
AutoFetch

Ali Ibrahim and William Cook
University of Texas at Austin

Presented at ECOOP 2006

1

Object Persistence

� Transparent access to persistent objects
− Load as needed: “Object faulting”

� Examples
− Object-relational mapping tools

� EJB, JDO, TopLink, Hibernate, OJB, and many more

− Object databases
� Versant, db4o, Gemstone, etc.

− Orthogonally Persistent Programming Language
� PJama, OPJ, etc.

� Object faults are expensive
− connection overhead > query execution

2

Example Data Model

Department

Employee Company

supervisor

employees

departments

CEO

company

department

3

Queries + Traversal
String q = “ from Employee e

where e.overtime > 100”;

for (Employee emp: runQuery(q)) {

Employee mgr = emp.getSupervisor();

sendEncouragingEmail(emp.getEmail(),
emp.getName(),
mgr.getName());

}

SLOW!

Every

manager is

faulted

separately

Should prefetch managers

4

Manual Prefetch
String q = “ from Employee e

left outer join fetch e.supervisor
where e.overtime > 100”;

for (Employee emp: runQuery(q)) {

Employee mgr = emp.getSupervisor();

sendEncouragingEmail(emp.getEmail(),
emp.getName(),
mgr.getName());

}

Subtle

dependency…

… must be

maintained if

code changes

5

AutoFetch Goals
� No programmer provided prefetch hints or

directives

− Programs easier to write

− Programs more modular

� Performance as good as or better than programmer

provided prefetch directives

6

AutoFetch

� AutoFetch transparently prefetches objects
based on program history

� AutoFetch can be broken into 3 aspects:
− Traversal Profiling

− Query Classification

− Traversal Prediction

� Implemented as extension to Hibernate 3.0
− Object proxies used to monitor association

traversals

� Idea not specific to Hibernate or ORDBMS

7

Traversal profiling

� Each query produces a program traversal.

� Program traversals are aggregated into

traversal profiles.

e1

e2

e3

e4

e6

e5

Query Results

supervisor

supervisor

supervisor

Employee

Employee

Supervisor: 6/6
x2

8

Query Classification

� Identify similar query invocations
− Traversal Profiles aggregate similar invocations

− Apply prefetch corresponding to previous

traversals

� Use the program state to classify queries

� How about?

− query string

− line number where query invoked

9

1 Query / 2 Traversals
for (Employee emp : getGreatEmployees()) {

Employee manager = emp.getSupervisor();
manager.setSalary(manager.getSalary() * 2.0);

}

for (Employee emp : getGreatEmployees()) {
sendEmail(emp.getEmail(), emp.getName());

}

List<Employees> getGreatEmployees() {
String q = “from Employee e

where e.overtimeHours > 100”;
return (List<Employees>)runQuery(q);

}

10

Classifying by Stack Trace

� Query invocations with same stack trace are
classified together

� Benefits of stack trace:

− easy to compute

− finite number of stack traces

� Stack trace predicts future control flow

11

Traversal Prediction
� Query class → traversal profile

� Add association paths with probability greater

than a threshold as prefetch specifications

Department

Employee Company

Employee

Employee

Employee

Employees: 3/3 Company: 2/3

Supervisor: 2/3

Supervisor: 1/2

Supervisor: 0/1

Employee

CEO:0/2

0.67

1.0 0.67

0.33

0

0

12

Torpedo Benchmark
• Measures:

number of queries

• Web auction application

• 17 use cases

• AutoFetch is a fast as

hand optimized

• …with simpler code

First Run Third Run
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

Unopt im iz
ed

M anually
opt im ized

Aut om at ic
a lly
opt im ized

N
o

.
o

f
S

Q
L

 q
u

e
ri

e
s

13

OO7 Benchmark
• Measures:

traversals, queries,

and updates

• Based on CAD

applications

• AutoFetch executes

approximately 100

times fewer queries

First
Run

Second
Run

Third
Run

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

Un op t im ized

Au t oFet ch

I t e rat ion

N
u

m
b

e
r

o
f

S
Q

L
 q

u
e

ri
e

s

38 queries

T1 Traversal

14

Related Work

� Prefetch for Object Databases
− Object clustering

− Object prefetch based on pattern analysis of object

requests (Curewitz 93, Knafla 98, Palmer 91)

� PrefetchGuide (ORM)
− Bernstein VLDB 1999, Han Infor. Sciences 2003

− Optimizes traversals within a single query

− Looks for recursive or iterative patterns

15

How is AutoFetch different?

� Disadvantages:
− Does not optimize initial query executions

� Use AutoFetch + PrefetchGuide

� Advantages:
− Best performance:

� AutoFetch: 1 query

� PrefetchGuide: at least 2 queries

− Can prefetch arbitrary object graphs

− More data for prediction

16

Future Work

� Improving benchmarks for OPA.

� Using AutoFetch ideas for general prefetch in

distributed applications.

� Optimizing other aspects of OPA such as

memory management.

17

Conclusion

� Predicts correct prefetch directives based on
past program query executions

� Uses dynamic profiling

� Encourages more modular programs

� General technology for object persistence

architectures

18

