
Evaluating Support for Features in
Advanced Modularization Technologies

Roberto E. Lopez-Herrejon, Don Batory, and William Cook
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{rlopez, batory, wcook}@cs.utexas.edu

Abstract. A software product-line is a family of related programs. Each pro-
gram is defined by a unique combination of features, where a feature is an
increment in program functionality. Modularizing features is difficult, as fea-
ture-specific code often cuts across class boundaries. New modularization
technologies have been proposed in recent years, but their support for feature
modules has not been thoroughly examined. In this paper, we propose a var-
iant of the expression problem as a canonical problem in product-line design.
The problem reveals a set of technology-independent properties that feature
modules should exhibit. We use these properties to evaluate five technolo-
gies: AspectJ, Hyper/J, Jiazzi, Scala, and AHEAD. The results suggest an ab-
stract model of feature composition that is technology-independent and that
relates compositional reasoning with algebraic reasoning1.

1 Introduction

A feature is an increment in program functionality [53]. Researchers in software prod-
uct-lines use features as a defacto standard in distinguishing the individual programs in
a product-line, since each program is defined by a unique combination of features [24].
Features are the semantic building blocks of program construction; a product-line mod-
el is a set of features and constraints among features that define legal and illegal com-
binations. Product-line architects reason about programs in terms of features.

Despite their crucial importance, features are rarely modularized. The reason is that fea-
ture-specific code often cuts across class and package boundaries, thus requiring the use
of preprocessors to wrap feature-specific code fragments in #if-#endif statements.
While the use of preprocessors works in practice, it is hardly an adequate substitute for
proper programming language support. Among the important properties sacrificed are:
static typing of feature modules, separate compilation of feature modules, and specifi-
cations of feature modules that are independent of the compositions in which they are
used (a property critical for reusability). This sacrifice is unacceptable.

In recent years, new technologies have been proposed that have the potential to provide
better support for feature modularity. These technologies have very different notions of
modularity and composition, and as a consequence are difficult to compare and unify.
Thus it is increasingly important to advance standard problems and metrics for technol-

1. This research is sponsored in part by NSF's Science of Design Project #CCF-0438786.

ogy evaluation. A few attempts have been made to compare technologies and evaluate
their use to refactor and re-implement systems that are not part of a product family
[13][19][30][37]. But for a few studies [16][52][35], the use of new technologies to
modularize features in a product line is largely unexplored.

In this paper we present a standard problem that exposes common and fundamental is-
sues that are encountered in feature modularity in product-lines. The problem reveals
technology-independent properties that feature modules should exhibit. We use these
properties to evaluate solutions written in five novel modularization technologies: As-
pectJ [1][25], Hyper/J [41][48], Jiazzi [31][32][52], Scala [45][38][39][40], and
AHEAD [2][6]. The results suggest a technology-independent model of software com-
position where the definition and composition of features is governed by algebraic laws.
The model provides a framework or set of criteria that a rigorous mathematical presen-
tation should satisfy. Further, it helps reorient the focus on clean and mathematically
justifiable abstractions when developing new tool-specific concepts.

2 A Standard Problem: The Expressions Product-Line

The Expressions Product-Line (EPL) is based on the extensibility problem also known
as the “expression problem” [15][50]. It is a fundamental problem of software design
that consists of extending a data abstraction to support a mix of new operations and
data representations. It has been widely studied within the context of programming
language design, where the focus is achieving data type and operation extensibility in a
type-safe manner. Rather than concentrating on that issue, we consider the design and
synthesis aspects of the problem to produce a family of program variations. More con-
cretely, what features are present in the problem? How can they be modularized? And
how can they be composed to build all the programs of the product-line?

2.1 Problem Description

Our product-line is based on Torgersen’s expression problem [49]. Our goal is to define
data types to represent expressions of the following language:

Exp :: = Lit | Add | Neg
Lit :: = <non-negative integers>
Add :: = Exp "+" Exp
Neg :: = "-" Exp

Two operations can be performed on expressions of this grammar:

1) Print displays the string value of an expression. The expression 2+3 is repre-
sented as a three-node tree with an Add node as the root and two Lit nodes as
leaves. The operation Print, applied to this tree, displays the string “2+3”.

2) Eval evaluates expressions and returns their numeric value. Applying the oper-
ation Eval to the tree of expression 2+3 yields 5 as result.

We add a class Test that creates instances of the data type classes and invokes their
operations. We include this class to demonstrate additional properties that are important
for feature modules. Figure 1 shows the complete Java code for a program of the prod-

uct-line that implements all the data types and operations of EPL. Shortly we will see
what the annotations at the beginning of each line mean.

From a product-line perspective, we can
identify two different feature sets [17].
The first is that of the operations {Print,
Eval}, and the second is that of the data
types {Lit, Add, Neg}. Using these sets,
it is possible to synthesize all members of
the product-line described in Figure 2 by
selecting one or more operations, and one
or more data types. For instance, row 4 is
the program that contains Lit and Add
with operations Print and Eval. As
with any product-line design, in EPL
there are constraints on how features are
combined to form programs. For exam-
ple, all members require Lit data type, as literals are the only way to express numbers.

A common way to implement features in software product-lines is to use preprocessor
declarations to surround the lines of code that are specific to a feature. If we did this for
the program in Figure 1, the result would be unreadable. Instead, we use an annotation

Figure 1. Complete code of the Expressions Product Line

lp
lp
le
lp

ap
ap
ap
ap
ap
ap
ap
ap
ap
ae
ae
ae
ae
ap

np
np
np
np
np
np
np
np
ne
ne
ne
np

interface Exp {
 void print();
 int eval();
}

class Add implements Exp {
 Exp left, right;
 Add (Exp l, Exp r) {
 left = l; right = r; }
 void print() {
 left.print();
 System.out.print("+");
 right.print();
 }
 int eval() {
 return left.eval()
 + right.eval();
 }
}

class Neg implements Exp {
 Exp expr;
 Neg (Exp e) { expr = e; }
 void print() {
 System.out.print("-(");
 expr.print();
 System.out.print(")");
 }
 int eval() {
 return expr.eval() * -1;
 }
}

lp
lp
lp
lp
lp
lp
le
lp

lp
lp
ap
np
lp
lp
ap
np
lp
lp
lp
ap
np
le
ae
ne
lp
lp

class Lit implements Exp {
 int value;
 Lit (int v) { value = v; }
 void print() {
 System.out.print(value);
 }
 int eval() { return value; }
}

class Test {
 Lit ltree;
 Add atree;
 Neg ntree;
 Test() {
 ltree = new Lit(3);
 atree = new Add(ltree, ltree);
 ntree = new Neg(ltree);
 }
 void run() {
 ltree.print();
 atree.print();
 ntree.print();
 System.out.println(ltree.eval());
 System.out.println(atree.eval());
 System.out.println(ntree.eval());
 }
}

Figure 2. Members of the EPL

Data typesOperations

8

7

6

5

4

3

2

1

NegAddLitEvalPrintProgram

Data typesOperations

8

7

6

5

4

3

2

1

NegAddLitEvalPrintProgram

at the start of each line to indicate the feature to which the line belongs. This makes it
easy to build a preprocessor that receives as input the names of the desired features and
strips off from the code of Figure 1 all the lines that belong to unneeded features. As
can be imagined, this approach is very brittle for problems of larger scale and complex-
ity. Never the less, the approach can be used as a reference to define what is expected
from feature modules in terms of functionality (classes, interfaces, fields, methods, con-
structors), behaviour (sequence of statements executed), and composition.

