assigned, rather than raising an error
immediately Ruby invokes method_missing on the object.
The arguments to method_missing are the name of the
undefined method and the arguments of the original call.
For example, a call to a missing method obj.m(3) is con-
verted into a call to obj.method_missing(:m, 3) where
:m is a symbol representing the name of the method. Ac-
cess obj.field to an undefined field is converted into a
call to obj.method_missing(:field). As a special case,
field assignment obj.field = val is converted into a call
of the form o.field=(val), which then follows the nor-
mal rules for methods. The default method_missing method
in BasicObject raises an error. But if a class overrides
method_missing then it can perform any action in response
to an unknown method, including returning normally.

Since BasicRecord does not define any ordinary meth-
ods method_missing is always called whenever a field
access or assignment is attempted. BasicRecord defines
method_missing to dispatch to _get or _set. The second
formal argument *args of method_missing captures all re-
maining actual arguments as an array. The method_missing

method first determines if the call is a field assignment by
checking if the method name ends with =. If so, it calls _set
to handle the field assignment, passing the field name (with
= removed) and the new value. If not, it checks that there are
no additional arguments and then calls _get.

One drawback of using method_missing is that it does
not handle method name clashes elegantly. Specifically, if
a field has the same name as an existing method, such as
_set and _get, or one of the methods defined by Ruby’s
BasicObject class (e.g. equal?) then method_missing will
call that method instead. To avoid such problems, program-
mers must avoid using field names that begin with an under-
score or correspond to a method defined in BasicObject.

3. Alternative Data Managers
Managed Data drops the idea of a single predefined data
manager and schema description language, and allows pro-
grammers to create or extend their own. Data managers nat-
urally manage many schemas, but there can also be multi-
ple data managers for a given schema to, for example, im-

class BasicRecord < BasicObject

def initialize(schema)

@schema = schema

@values = {}

# assign default values to all fields
schema.each do |name, type|

@values[name] = type.default_value

end

end

# internal methods for getting and setting fields
def _get(name)

if @schema[name].nil?

::Kernel.raise "unknown field #{name}"

end

@values[name]

end

def _set(name, value)

type = @schema[name]

if type.nil?

::Kernel.raise "setting unknown field #{name}"

end

if not value.is_a?(type)

::Kernel.raise "#{name} must have type #{type}"

end

@values[name] = value

end

# all properties and methods are handled here
def method_missing(name, *args)

if name =~ /(.*)=/ # setters end with a ’=’
name = $1.to_sym # $1 is name without trailing ’=’
_set(name, *args)

else # getter
if args.length != 0

::Kernel.raise "getter must not have arguments"

end
_get(name)

end

end

end

Figure 2. A data manager for simple records



class LockableRecord < BasicRecord

def _lock

@locked = true

end

def _set(name, value)

if @locked

::Kernel.raise "Changing {name} of locked object"

end

super

end

end

Figure 3. A lockable data manager

class InitRecord < LockableRecord

def initialize(schema, init)

super(schema)

# assign default values to all fields
init.each do |name, value|
_set(name, value)

end
_lock()

end

end

Figure 4. A data manager with field initialization

plement an in-memory versus a database-based strategy for
storing the data. Data managers may be composed to form a
stack of managers that has their combined behavior.

This section presents a few alternative data managers that
enhance the basic data structuring mechanism provided by
object-oriented programming languages.

3.1 Immutability
The data manager in Figure 3 introduces a locking mecha-
nism to protect a record from changes. This is useful for cer-
tain types of optimizations or to implement constant values.
LockableRecord inherits from the default data manager and
overrides its _set method to check if the record is locked be-
fore invoking the original _set via super. In this implemen-
tation locking is irrevocable, but it would be easy to include
an _unlock option.

3.2 Instance Initialization
Constant objects are initialized at the beginning of their lifes-
pan and immutable henceforth. The data manager in Fig-
ure 4 extends LockableRecord with the option to initialize
fields during construction. The constructor parameter init

is a map from field names to initial values and can be used
as follows:

p = InitRecord.new Point, x: 3, y: 5

class ObserverRecord < BasicRecord

def initialize(schema)

super

@_observers = ::Set.new

end

# add an observer to this record
# &block is a lambda expression
def _observe(&block)

@_observers.add(block)

end

def _set(name, value)

super

@_observers.each do |obs|

obs.call(self, name, value)

end

end

end

class DataflowRecord < ObserverRecord

def _get(name, dependent=nil)

if not dependent.nil?
_observe do |obj, field, value|

if field == name

# inform dependent
dependent.set_dirty

end

end

end

super(name)

end

end

Figure 5. A data manager for the Observer Pattern

We extended InitRecord from LockableRecord because
we wanted to build constant objects, but in general im-
mutability and initialization are orthogonal concepts that can
apply independently.

