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Object Persistence

� Transparent access to persistent objects
− Load as needed: “Object faulting”

� Examples
− Object-relational mapping tools

� EJB, JDO, TopLink, Hibernate, OJB, and many more

− Object databases
� Versant, db4o, Gemstone, etc.

− Orthogonally Persistent Programming Language
� PJama, OPJ, etc.

� Object faults are expensive
− connection overhead > query execution
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Example Data Model
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Queries + Traversal
String q = “ from Employee e 

where e.overtime > 100”;

for (Employee emp: runQuery(q)) {

Employee mgr = emp.getSupervisor();

sendEncouragingEmail(emp.getEmail(), 
emp.getName(), 
mgr.getName());

}

SLOW!

Every 

manager is 

faulted 

separately

Should prefetch managers

4  

Manual Prefetch
String q = “ from Employee e 

left outer join fetch e.supervisor
where e.overtime > 100”;

for (Employee emp: runQuery(q)) {

Employee mgr = emp.getSupervisor();

sendEncouragingEmail(emp.getEmail(), 
emp.getName(), 
mgr.getName());

}

Subtle

dependency…

… must be 

maintained if

code changes
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AutoFetch Goals
� No programmer provided prefetch hints or 

directives

− Programs easier to write

− Programs more modular

� Performance as good as or better than programmer 

provided prefetch directives

6  

AutoFetch

� AutoFetch transparently prefetches objects 
based on program history

� AutoFetch can be broken into 3 aspects:
− Traversal Profiling

− Query Classification

− Traversal Prediction

� Implemented as extension to Hibernate 3.0
− Object proxies used to monitor association 

traversals

� Idea not specific to Hibernate or ORDBMS
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Traversal profiling

� Each query produces a program traversal.

� Program traversals are aggregated into 

traversal profiles.
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Query Classification

� Identify similar query invocations
− Traversal Profiles aggregate similar invocations

− Apply prefetch corresponding to previous 

traversals

� Use the program state to classify queries

� How about?

− query string

− line number where query invoked
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1 Query / 2 Traversals
for (Employee emp : getGreatEmployees()) {

Employee manager = emp.getSupervisor();
manager.setSalary( manager.getSalary() * 2.0);

}

for (Employee emp : getGreatEmployees()) {
sendEmail( emp.getEmail(), emp.getName());

}

List<Employees> getGreatEmployees() {
String q = “from Employee e 

where e.overtimeHours > 100”;
return (List<Employees>)runQuery(q);

}
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Classifying by Stack Trace

� Query invocations with same stack trace are 
classified together

� Benefits of stack trace:

− easy to compute 

− finite number of stack traces

� Stack trace predicts future control flow
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Traversal Prediction
� Query class → traversal profile

� Add association paths with probability greater 

than a threshold as prefetch specifications

Department

Employee Company

Employee

Employee

Employee

Employees: 3/3 Company: 2/3

Supervisor: 2/3

Supervisor: 1/2

Supervisor: 0/1

Employee

CEO:0/2

0.67

1.0 0.67

0.33

0

0

12  

Torpedo Benchmark
• Measures:

number of queries

• Web auction application

• 17 use cases

• AutoFetch is a fast as 

hand optimized

• …with simpler code
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OO7 Benchmark
• Measures:

traversals, queries, 

and updates

• Based on CAD 

applications

• AutoFetch executes 

approximately 100 

times fewer queries
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Related Work

� Prefetch for Object Databases
− Object clustering

− Object prefetch based on pattern analysis of object 

requests (Curewitz 93, Knafla 98, Palmer 91)

� PrefetchGuide (ORM)
− Bernstein VLDB 1999, Han Infor. Sciences 2003

− Optimizes traversals within a single query 

− Looks for recursive or iterative patterns 
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How is AutoFetch different?

� Disadvantages:
− Does not optimize initial query executions

� Use AutoFetch + PrefetchGuide

� Advantages:
− Best performance:

� AutoFetch: 1 query

� PrefetchGuide: at least 2 queries

− Can prefetch arbitrary object graphs

− More data for prediction
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Future Work

� Improving benchmarks for OPA. 

� Using AutoFetch ideas for general prefetch in 

distributed applications.

� Optimizing other aspects of OPA such as 

memory management.
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Conclusion

� Predicts correct prefetch directives based on 
past program query executions

� Uses dynamic profiling

� Encourages more modular programs

� General technology for object persistence 

architectures
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