2.2 Feature Modularization
A natural representation of the expression problem, and thus for EPL, is a two-dimen-
sional matrix [15][50][22]. The vertical dimension specifies data types and the hori-
zontal dimension specifies operations. Each matrix entry is a feature module that
implements the operation, described by the column, on the data type, specified by the
row. As a naming convention throughout the paper, we identify matrix entries by using
the first letters of the row and the column, e.g., the entry at the intersection of row Add
and column Print is named ap and implements operation Print on data type Add.
This matrix is shown in Figure 3 where module names are encircled.

To compose any program from Figure 2, the modules involved are those at the intersec-
tion of the selected columns and the selected rows. For example, program number 1,
that provides Print operation on Lit, only requires module lp. Another example is
program 6, that implements operations Print and Eval on Lit and Neg data types, re-
quires modules lp, le, np, and ne.

The source code of a feature module are the lines that are annotated with the name of
the module. For instance, the contents of feature ap include:

a) Class Add with Exp fields left and right, a constructor with two Exp argu-
ments, and method void print(), and

b) An increment to class Test, because it is adding something to the class as op-
posed to contributing a brand new class as is the case of class Add. This increment
is symbolized by ∆Test in Figure 3. It adds: field atree, a statement to the body

Figure 3. Matrix representation and Requirements

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

Print Eval

Lit

Add

Neg

lele

aeae

nene

lplp

apap

npnp

of the constructor expressed with ∆Test(), and a statement to the body of method
run expressed as ∆run().

For clarity we decided to put the Exp interface inside module lp instead of creating a
separate row for it. This decision makes sense since the other data types are built using
Lit objects. Also, we put the constructors and fields of the data types in column Print
instead of refactoring them into a new column and have columns Print and Eval im-
plement only their corresponding methods. Later we will see an interesting conse-
quence of these two design decisions. Additionally, from the design requirements we
can infer dependencies and interactions among the feature modules. For instance, if we
want to build a program with module ap, we also need to include module lp because
ap increments the Test class which is introduced in lp. Later, we briefly discuss this
issue as compositional constraints, which are not the focus of this paper. Constraints are
discussed in [2][3][9].

3 Basic Properties for Feature Modularity

To give structure to our evaluation, we identify a set of basic properties about features
that can readily be inferred from, illustrated by, and assessed in EPL and its solutions
in the five technologies evaluated. Conceivably, there are other desirable properties that
feature modules should exhibit such as readability, ease of use, etc. However, for sake
of simplicity and breadth of scope, they are not part of this evaluation as their objective
assessment would require a larger case study that would prevent us from comparing all
five technologies together.

The properties are grouped into two categories, covering the basic definition of features
and their composition to create programs. The first properties in each category follow
from the structure of EPL, while the others come from the studied solutions to EPL and
are desirable from the software engineering perspective.

3.1 Feature Definition Properties

The first category of properties relate to the definition of the basic building blocks of
EPL, the representation of each piece, and their organization into features.

Program deltas. The code in Figure 1 can be decomposed into a collection of program
deltas or program fragments. The kinds of program deltas required to solve EPL are
summarized in Figure 3, and include:

• New Classes, for example Lit in module lp.

• New Interfaces, for example Exp in module lp.

• New fields that are added to existing classes, like field atree in module ap is add-
ed to class Test.

• New methods that are added to existing interfaces, like eval() in module le is
added to interface Exp.

• Method extensions that add statements to methods. For example, extension to
method run(), expressed by ∆run(), in all modules except lp.

• Constructor extensions that add statements to constructors. For instance, exten-
sions to constructor Test(), expressed by ∆Test(), in modules ap and np.

There are other program deltas, such as new constructors, new static initializers, new
exception handlers, etc. that are not needed for implementing EPL and thus are not con-
sidered in this paper. Nonetheless, we believe that EPL contains a sufficient set of pro-
gram deltas for an effective evaluation.

Cohesion. It must be possible to collect a set of program deltas and assign them a name
so that they can be identified and manipulated as a cohesive module.

Separate compilation. Separate compilation of features is useful for two practical rea-
sons: a) it allows debugging of feature implementation (catching syntax errors) in iso-
lation, and b) it permits the distribution of bytecode instead of source code.

3.2 Feature Composition Properties

Once a set of feature modules has been defined, it must be possible to compose them to
build all the specific programs in the Expression Product Line.

Flexible Composition. The implementation of a feature module should be syntactically
independent of the composition in which it is used. In other words, a fixed composition
should not be hardwired into a feature module. Flexible composition improves reusa-
bility of modules for constructing a family of programs.

Flexible Order. The order in which features are composed can affect the resulting pro-
gram. For instance, in EPL, the order of test statements in method run() affects the out-
put of the program. The program in Figure 1 is the result of one possible ordering of
features, namely (lp, ap, np, le, ae, ne). Another plausible order in EPL is to have ex-
pressions printed and evaluated consecutively, as in order (lp, le, ap, ae, np, ne).
Hence, feature modules should be composable in different orders.

Closure under Composition. Feature modules are closed under composition if one or
more features can be composed to make a new composite feature. Composite features
must be usable in all contexts where basic features are allowed. In EPL, it would be nat-
ural to compose the Lit and Neg representations to form a LitNeg feature which rep-
resents positive and negative numbers.

Static Typing. Feature modules and their composition are subject to static typing which
helps to ensure that both are well-defined, for example, preventing method-not-found
errors. We base the evaluation of this property on the availability of a formal typing the-
ory or mechanism behind each technology.

Using these properties we evaluate AspectJ, Hyper/J, Jiazzi, Scala, and AHEAD in the
following sections.2 We use a concrete example to illustrate these alternatives, i.e. the
program that supports Print and Eval operations in Lit and Add data types (program
number 4 in Figure 2). Thus, the program has four modules: lp, ap, le, and ae that we
compose in this order (the same as in Figure 1). Throughout the paper, we call this pro-
gram LitAdd.

2. For a more detailed description of the implementation see [29].

4 AspectJ

An aspect, as implemented in AspectJ3 [1][25], modularizes a cross-cut as it contains
code that can extend several classes and interfaces.