3.3 Observers
Figure 5 presents a data manager that supports the OB-
SERVER PATTERN [8]. The following code snippet logs
changes to the record by printing out a message whenever a
point is changed.

p = ObserverRecord.new Point

p._observe do |obj, field, value|

print "updating #{field} to #{value}\n"

end

p.x = 1

p.y = 6

p.x = p.x + p.y



class Schema

classes: Class*
class Class

name: String

fields: Field*

class Field

name: String

type: Class

many: Bool

class String

class Bool

Figure 6. A minimalist self-describing schema

Output:

updating x to 1

updating y to 6

updating x to 7

An observer is a useful pattern especially for event-driven
tasks such as enforcing inverses and dataflow programming.
DataflowRecord is a record that allows callers who access a
particular field to register themselves as dependents. Depen-
dents will be told to re-compute their cached values when
the value in that field changes.

Compared to LockableRecord and InitRecord, Ob-

serverRecord and DataflowRecord demonstrate another
kind of dependency where one data manager rely on the ser-
vices provided by another. These examples expose the need
for a general strategy for combining data managers such
that dependencies between data managers are respected and
independent data managers can be selected modularly.

4. Self-Describing Schemas
A self-describing schema is a schema that can be used to
define schemas (including itself). Self-describing schemas
are important because they allow schemas to be managed
data. The concept of self-description is well known. The
Meta-Object Facility (MOF) meta-metamodel [22] is self-
describing. It is possible to write a BNF grammar for BNF
grammars. Rather than starting from an existing meta-
model, we will first develop what we believe to be a minimal
self-describing schema, and then present a more complete
and useful version based on this foundation.

4.1 A Minimalist Schema Schema
In the previous sections, the schema was a simple mapping
from field names to primitive types, which can describe
the structure of simple records. This simple schema format
cannot be used to describe itself, because a simple schema
is not a record. To model the structure of a schema, we need
to be able to describe a record type as a collection of fields,
each of which having a name and a type. This immediately
requires a schema to have two concepts, namely “type” and
“field”. A third concept arises, a “schema”, as a collection of
types. Finally, we must recognize that some fields are single
values, for example the name or type of a field, while other
fields are many-valued, including the fields of a type and
the types in a schema. These concepts are represented in the
minimalist self-describing schema shown in Figure 6.

class Schema

types! Type*

class Type

name# str

schema: Schema / types

class Primitive < Type

class Class < Type

supers: Class*
subclasses: Class* / supers

defined_fields! Field*
fields: Field*

= supers.map() {|s|s.fields} + defined_fields

class Field

name# str

owner: Class / defined_fields

type: Type

optional: bool

many: bool

key: bool

inverse: Field? / inverse

computed! Expr?

traversal: bool

primitive string

primitive bool

Figure 7. An Ensō Schema Schema

In this notation, a class is introduced by the keyword
class followed by the class name and then a list of field
definitions. Each field definition has the form name:type
giving the name and type of the field. A type is a class name
optionally followed by *, which indicates that the field is
many-valued, i.e. a collection of values of the given type.

In the example, the class Schema has a single field,
classes, which is a collection of Class values. A Class

has a name field of type String and a collection of fields.
A Field has a name, a type, and a boolean flag indicating
whether the field is single or many-valued. To be complete,
it is necessary to define String and Bool as classes.

This explanation of the content of the schema also demon-
strates why it is self-describing, because every concept used
in the explanation is included in the definition. One small
point is that the type of a field is a Class in the schema, but
the type is written as a name in the figure. During parsing or
interpretation of the textual presentation of the schema, the
named must be looked up to find the corresponding Class.

While this minimalist schema could be used directly, we
believe that it is more useful to work with a slightly more
complex self-describing schema. There are two major prob-



lems with this schema: (1) it does not distinguish between
primitive classes (e.g. String) and structured classes (e.g.
Field), and (2) it does not support inverse relationships.
Primitives could be distinguished by adding a boolean flag
to the class Class, but we find it more natural to introduce a
structural distinction between the concept of a Class and a
Primitive. These are two specific cases of the general nota-
tion of a Type. Representing this concept in the schema re-
quires introducing a type hierarchy, or inheritance, into the
schema.