4.1 Feature modules and their composition
The implementation of module lp is straightforward as it consists of Java interface
Exp and classes Lit and Test. In AspectJ literature, programs written using only pure
Java code are called base code. In Figure 4a, the names of files that are base code are
shown in italics, while those of aspect code are shown in all capital letters.

Alternatively, we could have declared the new classes and interfaces as nested ele-
ments of an aspect. However, they would be subject to the instantiation of their con-
taining aspect, and their references would be qualified with the aspect name where
they are declared. For these reasons, we decided to implement classes and interfaces in
separate files.

From Figure 3, module le:

1) adds method eval() to interface Exp,

2) adds the implementation of eval() to class Lit, and

3) appends a statement to method run() of class Test that calls eval() on field
ltree.

The entire code of module le is implemented with the aspect shown in Figure 4b. The
first two requirements use AspectJ’s inter-type declaration, which is part of its static
crosscutting model [1][25]4. Method extensions, like that of the third requirement, can-

3. We used AspectJ version 1.1 for our evaluation.

Figure 4. AspectJ Solution

public aspect LE {

// ∆Exp interface
public abstract int Exp.eval();

// ∆Lit class
public int Lit.eval() { return value; }

// ∆Test, advice that implements ∆run()
pointcut LPRun(Test t):

execution (public void Test.run())
&& target(t);

void around(Test t) : LPRun(t) {
proceed(t);
System.out.println("= " + t.ltree.eval());

}
}

NENeg,
NP

Neg

AEAdd,
AP

Add

LEExp,
Lit,

Test

Lit

EvalPrint

NENeg,
NP

Neg

AEAdd,
AP

Add

LEExp,
Lit,

Test

Lit

EvalPrint

(a) (b)

not be implemented as inter-type declarations because members with the same signature
can be introduced only once. Hence, to implement the last requirement it is necessary
to utilize AspectJ’s dynamic crosscutting model which permits adding code (advice) at
particular points in the execution of a program (join points) that are specified through a
predicate (pointcut).

Since it is required to execute an additional statement when method run() is executed,
we must capture the join point of the execution of that method. Also, since the state-
ment to add is a method call on field ltree of class Test, we must get a hold of the
object that is the target of the execution of method run() to access its ltree field.
These two conditions are expressed in pointcut LPRun of Figure 4b, where t is the ref-
erence to the target object. Lastly, to add the extension statement we use an around ad-
vice. This type of advice executes instead of the join points of the pointcut, but it allows
its execution by calling AspectJ’s special method proceed. We add the new statement
to run() after the call to method proceed(t).5

The implementation of feature module ap (not shown in Figure 4) uses two files. The
first is a Java class to implement data type Add. The second is an aspect to implement
the extensions to class Test. The first extension adds a new field to class Test. This is
done also using inter-type declaration in the following way:

public Add Test.atree;

The other two extensions of module ap, ∆Test() and ∆run(), are implemented in a
similar way to those of module le. The other modules ae, np, and ne have an analogous
implementation.

To compose program LitAdd, the AspectJ compiler (weaver) ajc, requires the file
names of the base code and the aspects of the feature modules. The composition is
specified as follows, where the order of the terms is inconsequential:

ajc Exp.java Lit.java Test.java LE.java Add.java AP.java AE.java
 -outjar LitAdd.jar (1)

The static crosscutting model of AspectJ has a simple realization that does not depend
on order, namely, members can only be introduced once. However, in the case of dy-
namic crosscutting, i.e. pointcuts and advice, several pieces of advice can apply to the
same join point. In such cases, the order in which advice code is executed is in general
undefined6. This means that a programmer cannot know a priori, by simply looking at
the pointcut and advice code, in what order advice is applied. In program LitAdd, this

4. We could also implement the first requirement as follows:

 public int Exp.eval() { return 0; }

This alternative defines a default value for the method which can be subsequently over-
ridden by each class that implements Exp.

5. Method proceed, has the same arguments as the advice where it is used.

6. There are special rules that apply for certain types of advice when advices are defined
in either the same aspect or in others [1]. These rules help determine the order in few cases
but not in general.

issue is manifested in the order of execution of method run() and its extensions. The
order that we want is that of Figure 1, namely, first the statement from lp followed by
those of ap, le and ae. However, the order obtained by executing the program is state-
ments from lp, ae, ap, and le7.

AspectJ provides a mechanism to give precedence to advice, thus imposing an order, at
the aspect level. In other words, it can give precedence to all the advice of an aspect over
those of other aspects. To obtain the order that we want for method run(), we must
define the following aspect:

public aspect Ordering {
declare precedence : AE, LE, AP;

}

and add it to the list of files in the specification (1). For further details on how prece-
dence clauses are built, consult [1][26].

4.2 Evaluation
Feature definition. AspectJ can describe all program deltas required for EPL. How-
ever, in cases like module ap which is implemented with class Add and aspect AP,
there is no way to express that both together form feature ap. In other words, AspectJ
does not have a cohesion mechanism to group all program deltas together and manipu-
late them as a single module. Nonetheless, this issue can be addressed with relatively
simple tool support. Aspects cannot be compiled separately, as they need have base
code in which to be woven.

Feature composition. AspectJ provides flexible composition and order. It can be used
to build all members of EPL in the order described in an auxiliary aspect that contains
a declare precedence clause. This type of clause can also be used inside aspects
that implement feature modules, like LE, but doing that could reduce order flexibility
as the order could be different for different programs where LE is used. Feature mod-
ules implemented in AspectJ are not closed under composition for two reasons: the
absence of a cohesion mechanism and the lack of a general model of aspect composi-
tion. The latter is subject of intensive research [18]. Static typing support for AspectJ is
also an area of active research [23][51].

5 Hyper/J

Hyper/J [48] is the Java implementation of an approach to Multi-Dimensional Separa-
tion of Concerns (MDSoC) called Hyperspaces [41][47]. A hyperspace is a set of units.
A unit can be either primitive, such as a field, method, and constructor; or compound
such as a classe, interface, and package.

A hyperslice is a modularization mechanism that groups all the units that implement a
concern (a feature in this paper) which consists of a set of classes and interfaces.
Hyperslices must be declaratively complete. They must have a declaration, that can be

7. In AspectJ version 1.1

incomplete (stub) or abstract, for any unit they reference. Hyperslices are integrated in
hypermodules to build larger hyperslices or even complete systems.

5.1 Feature modules and their composition
The Hyper/J weaver performs composition at the bytecode level which makes a natural
decision to implement each hyperslice (feature module) as a package that can be com-
piled independently. Hyperslices that contain only new classes and interfaces, like
module lp, have a straightforward implementation as Java packages. The interesting
case is hyperslices that extend units in other hyperslices. For example, Figure 5a shows
the package that implements feature le. It adds method eval() to Exp (new method
in an interface), the implementation in Lit (new method in a class), and a call in
method run() of class Test (method extension).

However, extra code is required to make a hyperslice declaratively complete so that it
can be compiled. For instance, variable value that is introduced in feature lp is repli-
cated in class Lit so that it can be returned by method eval(). Something similar
occurs with variable ltree in Test. Additionally, the Hyper/J weaver requires stubs
for non-default constructors. When the package is compiled, the references of these
variables are bound to the definitions in the package; however, when composed with
other hyperslices that also declare these variables, all the references are bound to a sin-
gle declaration determined by the composition specification. The extension of methods
and constructors is realized by appending the code of their bodies one after the other.
The rest of the feature modules are implemented similarly.

The LitAdd composition is defined by the three files of Figure 5b: hyperspace Lit-
Add.hs, concern mapping LitAdd.cm, and hypermodule LitAdd.hm. The hyper-
space file lists all the units that participate in the composition. The concern mapping

Figure 5. Hyper/J Implementation

class Lit implements Exp {
public int value; // stub lp
public Lit (int v) { } // req constructor
public int eval() { return value; }

}

interface Exp {
int eval();

}

class Test {
Lit ltree; // stub lp
public void run() {
System.out.println(ltree.eval());
}

}

class Lit implements Exp {
public int value; // stub lp
public Lit (int v) { } // req constructor
public int eval() { return value; }

}

interface Exp {
int eval();

}

class Test {
Lit ltree; // stub lp
public void run() {
System.out.println(ltree.eval());
}

}

(a) Package LE of feature le

Hypermodule (hm)
hypermodule LitAdd
hyperslices:
Feature.LP,
Feature.AP,
Feature.LE,
Feature.AE;

relationships:
mergeByName;

end hypermodule;

Hyperspace (hs)
hyperspace LitAdd
composable class LP.*;
composable class LE.*;
composable class AP.*;
composable class AE.*;

Concern Mapping (cm)
package LP : Feature.LP
package LE : Feature.LE
package AP : Feature.AP
package AE : Feature.AE

Hypermodule (hm)
hypermodule LitAdd
hyperslices:
Feature.LP,
Feature.AP,
Feature.LE,
Feature.AE;

relationships:
mergeByName;

end hypermodule;

Hyperspace (hs)
hyperspace LitAdd
composable class LP.*;
composable class LE.*;
composable class AP.*;
composable class AE.*;

Concern Mapping (cm)
package LP : Feature.LP
package LE : Feature.LE
package AP : Feature.AP
package AE : Feature.AE

(b) Composition Specification

divides the hyperspace into features (hyperslices) and gives them names. Finally, the
hypermodule specifies what hyperslices are composed and what mechanisms (opera-
tors) to use. Our example merges units that have the same name.

5.2 Evaluation

Feature definition. Hyper/J’s hyperslices can modularize all deltas, treat them as a co-
hesive unit, and compile them separately. Though, separate compilation requires man-
ual completion of the hyperslices.

Feature composition. Hyper/J provides flexible composition. The order is specified in
the hypermodule and can be done using several composition operators [48], thus com-
position order is flexible. Hyperslices are by definition closed under composition. To
the best of our knowledge there is no theory to support static typing of hyperslices.

6 Jiazzi

Jiazzi [31][32][52] is a component system that implements units [21][22] in Java. A
unit is a container of classes and interfaces. There are two types of units: atoms, built
from Java programs, and compounds built from atoms and other compounds. Units are
the modularization mechanism of Jiazzi. Therefore they are the focus of our evalua-
tion.

6.1 Feature modules and their composition
Jiazzi programs use pure Java constructs. Jiazzi groups classes and interfaces in pack-
ages that are syntactically identical to Java packages. Implementation of modules like
lp are thus standard Java packages with normal classes and interfaces. Consider the
following code contained in package le that implements the feature of the same
name8:

public interface Exp extends lp.Exp {
int eval();

}

public class Lit extends lp.Lit
implements fixed.Exp {

public int eval() { return value; }
}

public class Test extends lp.Test {
public void run() {

super.run();
System.out.println(ltree.eval());

}
}

8. Definition of non-default constructors is required but not shown.

Two important things to note are: a) Exp, Lit and Test extend their counterparts of
feature lp, and b) class Lit implements fixed.Exp which refers to the version of
Exp that contains all the extensions in a composition.

Package le shows how methods can be added to existing classes and interfaces, and
how existing methods can be extended. Jiazzi also supports adding new classes, inter-
faces, constructor extensions, and fields in a similar way to that of normal Java inherit-
ance. The rest of the feature modules are implemented along the lines of module le.

Composition in Jiazzi is elaborate. For simplicity, we illustrate unit composition with
units lp and le instead of LitAdd. From this readers can infer what the composition
of LitAdd entails.

We start with the definition of a signature which describes the structure of a package,
i.e., the interface it exports. The following code is the signature of package le9:

signature leS = l : lpS + {
package fixed;
public interface Exp { int eval(); }
public class Lit { public int eval(); }
public class Test { public void run(); }

}

Two relevant points are: a) the expression l:lpS + indicates that leS is an extension
of signature lpS, meaning that Exp, Lit, and Test of le extend their counterparts in
lp, and b) fixed is a package parameter that is used, as we have seen, in the imple-
mentation of le. How this parameter is bound is explained shortly.

A unit definition consists of import and export packages followed (if necessary) by a
series of statements that establish relations among the packages which, in the case of
compound units, determines the order in which units are composed. Each of the fea-
tures in our problem is implemented by an atom, and a program in the EPL is
expressed by a compound unit. The following code defines unit le:

atom le {
import lp : lpS;
export le extends lp : leS;
import fixed extends le;

}

It asserts that atom le imports package lp with signature lpS and that it exports pack-
age le of signature leS which is an extension of lp. It also states that it imports pack-
age fixed, an extension of le which is bound, at composition time, to the package
parameter of the same name in the signature.

Jiazzi supports composition through the Open Class Pattern [31][32]. The key element
of this pattern is the creation of a package, called fixed in our example, that contains
all the extensions made by the units. This package is imported by the atom units, creat-

9. For convention in this section, we form signature names with the names of the packages
they described followed by a S.

ing a feedback loop that permits them to refer to the most extended version of the
classes and interfaces involved in a composition.

Figure 6a shows the code that composes these two units. Figure 6b illustrates this com-
position. Consider the second part of the specification first. It states that the composi-
tion contains two units (line 3): lpInst an instance of unit lp, and leInst an
instance of unit le. The packages of these two units are linked as follows: a) line 4
states that the exported package le of leInst is bound to all the fixed packages in
the compound, b) line 5 sets the link between the export package lp of lpInst to the
import package lp of leInst.