4.2 The Ensō Schema Schema
Figure 7 defines a condensed version of the Schema schema
used in Ensō. It is similar to the minimalist schema, but Ensō
introduces several new concepts:

1. A class definition can include a list of superclasses, writ-
ten < classes. In this schema, Primitive and Class are
subclasses of Type, and Type is used in where Class was
used in the minimalist schema. Multiple inheritance is
allowed but no two ancestors may define a field with the
same name.

2. A field type can include an inverse field, written type /

field. The inverse field must be a field in the class given
by the type. The schema introduces three inverses: the
schema for a class is the schema that it belongs to, the
owner of a field is the class it belongs to, and the inverse

of a field is the field that it is an inverse of.

3. A field can be computed, written = expression. A com-
puted field cannot be assigned. A single computed field is
used to implement inheritance! The fields of a class are
computed as the union of the fields of all its superclasses,
combined with the fields that are defined on the subclass.
The defined_fields field contains only the fields di-
rectly defined in a class.

4. Many-valued collections are marked with a *. Ordered-
ness in many-valued fields is implicitly defined by whether
the type of the field is keyed. By default, collections con-
taining keyed objects are unordered hash tables while
unkeyed objects are ordered indexed arrays. A single-
valued field may be optional, indicated by ?. Inverses and
computed expressions are optional while defined fields in
classes are unordered many-valued collections.

5. A field can be marked as a key with #, which forces its
value to be unique within collections of the field’s class.
The name fields in Class and Field are both marked as
keys, so the schema cannot have duplicate class names,
and a class cannot have duplicate fields.

6. A field can be marked as a traversal with ! after its name.
Traversal fields delineate a distinguished minimum span-
ning tree called a spine. Spines provide a standardized
way to view the object graph as a tree, avoiding incon-
veniences such as returning different result for different

implementations of a depth-first search. Additionally, the
spine is used to a derive unique, canonical address for
each object in the graph by tracing its path from the root.
In practise, traversal fields often loosely correspond to
composition, or ‘is a part of’, relationships, but they do
not necessarily have to be.

Additional properties are added to Field and Class to
represent these new capabilities. There are many possible
self-describing schemas, and Ensō does not stipulate that one
must be used over another.

4.3 The Ensō Data Manager
Figure 8 defines the data manager used in Ensō, called a
factory, and Figure 9 shows the managed object it creates.

Factory has only one method, _make, which it uses to
build a ManagedObject. One convenience method is defined
for each type in the schema to create managed objects of
that type. Managed data object created by the factory gen-
erally indistinguishable from ordinary Ruby objects. If de-
sired, the factory can completely replace class definitions
without methods. Note also that even though Factory refers
to ManagedObject by name here, in the actual implemen-
tation it uses the PROTOTYPE PATTERN [8], so the factory
can add data managers to its private copy of ManagedObject
without polluting the shared copy.

ManagedObject’s constructor takes a type and a set of ini-
tial values. Fields are set to an initial value if available or
else the default value. Collection fields are set to empty lists.
Note that the snippets shown here are stripped down versions
of our actual implementation, in particular we omitted code
listings for ManyField and ManyIndexedField, which han-
dle collections and can themselves be overridden by other
data managers. Just like in earlier examples, ManagedObject
uses two methods, _get and _set, to manipulate the under-
lying data. ManagedObject’s _get method checks if its field
is a computed field and evaluates the computed expression
in the context of its current object if so. The _set method
perform a simple check on types and implements the update
notification system described in 3.3. Update notification is
used to maintain inverses.