To be useful, compound packages must export something, in our case it exports a
package that we named compLELP with signature leS (line 1) which is linked to pack-
age le of unit leInst in line 6. Since compLELP has signature leS that contains
package parameter fixed we must bind it, in this case to itself, as done in line 2.

Signatures allow separate unit compilation. Jiazzi provides a stub generator that uses
the unit’s signature to create the packages and the code skeletons of the classes and in-
terfaces required to compile the unit. It also provides a linker that checks that the com-
piled unit conforms to the unit’s signature and stores the unit’s binaries and signature
into a Java archive (jar) file that can be used to compose with other units. For further
details on the stub generator and linker refer to [33].

6.2 Evaluation
Feature definition. Jiazzi units can modularize all program deltas of EPL in a cohe-
sive way. Furthermore, signatures allow separate compilation.

Feature composition. Jiazzi separates clearly the implementation of features from
their composition thus provides a flexible composition. The order of unit composition
is determined by the linking statements in compound units and therefore it is flexible.
By definition, units are closed under composition. Jiazzi is backed up with a formal
theory for type checking units and their compositions [21][22]. This theory permits the
linker to statically check and report errors in program composition.

Figure 6. Jiazzi Composition of le and lp

lpInst

fixed

lp

fixedlp

le

compLELP

compound lelp

export

import

link

unit

leInst

(a) (b)

compound lelp {

export compLELP : leS; (1)

bind package compLELP to compLELP@fixed; (2)

}{

link unit lpInst : lp, leInst : le; (3)

link package
leInst@le to *@fixed, (4)
lpInst@lp to leInst@lp, (5)

leInst@le to compLELP; (6)
}

Jiazzi’s type checking and separate compilation come with a price. Defining signatures
and wiring the relationships between units is a non-trivial task, especially when deal-
ing with multiple units with complex relations among them [52].

7 Scala

Scala is a strongly-typed language that fuses concepts from object-oriented program-
ming and functional programming [45][38]. Though Scala borrows from Java, it is not
an extension of it. We included Scala10 in our evaluation because it supports two non-
traditional modularization mechanisms: traits [44] and mixins [10].

7.1 Feature modules and their composition

A trait in Scala can be regarded as an abstract class without state and parameterized con-
structors. It can implement methods and contain inner classes and traits. We implement-
ed each feature module by a trait. Consider the implementation of feature lp shown in
Figure 7a. The trait contains:

• Abstract type exp with upper bound Exp. This means that exp is at least a subtype
of Exp and thus it leaves exp open for further extensions by other features.

• Trait Exp declares method print(). A trait is used in this context because it is
roughly equivalent to a Java interface, as it declares a type with methods whose
implementations are not yet defined.

• Class Lit extends Exp.11 It has a primary constructor (or main constructor) that
receives an integer which is assigned to field value. It also provides an imple-
mentation for method print() that displays this field.

• Class Test contains abstract field ltree of abstract type exp. Because of this,
class Test is also abstract. Test also contains method run() that calls meth-
od print() on ltree.

Trait ap is implemented as an extension of trait lp , shown in Figure 7b, that contains:

• Class Add that extends trait Exp of module lp. It has a two parameter constructor
to initialize the expression fields and the implementation of method print().

• Extension to class Test, that adds field atree and extends method run() with
the call to print() on this field12. This class is also abstract because atree’s
type is abstract.

Trait le is also implemented as an extension to trait lp and is shown in Figure 7c. This
trait has:

10. We used version 1.3.0.10 for our evaluation.

11. Scala traits are conceptually not different from classes so that is why we use an extends
clause instead of implements.

12. To prevent inadvertent overriding, Scala requires overriding methods to include an
override modifier as part of their definitions. Notice also that the overridden method
can still be called using super as in Java.

• Trait Exp extends Exp of feature lp by adding method eval().

• Abstract type exp that extends exp of feature lp, meaning that exp is now at least
a subtype of Exp that has print() and eval() methods.

Figure 7. Scala Solution

package epl;
abstract class Test1 extends lp with ap {

abstract class Test extends super.Test with super[ap].Test;
}
abstract class Test2 extends Test1 with le {

abstract class Test extends super.Test with super[le].Test;
}
abstract class Test3 extends Test2 with ae {

abstract class Test extends super.Test with super[ae].Test;
}
object LitAddObj extends Test3 {

type exp = Exp;
class Test extends super.Test {

val ltree = new Lit(3);
val atree = new Add(ltree, new Lit(7));

}
def main(args: Array[String]) : unit = {

var test = new Test();
test.run();

}
} (e)

package epl;
trait ae extends ap with le {
class Add(l: exp, r: exp) extends super.Add(l, r)

with Exp {
def eval(): int = left.eval() + right.eval()

}

abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(atree.eval());

}
}

}

(d)

package epl;
trait ap extends lp {
class Add(l: exp, r: exp) extends super.Exp {
val left = l; val right = r;
def print(): unit = {
left.print(); System.out.print("+");
right.print();
}

}
abstract class Test extends super.Test {
val atree: exp;
override def run(): unit = {
super.run(); atree.print();

}
}

} (b)

package epl;
trait le extends lp {
type exp <: Exp;
trait Exp extends super.Exp {
def eval(): int

}
class Lit(v: int) extends super.Lit(v) with Exp {
def eval(): int = value;

}
abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(ltree.eval());

}
}

} (c)

package epl;
trait lp {
type exp <: Exp;
trait Exp {
def print(): unit;

}
class Lit(v: int) extends Exp {
val value = v;
def print(): unit = System.out.print(value);

}
abstract class Test {
val ltree: exp;
def run(): unit = { ltree.print(); }

}
}

(a)

package epl;
trait ae extends ap with le {
class Add(l: exp, r: exp) extends super.Add(l, r)

with Exp {
def eval(): int = left.eval() + right.eval()

}

abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(atree.eval());

}
}

}

(d)

package epl;
trait ap extends lp {
class Add(l: exp, r: exp) extends super.Exp {
val left = l; val right = r;
def print(): unit = {
left.print(); System.out.print("+");
right.print();
}

}
abstract class Test extends super.Test {
val atree: exp;
override def run(): unit = {
super.run(); atree.print();

}
}

} (b)

package epl;
trait le extends lp {
type exp <: Exp;
trait Exp extends super.Exp {
def eval(): int

}
class Lit(v: int) extends super.Lit(v) with Exp {
def eval(): int = value;

}
abstract class Test extends super.Test {
override def run(): unit = {
super.run();
System.out.println(ltree.eval());

}
}

} (c)

package epl;
trait lp {
type exp <: Exp;
trait Exp {
def print(): unit;

}
class Lit(v: int) extends Exp {
val value = v;
def print(): unit = System.out.print(value);

}
abstract class Test {
val ltree: exp;
def run(): unit = { ltree.print(); }

}
}

(a)

• An extension of class Lit. This class uses mixin composition (expressed as with
Exp in the figure) to indicate that Lit is also a subtype of Exp and thus it must
implement both of its methods. Since it inherits print() from trait lp it only
needs to implement eval().

• An extension of class Test that modifies run() to invoke eval() on ltree.

Feature ae is implemented as an extension of feature ap and a mixin composition with
feature le because it provides an implementation of method eval() for class Add. The
code is shown in Figure 7d. Additionally this trait extends method run() of class Test.
The other two feature modules of EPL, np and ne, are implemented similarly.

To define program LitAdd is necessary to: a) specify the order in which method exten-
sions are composed, and b) to create an object, a singleton object of a new class, to
run the program. Figure 7e illustrates this. For the first part, we use deep mixin compo-
sition [54] (mixin composition at trait level and nested class level), to establish a linear
order of Test classes as they contain extensions of method run(). For the second part,
we define LitAddObj that extends Test3 (the most refined abstract Test class), binds
abstract type exp to concrete type Exp as defined by Test3, and makes concrete class
Test by creating instances for the test objects ltree and atree. The main method cre-
ates an instance of Test and calls method run() on it.

7.2 Evaluation

Feature definition. Scala can implement all program deltas of EPL. Regarding cohe-
sion, traits provide a mechanism to collect program deltas under a single name. Separate
compilation in Scala requires traits and classes to be placed in named packages, as it is
illustrated by package epl in Figure 7.

Feature composition. Scala provides flexible composition and flexible order mecha-
nism for implementing EPL. Scala uses inheritance and mixin composition to compose
program deltas that add new classes, traits, fields, methods and simple constructor ex-
tensions. However, specifying the order of method extensions is a verbose and non-triv-
ial task. Scala traits are closed under composition. Scala is supported by a sophisticated
nominal type theory called vObj calculus [40].

8 AHEAD

AHEAD (Algebraic Hierarchical Equations for Application Design) is a feature modu-
larization and composition technology based on step-wise development [6][4][2]. It
was created to address the issues of feature-based development of product-lines.

8.1 Feature modules and their composition

AHEAD partitions features into two categories: constants that modularize any number
of classes and interfaces, and functions that modularize classes, interfaces and their ex-
tensions.

AHEAD tools use a language, called Jak [4][5], that is a superset of Java. The imple-
mentation of constant features like lp, whose elements are standard classes and inter-
faces, uses pure Java constructs. To distinguish extensions of these elements, Jak

provides modifier keyword refines. Also, to refer to the method being extended, Jak
uses the construct Super.methodName(args). For example, here is the Jak code of
feature module le:

refines interface Exp { int eval(); }
refines class Lit implements Exp {

public int eval() { return value; }
}

refines class Test {
public void run() {

Super.run();
System.out.println(ltree.eval());

}
}

As described in Figure 3, this feature extends interface Exp with method eval(),
extends class Lit with the corresponding implementation, and extends class Test by
extending method run() with a call to eval() on ltree. Super.run() invokes the
previously defined method run(). In the case of LitAdd it calls the run() method of
ap. Constructor extensions follow a similar pattern, as illustrated in the following
example, which extends the constructor of Test of feature ap by assigning variable
atree a value:

refines Test() {
Add atree = new Add(ltree, ltree);

}

The remaining feature modules are implemented in a similar way. Each feature is rep-
resented by a directory that contains files for each class and interface definition and
extension. The command line to compose these directories to form LitAdd is:

composer -target=LitAdd lp ap le ae

8.2 Evaluation
Feature definition. AHEAD can modularize all EPL program deltas into a cohesive
unit. AHEAD provides tools to compile feature modules to bytecode and compose
byte-code representations; however, this is not accomplished by separate compilation.
Compilation uses global knowledge of all possible classes, interfaces, and members
that can be present in a product-line [2].

Feature composition. AHEAD feature modules are independent of the composition.
The order in which features are composed is the order in which they are listed on the
composer command line. AHEAD features are by definition closed under composi-
tion. A static typing model of feature modules for AHEAD is under development.

9 Perspective Beyond Individual Technologies

Let us step back from these implementation details to assess the fundamental nature of
the problems that are being solved. We have seen that all five technologies can be used
to implement EPL and how they satisfy, in different degrees, the properties required by

feature modules. None of these technologies provide a satisfactory solution to the prob-
lem of building product lines, that is, they do not meet all the feature properties or ex-
press them in a verbose way. However, many common themes can be identified, even
as each technology has particular strengths in meeting one or more of the properties.

In this section we show how the properties of feature definition and feature composition
can be understood in terms of an algebra of program deltas. This simple algebra is an
abstraction designed to express the underlying structure of feature modularization in
product-line development. By hiding the details of particular technologies, this abstrac-
tion makes it easier to compare and contrast different technologies and suggests areas
where the technologies could be improved or generalized. This discussion will, we
hope, help encourage reliance on mathematically justifiable abstractions when develop-
ing new tool-specific or language-specific concepts [28].

A fundamental concept of metaprogramming is that programs are data and functions
(a.k.a. transforms) map programs [7][42]. From this starting point, a program delta can
be seen as a function that receives a program as input, adds something to it, and returns
the extended program as output. Consider ∆run() of module ap. This delta adds a
statement to method run() of class Test of the program received as input. Another ex-
ample from ap is delta “Add atree”, which adds member atree to class Test. For
convenience, we refer to functions associated with program deltas by a single name.
Thus we omit return types, parameters and their types in our function declarations. Us-
ing a mathematical notation, these two deltas are represented as:

∆run(P)-> P’ where P’ is program with ∆run added to run() of Test of P

atree(Q)->Q’, where Q’ has field atree added to class Test of Q

When viewed in this way, a feature module like lp can be defined by:

lp = Test(Lit(Exp(Empty))) (2)

where Empty is the empty program, and Exp, Lit, and Test are program deltas that
add a new interface, and two new classes. To simplify notation further, we write expres-
sions like this using the + operation, because it intuitively conveys the notion that we
are building programs incrementally by adding program deltas. (2) now becomes:

lp = Test + Lit + Exp (3)

where evaluation is from right to left. + denotes function composition; base terms are
to the right and extensions are to the left. The choice of operator + was deliberately
selected as (we will see) it exhibits composition properties that resemble those of ele-
mentary algebra. Next, we examine properties of this operator and relate them to the
feature properties of Section 3.

Commutativity and Flexible Order. The order in which program deltas can be com-
posed follows two simple rules. First, a program delta that references a data member or
method must be composed after (to the left of) the delta that introduces that member or
method. (3) is an example: Exp defines an interface, Lit adds a class that references
this interface, and Test adds a class that references the class of Lit.