The implementation of this data manager improves on
the earlier examples in two ways. Firstly, instead of us-
ing method_missing, ManagedObject defines methods for
field access and assignment directly in its constructor. This
avoids the problems with name clashes between field ac-
cess methods and Ruby Object methods. Secondly, Factory
and ManagedObject both define their methods within mod-
ules. Modules in Ruby implement mixin inheritance, a fea-
ture that is also present in languages like Smalltalk, Python
and Scala. Mixins allow any arbirary combination of data
managers to be selected, forming a ‘stack’ of data managers
with their combined behavior. Normal inheritance does not
work as the inheritance chain needs to be predefined. In the
earlier examples, we could not define a data manager with



class Factory

module FactoryBase

def initialize(schema)

@schema = schema

# create object methods
schema.classes.each do |c|
_create_methods(c.name)

define_singleton_method(c.name) do |*inits|
_make(c.name, *inits)

end

end

end

# create a new object of type ’name’
def _make(name, *inits)

ManagedObject.new(@schema.classes[name], *inits)

end

end

include FactoryBase

end

Figure 8. Data manager for any schema

both ObserverRecord and LockableRecord since they both
must inherit BasicRecord. Languages that do not support
mixins, such as Java, can use the DECORATOR PATTERN
[8] if all data managers share the same interface. Refering
to our earlier examples from Section 3, InitRecord and
LockableRecord can be re-written as decorators on the ba-
sic record, but that will not allow the _observe method in
ObserverRecord to be overridden. Alternatively, data man-
agers can also be implemented using some form of meta-
programming or by explicitly passing around a this refer-
ence, depending on how much boilerplate is tolerated.

4.3.1 Bootstrapping
The Schema schema is itself Managed Data, and a bootstrap-
per is used to load the first Schema schema into memory.

Figure 10 summarizes the relationships between the dif-
ferent levels of schemas and data managers. At the lowest
level, data objects such as points are described by the Point
schema. This schema is managed by a data manager capable
of initialization, allowing points to be created with starting
values. The Point schema is in turn described by the Schema
schema. The Schema schema is self-describing, following
the spirit of modularity, we bootstrap the Schema schema
from the minimal bootstrap schema that has only classes
and fields. This minimal bootstrap schema is necessarily
self-describing as it must manage itself, and it possesses a
simplistic data manager that only allow updating. It is also
hardcoded. Bootstrapping from a minimal schema allows us
to customize even the Schema schema in very fundamental
ways.

Figure 10. Bootstrapping in Ensō

This is not the only path the schema can take, how-
ever. Some data managers may require additional informa-
tion from their schema. For instance, a data manager with
support for relational databases will require the schema to
provide a mapping from classes and fields to table and col-
umn names, as well as additional information on indices
and keys. In the diagram, Database schema extends Schema
schema so that DB Point schema can provide it with the rel-
evant fields. Note that even though it is different from Point
schema, DB Point schema is still able to describe Point ob-
jects, so it is possible to migrate them from one data manager
to another.

5. Case Study: EnsōWeb
We have used Managed Data to build EnsōWeb, a web de-
velopment framework. EnsōWeb loosely follows the Model-
View-Presenter architecture and comprises a number of
DSLs for expressing data models, web interfaces, and busi-
ness logic such as security policies. In this section we are
primarily concerned with how data models are managed.
This part of EnsōWeb is analogous to ActiveRecord in Ruby
on Rails [30] or Java’s Hibernate [2]. The data model man-
ager can take on a few different roles:

• At its core, the data manager is expected to perform
standard data modeling functions such as enforcing in-
verses and cardinality constraints. This basic manager is



class ManagedObject

module MObjectBase

attr_reader :schema_class

def initialize(schema_class, *initializers)

@schema_class = schema_class; @values = {}

# initializes object with values where available
schema_class.fields.each do |field|

init = initializers.shift # shift pops the leftmost element of an array
if !field.many

@values[field.name] = (init!=nil ? init : field.type.default_value)

else

# create the appropriate collection
if (key = ClassKey(field.type))

@values[field.name] = ManyIndexedField.new(key.name, self, field)

else

@values[field.name] = ManyField.new(self, field)

end

if !init.nil?

init.each {|x| @values[field.name] << x} #initialize values
end

end

# create convenience accessor methods for this field
define_singleton_method(field.name) { _get(field.name) }

define_singleton_method(field.name+"=") {|new| _set(field.name, new) }

end

end

def _get(name)

field = @schema_class.fields[name];

raise "Accessing non-existant field ’#{name}’" unless field

return field.computed ? _eval(field.computed, ObjectEnv.new(self)) : @values[name]

end

def _set(name, new)

field = @schema_class.fields[name]

raise "Assign to invalid field ’#{name}’" unless field

raise "Can’t assign field ’#{name}’" if field.computed || field.many

check_type(field.type, new) # check_type not shown in this snippet
if @values[name] != new
_notify(name, new) # notify observers that this field has been changed
@values[name] = new

end

end

end

include MObjectBase

end

Figure 9. Data manager for a schema class



very similar to the Ensō data manager presented in Sec-
tion 4.2.

• The data manager may optionally be required to imple-
ment low-level security. In turn, security failures may
need to be logged.

• The data manager needs to support different backends
for persistence depending on the requirements of the ap-
plication. Possible options include in-memory, SQL, and
XML databases.

• Versioning may be needed for backup and recovery.

For the most parts, the data manager in EnsōWeb provides
similar services to Hibernate and Active Records, the chief
difference being that Managed Data, as used in EnsōWeb,
allows data management to be specifically tailored for an
application (e.g. adding security constraints where none ex-
isted before), while ActiveRecord and Hibernate both only
allow configuration within a fixed framework (e.g. defining
a different set of validation rules). Managed Data also takes
a modular approach to data management, allowing different
predefined managers to be selected and composed.

Note that all of EnsoWeb is built around Managed Data,
so models for web pages, logging, access control all have
their own data managers performing generic tasks like ver-
sioning, merging, and validation, although they are not
shown here.

5.1 Security
The optional security module extends the basic data man-
ager and administers policy-based access control [5]. There
are three parts to this module. The security specification lan-
guage allows the administrator to define permissions based
on the state of the system, the current logged-in user or his
role, the operation requested (i.e. create, read, update, or
delete) and object to be operated on. Internally, its security
policy is a set of user-defined rules on a predicate. The data
manager then interprets this security language to allow or
deny any operation on the data model, denied reads return
an empty record while denied writes are silently dropped. Fi-
nally, the managed data object can then be used in the client
code without additional boilerplate and with access control
transparently enforced underneath, as shown below.

Policy.auth:

deny read(s:Student) if s.grade == ’F’

allow update(s:Student{grade}) if s.section == 1

SecTest.rb:

# Data:
# {name: ’Alice’, grade: ’A’, section: 1}
# {name: ’Bob’, grade: ’B’, section: 2}
# {name: ’Cathy’, grade: ’F’, section: 1}

for s in students

print s.name

module SecureObject

def _set_user(user); @user=user; end

def _check(op, obj, field=nil)

# returns false if operation is not allowed
# implementation omitted for brevity

end

def _get(name)

if _check("Read", self, name)

result = super
_check("Read", result) ? result : nil

else

nil

end

end

def _set(name, new)

super if _check("Update", self, name)

end

end

module LoggedSecureObject

include SecureObject

def _check(op, obj, field=nil)

auth = super

# write error to log file
log.write "Security fail: #{op} #{obj}" if !auth

auth

end

end

class ManagedObject

include SecureObject

include LoggedSecureObject

end

Figure 11. Security extension for the data manager

end

# Output: Alice, Bob

students[’Alice’].grade = ’A+’

print students[’Alice’].grade

# Output: ’A+’

students[’Bob’].grade = ’A+’

print students[’Bob’].grade

# Output: ’B’

Policy.auth is written in the security language defined
using Ensō, while SecTest.rb is a snippet from the code to
access secured Managed Data objects. The policy file states
that students with an ‘F’ grade cannot be read and the grades
of students can be modified only if they are in section 1. In
the example, Cathy is hidden when iterating over the list of
students since she has a failing grade. Likewise, attempts to
modify Bob’s grade is ignored because of his section.



Figure 11 shows how to implement such a secured data
manager. Like in previous examples, _get and _set are over-
ridden, this time to perform security checks before read-
ing and writing. SecureObject introduces a new method,
_check, which is in turn overridden by LoggedSecureObject

to record any attempts to access unauthorized data.
Low-level security at the data model is the second line of

defense to augment security at the user interface level, which
is still needed to control the behavior of on-screen widgets
and to provide meaningful error messages. The capability to
filter out unpermitted records from the result of reads, either
to return a shortened list of records or a null object, and to
block write attempts to unpermitted records, is built into the
data manager.

5.2 Persistence Layer
There are several alternatives for persisting data depend-
ing on the needs of the application: the relational databases
(RDBMS) used for this example, in-memory, and XML-
based options are the most common choices. Even among
databases, the need for configurable data management ex-
ists [27]. Domain-specific SQL dialects for streams and sen-
sor networks, different indexing schemes like B-trees and
R-trees, OLAP cubes, query language features like stored
procedures, recursive queries, views, and biases between
read and write operations, are some of the many decisions
database designers need to make. Managed Data facilitates
switching between these choices by making persistence a
part of the data structuring mechanism and largely indepen-
dent of the client code.