Second, program deltas that extend the same method are not commutative, because if
their order is swapped, a different program will result. For example, changing the
order in which print methods are added to method run() of class Test alters the
output of a program. Summation is commutative (A+B=B+A) for arbitrary program del-
tas A and B if the first rule is not violated and A and B do not extend the same method.
The evaluation property of flexible order relies on the non-commutativity property of
operation +.

Substitution, Cohesion, and Closure. Module ap is defined by:

ap = ∆run + ∆Test + atree + Add (4)

That is, (reading from right to left) it adds class Add, member atree to class Test,
extends the Test constructor, and extends method run. When we compose ap with
lp, we know the following equality holds because of substitution (i.e., replacing
equals with equals):

ap + lp = (∆run + ∆Test + atree + Add) + (Test + Lit + Exp)

That is, we know that the program produced by adding ap to lp must equal the sum of
their deltas. Cohesion is the property that we can assign names ap and lp to summation
expressions. Closure is the property that summation of deltas is itself a delta.13

Associativity and Flexible Composition. A common situation in product-line design
is not only the addition of new features, but a refactoring of existing features into more
primitive features.

Recall that in our EPL design, the Print operation is implemented in the Print col-
umn along with the declaration of the data types’ fields and constructors. This design
prevents, among other things, our ability to build programs without the Print opera-
tion. The solution is to refactor the Print column into two columns: Print’ that
implements operation Print exclusively, and Core that declares the data types with
their fields and constructors. Figure 8 shows the refactoring of module lp into its core
and non-core parts.

Class Test of module lp can be decomposed as:

Test = ∆run + run + TestC+ ltree + TestS where
TestS is class Test { };
ltree is Lit ltree;
TestC is Test() { ltree = new Lit(3); };
run is void run() { };
∆run is ltree.print(); (5)

Superscript S stands for skeleton which is the declaration of the class without any
members, and superscript C stands for constructor. Class Lit has a similar decomposi-
tion. Interface Exp can be decomposed as:

13. Object-oriented classes contain methods that are mutually referential. One can factor
each method into an empty (base) method and a program delta that adds the body. In this
way, simple algebraic expressions can be written for mutually referential methods.

Exp = printI + ExpS where
ExpS is interface Exp { };
printI is void print(); (6)

Our refactoring lp in Figure 8 is captured by the following algebraic derivation:

1) lp = Test + Lit + Exp
2) lp =(∆run + run + TestC + ltree + TestS) + (print + LitC+ value + LitS)

+ (printI + ExpS)
3) lp = (∆run + print + printI) +

(run + TestC + ltree + TestS + LitC+ value + LitS + ExpS)
4) lp = lp’ + lpCore

The first step recites (3). The second step substitutes the definitions of Test, Lit and
Exp as in (5) and (6). The third step rearranges terms using the commutativity prop-
erties of summations. The last step uses an associativity property of summations
(whose proof is simple)14 and cohesion to express lp as a sum of lp’ and lpCore.
Similar reasoning is applied to the other modules in the Print column to refactor
them into a core and non-core part. The ability to refactor expressions is the property
of flexible composition.

Compositional Reasoning, Static Typing, and Separate Compilation. Composi-
tional reasoning is the ability to prove properties of a program from the properties of
its components, which in our case are features, without reference to their implementa-
tion [36]. By equating program deltas with functions (summations), we are relating
compositional reasoning with algebraic reasoning. Doing so can be a substantial win
for several reasons. First, an algebra provides a clean mathematical foundation for
compositional reasoning and automation — both of which are needed in product-line
development. Second, it changes our orientation on tool development and creation.
Instead of inventing new tools with new abstractions and new conceptual models —
e.g., the AspectJ, Hyper/J, Jiazzi, Scala, and AHEAD models are hardly similar and
are difficult to compare — we have a single simple algebraic model that imposes clean
abstractions onto tools, so that we can reason about programs in a tool-implementa-
tion-independent way.

14. + denotes function composition. Function composition is associative.

// added to Exp
void print();

// added to Lit
void print() {
 System.out.print(value);
}

// added to run() of Test
ltree.print();

interface Exp { }

class Lit implements Exp {
int value;
Lit (int v) { value = v; }

}

class Test {
 Lit ltree;
 Test() {
 ltree = new Lit(3);

}
 void run() { }
}

(b) lpCore

(a) lp’

Figure 8. Refactoring of lp to lp’ + lpCore

Jiazzi provides an example of compositional reasoning: each feature module is stati-
cally typed. Jiazzi ensures that the composition of statically typed modules is itself a
statically typed module. So not only does Jiazzi compose the code of individual fea-
tures, it also computes (or verifies) an important property of a composition. Similar
examples can be given from other technologies. All of this can be given an algebraic
foundation. If we want property p of a summation, we need a composition operator +p
(read p-sum) that tells us how to compose properties of constituent terms. So property
p of module lp, denoted lpp, is a p-sum of the p properties of its terms:

lpp = Testp +p Litp +p Expp

This idea (although not in an algebraic form) is common in the software architecture
and product-line communities [46], and has been demonstrated elsewhere [6]. In the
product-line and software architecture literature, feature modules map to functional
requirements, and properties of modules and their compositions (such as the property
of being statically typed) correspond to non-functional requirements.

The remaining property in our evaluation, separate compilation, is not a property of an
algebraic model, but rather an engineering requirement of any implementation of the
model.

10 Related Work

Relational query optimization is a classic example of the importance that algebra can
play in program specification, construction, and optimization. SQL queries are translat-
ed to relational algebra expressions (i.e., compositions of relational algebra operators).
A query optimizer rewrites the expression into semantically equivalent expressions
where the goal is to minimize the expression (program) execution time. Readers will
see that this is an example of compositional reasoning: the relational algebra expression
defines the program, the optimizer composes a performance model of each operator to
produce a performance model of that program [6].

The expression problem originated in the works of Reynolds [43] and Cook [15]. Torg-
ersen [49] presents a concise summary of the research on this problem and four solu-
tions that utilize Java generics. Though extensive, this literature focuses only on
programming language design and separate compilation issues, and not about the
requirements of feature modularity.

Masuhara et al. describe a framework to model the crosscutting mechanisms of
AspectJ and Hyper/J [30]. Both are viewed as weavers parameterized by two input
programs plus additional information such as where, what, and how new code is
woven. Their focus is on the implementation of crosscutting semantics rather than on
the broader software design implications that these mechanisms have.

Murphy et al. [37] present a limited study that uses AspectJ and Hyper/J to refactor
features in two existing programs. The emphasis was on the effect on the program’s
structure and on the refactoring process, not in providing a general framework for
comparison. Along the same lines, Driver [19] describes a re-implementation of a

web-based information system that uses Hyper/J and AspectJ, but the evaluation is
subjective and expressed in terms of factors such as extensibility, plugability, produc-
tivity, or complexity. Clarke et al. [13] describe how to map crosscutting software
designs expressed as composition patterns (extended UML models) to AspectJ and
Hyper/J, and evaluate their crosscutting capabilities to implement such patterns.