Figure 12 presents a data manager that persists the man-
aged data object with a RDBMS backend. Instead of using
a hash table to store values like before, DBFactory creates a
new database for this schema when it is initialized. In this
database, classes are mapped to tables and fields to columns.
Many-to-many relationships have to be transformed to use a
junction table. Incidentally, many-to-one relationships with-
out an inverse also use a junction table because the target
table does not have a column to serve as a back pointer. An-
other thing this data manager needs to do is add a key field to
every class, because unlike in-memory objects that are iden-
tified by their memory reference, database tuples can only
be uniquely identified by their primary keys.

This RDBMS data manager is an example of coupling
data managers with schema extensions. Because EnsōWeb
is running on top of a relational SQL database, the schema
of the data model needs some way of associating classes to
tables and fields to columns and specifying a name for the
schema and root table. Figure 13 the additions to the schema
used by the database manager. This schema extension is
merged into the schema schema via overriding union to
produce the DB schema schema, which allows schemas to
specify table and column names. Note that only the schema
that describes the managed data is changed, the managed

data objects themselves are the same regardless of which
scheme is used.

module DBFactory

def initialize(schema, params={})

# create a new database
SQLexec("create database #{schema.name};")

SQLexec("use #{schema.name};")

@schema = schema

# create object tables
schema.classes.each do |c|

str = "create table #{c._table_name} ("

str += "DBKey int,"

c.fields.each do |f|

if !f.many

if f.type.Primitive? # single−valued prim
str += "#{f.name} #{convert(f.type)},"

else # single−valued reference
str += "#{f.name} int,"

end

else

if f.inverse.nil? # 1−to−many (no inv)
# create a junction table
junction(f._field_name, c._table_name,

f.type._table_name)

elsif !f.inverse.many? #1−to−many
# do nothing, resolved by inverse

else #many−to−many
# create a junction table
junction(f._field_name, c._table_name,

f.inverse.ownder._table_name)

end

end

end

str += ")"

SQLexec(str)

end

end

end

class Factory

include DBFactory

end

Figure 12. Data manager for an RDBMS backend

5.3 A Family of Data Managers
By selecting the relevant data managers, the programmer
can dynamically construct managed data objects with the
desired set of behavior. Ideally, the different data managers
should be orthogonal and not interact with each other. This
is true in many cases such as the security and versioning
data managers. However, in practice data managers have de-
pendencies on other data managers whose service they rely
on. There might also be unanticipated interactions between



class Schema

root: str?

root_class: Class = classes[root]

class Class

table: str?

class Field

column: str?

primitive str

primitive bool

Figure 13. DB schema extension for specifying table and
field names

data managers. For instance, when using a secured manager
backed by a relational database, the generated key field must
be made readable by all users who have access to the object,
as this is the only way to identify records in the database.
This has to be resolved by applying a patch that adds secu-
rity permissions for the new field.

6. Related Work
One of our goals in this work is to provide a name and a
better understanding for programming practices that have
been used for many years, in many different forms. These
existing approaches to managed data can be classified along
several dimensions.

• The first, and most important, is how the schema is de-
fined. The schema is the metadata that describes the struc-
ture and behavior of the data being managed. The schema
can be defined as external data, program data, or class
attributes. External data refers to any data outside the
program, whether an XML file or a special schema file.
Internal program data is dynamic data that is instanti-
ated within the program code, for example a Lisp S-
expression. A third way is to define not define the schema
explicitly, but to derive them by using reflection on the
program itself. The program might also be annotated with
class-based metadata to define additional attributes not
normally part of the language. Alternatively, the schema
could also be defined by a combination of these ap-
proaches.

• The second dimension is whether the data manager is
implemented by code generation or interpretation. Code
generators can either generate program source code or
byte-code instructions. Interpretation is characterized by
a lack of explicit manipulation of code syntax. Thus cre-
ating closures does not count as code generation.

• The final dimension is whether on not the client language,
which manipulates the managed data, is statically typed.

In some cases the typing is a hybrid of static checking
with dynamically generated type information.

The following table summarizes the related work relative
to these criteria:

System: Schema Implementation Typing
Ensō External Interpreted Dynamic
AOM External Interpreted Dynamic
MOP Internal Generated code Dynamic
Macros Internal Generated code Dynamic
Type Providers * * Hybrid
RDBMS External Interpreted Dynamic
Ruby on Rails Reflection Generated code Dynamic
MorphJ Reflection Generated code Static
IDispatch * * Hybrid
EMF External Generate code Static

The Adaptive Object-Model (AOM) Architectural Style
[35] is closely related to Managed Data. This architectural
style is a “reflective architecture” or “meta-architecture” be-
cause the actual code of the system does not define the be-
havior and properties of the domain objects and business
rules that are manipulated by the system. Instead these do-
main objects and rules are defined by explicit metadata,
which is interpreted by the system to generate the desired
behavior. There is generally no static type checking of the
resulting system. In some ways the Adaptive Object-Model
style is more general than Managed Data, because it is de-
scribed at a very high level as a pattern language and it also
covers business rules and user interfaces, in addition to data
management. On the other hand, the Adaptive Object-Model
does not discuss issues of integration with programming
languages, the representation of data schemas, or of boot-
strapping, which are central to Managed Data. The Adap-
tive Object-Model is also presented as a technique for im-
plementing business systems, not as a general programming
or data abstraction technique.

The languages in the Lisp family, including Scheme [15],
have a long tradition of supporting user-defined data abstrac-
tion mechanisms. The defstruct macro is a widely used and
has many variations and options, including mutability, seri-
alization, pattern matching, and initialization [25]. A vari-
ant, the define-type macro, supports immutable sums-of-
products [19]. Despite these prominent examples, it is not
clear how widespread the practice of Manage Data is in
Lisp-based languages. The defstruct macro is generally
presented as a standard feature of the language or as part
of the standard library, rather than an example of a general
concept that users might practice themselves.

Object-oriented extensions of Lisp are often implemented
within Lisp itself using macros or other encodings [4, 24,
29]. This approach was developed in a pure form in The
Art of the Metaobject Protocol (MOP) [18]. The principles
underlying MOP are the same as those underlying Managed



Data: that the programmer should be able to control the
interpretation of structure and and behavior in a program.
In the case of MOP, this focus is on behavior of objects and
classes, while in Managed Data the focus is more narrowly
defined as data management. The MOP approach is general
enough to include Managed Data as a special case.

F# 3.0 [28] has recently introduced type providers as
a new mechanism for accessing and manipulating external
data. Type providers are a form of Managed Data, because
the type provider defines the structure and behavior of data
values that appear as native data types in F#, but are in
fact virtual values that can be drawn from any source. Type
providers are a very interesting example of Managed Data,
because they provide semi-static access to dynamic data
from a strongly-typed functional language. The access is
semi-static because the types provided by the provider can
change between the time the program is compiled and when
it is executed.

Relational Database Managed Systems (RDBMS) can be
viewed as providing a form of Managed Data, where the
SQL Data Definition Language (DDL) defines a schema.
The RDBMS interprets the schema to create tables, which
can then be accessed in SQL queries. Managed Data im-
ports this approach from databases into the core of a pro-
gramming language. One of the key issues with RDBMS has
been the problem of integration with existing programming
languages.

6.1 Class-based Metadata
One common approach to managed data is to extend an ex-
isting object-oriented language with attributes, which are in-
terpreted to add additional behaviors to the class instances.
In statically typed languages, the attributes are usually pro-
cessed by a compiler or code generator, while in dynamic
languages the attributes can be interpreted dynamically.

Ruby on Rails [31] implements a form of Managed Data.
The schema information comes from metadata that is at-
tached to class definitions. Ruby allows the information in
a class definition to be extended easily, allowing many kinds
of metadata to be included. These metadata attributes are
interpreted at runtime. The Ruby on Rails engine can be
viewed as a kind of data manager.

Hibernate [2] implements a restricted form of Managed
Data for Java, but uses byte-code manipulation and code
generation rather than dynamic interpretation. Hibernate is
best understood as a specific data manager that supports
binding to a relational database, rather than a general system
for Managed Data.

MorphJ [11] is a system for compile-time transformation
of class definitions. A source class provides metadata for
a user-defined generation of a new class definition. One of
the advantages of MorphJ is that the transformations are
statically typed. However, using a class as metadata is more
restrictive than other systems which allow arbitrary schema
definitions.

6.2 Proxies
Many languages support a form of dynamic proxy that can
be used to implement Managed Data. Proxies have long ex-
isted in dynamic languages. The Data Managers in Ruby
defined in this paper use a form of dynamic proxy. A sim-
ilar implementation is possible in Smalltalk. More recently,
JavaScript 1.8.5 has proposed a Proxy API which provides
similar functionality. Proxies are also possible in statically-
typed languages, including Java [6] and C#, although they
generally cannot implement the full range of Managed Data
features as described in this paper. Rather than wrapping an
existing object, a proxy can also be used to implement a new
object dynamically. The main problem with this approach is
that the interfaces for the managed objects must be prede-
fined.

The IDispatch interface in Microsoft COM is a powerful
tool for implementing Managed Data. It provides two main
operations, GetTypeInfo and Invoke. The first operation re-
turns a (possibly dynamically generated) description of the
operations that are possible on the object. The Invoke opera-
tion allows operations to be invoked dynamically by passing
an operation identifier and a list of parameters. Visual Basic,
VBScript and JScript all provide special support for invok-
ing COM objects that implement the IDispatch interface.
The syntax o.m(args) is automatically converted to a call to
Invoke.

6.3 Data Modeling
There is a long history of developing high-level data mod-
eling languages and notations externally. While the concept
of Managed Data is independent of the particular data de-
scription language being used, it is worth noting that the
Ensō Schema schema is closely related to a large body of
existing work. Examples include the Semantic Data Model
[10], Entity-Relationship modeling [3], and Eclipse Model-
ing Framework’s (EMF) [26] ECore model.

EMF [26] is a toolchain for model-driven engineer-
ing (MDE) in Java for Eclipse. MDE is a programming
paradigm based on definable data descriptions specialized
for a specific application domain. Their data models are
managed, with native support for inverse and cardinality
constraints. EMF uses the data description, called an ECore
model, to generate code for commonly used scaffoldings,
such as persistence and logging.

Model-driven engineering share our goal of reusing data
management services across different data descriptions,
however, in most implementations, including EMF, data
management is configurable only as part of the tool, whereas
in Managed Data data managers can be configured program-
matically. The other key difference is that the EMF’s meta-
metamodel, while self-describing, is fixed and cannot ever
be changed. In comparison, the Schema scheam in Ensō is
programmer-definable and attributes can be added depend-
ing on usage, as demonstrated in section 5.2.



6.4 Aspect-Oriented Programming
Aspect-oriented programming (AOP) [17] enables compiler
support for injection of code at quantified join points. While
AOP is not directly related to the idea of Managed Data, it is
commonly used to modularize pervasive data management
mechanisms such as logging and security, similar to how
we define data managers. Like AOP, our approach allow
functionality to be weaved in without the need for explicitly
prepared variability hooks. However, our approach is coarser
in granularity, operating only at method boundaries. Also,
because we are dealing exclusively with data managers, we
know beforehand the set of possible join points, and thus
quantification become unnecessary. Nevertheless, the Ensō
interpreter framework does support universally quantified
modifications like aspects in the general context.

7. Conclusion
Managed Data is a powerful approach to data abstraction
that gives programmers control over the fundamental mech-
anisms for creation and manipulation of data. A schema
provides a description of the structure and behavior of de-
sired data. The schema is interpreted by a data manager
that implements the necessary strategies for managing data.
Managed Data gives programmers more degrees of free-
dom while separating concerns. Programmers can change
specific schemas, or the schema language, or the data man-
agers themselves, depending on what level of functionality
is needed.

While the idea of Managed Data has appeared in vari-
ous forms in the past, it has not been identified and studied
as a fundamental programming concept. We have analyzed
previous approaches to Managed Data, and proposed a new
implementation based on interpretation of external schema
languages. Our approach to Managed Data is the foundation
of the Ensō system. As a case study, we demonstrated how
Managed Data can be used in the context of a web develop-
ment framework to reuse database management and access
control services across different data definitions while hid-
ing their implementation from the client code. Both our im-
plementation of Managed Data and the example web frame-
work EnsōWeb are available from http://enso-lang.org.

In the future, we intend to explore static typing for Man-
aged Data. Another promising direction is improving data
manager performance through partial evaluation, especially
since bootstrapping introduces a significant slowdown based
on our current implementation.
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