Coyler et al. [16] focus on refactoring tangled and scattered code into base code and
aspects that could be considered as the features of a product line. They indicate that,
based on their experience implementing middleware software, concerns (features) are
usually a mixture of classes and aspects; a finding that corroborates the importance of
feature cohesion.

For our evaluation we considered MultiJava, an extension of Java that supports sym-
metric multiple dispatch and modular open classes[11][12]. However, its focus is on
solving the augmenting method problem, that consists on adding operations (methods)
to existing type hierarchies. Given this constraint, it is not possible to implement EPL
as it cannot add new fields, add new classes and interfaces, and extend existing meth-
ods and constructors. Similarly, Classboxes [8] are modules that provide method addi-
tion and method replacement (overriding without super reference). However, it is
unclear if classboxes can support other program deltas such as adding new fields, or
methods and constructor extensions.

The Concern Manipulation Environment (CME) [14] is a project that builds on the
experience of Hyper/J and MDSoC. Among its goals is to provide support for the iden-
tification, encapsulation, extraction, and composition of concerns (features in this
paper). CME architecture is geared towards supporting multiple modularization
approaches. Thus it would be interesting to evaluate whether the software composition
model we propose in this paper can benefit from the tool support that CME provides.

Mezini and Ostermann [35], present a comparison of variability management in prod-
uct lines between Feature-Oriented Programing (FOP), as in AHEAD, and Aspect-
Oriented Programming, as in AspectJ. They identify as weaknesses in these technolo-
gies: a) features are purely hierarchical (extensions are made to some base code), b)
support for reuse (extensions are tied to names not functionality), c) support for
dynamic configuration (in FOP composition is static), and d) support for variability
(aspects are either applied or not to an entire composition). They propose Caesar[34]
to address these issues. Caesar relies on Aspect Collaboration Interfaces, or ACIs,
which are interface definitions for aspects (Caesar’s aspects are similar to AspectJ’s)
whose purpose is to separate an aspect implementation from its binding. The associa-
tion between these two is implemented with a weavelet, which must be deployed to
activate advice either statically, when the object is created, or dynamically, when cer-
tain program block is executed. How these ideas could be applied to solve EPL is sub-
ject of an ongoing evaluation.

11 Conclusions and Future Work

Features express the kinds of variations product-line developers encounter in program
development, because features represent increments in program functionality. Thus, it
is natural to consider modularizing features as a way to modularize programs. Unfortu-
nately, the code for features often cuts across classes, and thus traditional modulariza-
tion schemes do not work well. New program modularization technologies have been
proposed in recent years that have shown promise in supporting feature modularity. We
have presented a classical problem in product-line design — called the Expressions
Product-Line — to identify properties that feature modules should have. We have used
these properties to compare and contrast five rather different technologies: AspectJ, Hy-
per/J, Jiazzi, Scala, and AHEAD. Our results showed that none of these technologies
provide a satisfactory solution to the problem of building product-lines.

Instead of debating the merits of particular technologies, we focused on a topic that we
believe has greater significance. Namely, product-line architects reason about programs
in terms of their features, not in terms of their code or implementing technologies. We
proposed an abstract model of features where compositional reasoning was related to
algebraic reasoning. We showed how virtually all of the evaluation properties we iden-
tified in EPL were actually properties of an algebra. Namely: program deltas are func-
tions that map programs, cohesion and closure under composition are associativity
properties of function composition, flexible composition and flexible order is a conse-
quence of the non-commutativity of certain functions, static typing is a property of a
function (program delta) and is a property that can be predicted from an expression (i.e.,
a composition of deltas). Only the property of separate compilation dealt with engineer-
ing considerations of the algebra’s implementation.

We believe the time has come for programming languages to play a more supportive
role in product-lines and feature-based development. A consolidation of different mod-
ularization efforts is essential to this objective. We argued that such a consolidation
should relate compositional reasoning with algebraic reasoning, because of its clean ab-
stractions, the ability to automate compositional reasoning, and for giving an algebraic
justification when adding new modularization concepts.

To continue this effort and because the full potential of the five technologies was not
required, we foresee extending EPL and designing other case studies to help derive
and illustrate further properties of feature modules (e.g. AOP quantification [28]). We
are currently collaborating with proponents of other modularization technologies, such
as Composition Filters [20], Caesar [34], and Framed Aspects [27], for this purpose.

Acknowledgments. We thank Sean McDirmid and Bin Xin for their help with Jiazzi,
and Martin Odersky for his help with Scala. We are grateful to Axel Rauschmayer and
Awais Rashid for their feedback on drafts of the paper, and the anonymous reviewers
for their comments.

12 References

1. AspectJ. Programming Guide. aspectj.org/doc/proguide

2. AHEAD Tool Suite (ATS). www.cs.utexas.edu/users/schwartz
3. Batory, D., Geraci, B.J,: Composition Validation and Subjectivity in GenVoca Generators.

IEEE Trans. Soft. Engr., February (1997) 67-82
4. Batory, D., Lopez-Herrejon, R.E., Martin, J.P.: Generating Product-Lines of Product-Fami-

lies. Automated Software Engineering Conference (2002)
5. Batory, D., Liu, J., Sarvela, J.N.: Refinements and Multidimensional Separation of Con-

cerns. ACM SIGSOFT, September (2003)
6. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans.

Soft. Engr. June (2004)
7. Baxter, I.D.: Design Maintenance Systems. CACM, Vol. 55, No. 4 (1992) 73-89
8. Bergel, A., Ducasse, S., Wuyts, R.: Classboxes: A Minimal Module Model Supporting

Local Rebinding. Joint Modular Languages Conferences JMLC (2003)
9. Beuche, D.:Composition and Construction of Embedded Software Families. Ph.D. Otto-

von-Guericke-Universität Magdeburg (2003)
10. Bracha, G., Cook, W.: Mixin-based inheritance. OOPSLA (1990)
11. Clifton, C., Leavens, G.T., Millstein, T., Chambers, G.: MultiJava: Modular Open classes

and Symmetric Multiple Dispatch for Java. OOPSLA (2000)
12. Clifton, C., Millstein, T., Leavens, G.T., Chambers, G.: MultiJava: Design Rationale, Com-

piler Implementation, and User Experience. TR #04-01, Iowa State University (2004)
13. Clarke, S., Walker, R.: Separating Crosscutting Concerns Across the Lifecycle: From Com-

position Patterns to AspectJ and Hyper/J. Technical Report UBC-CS-TR-2001-05, Univer-
sity of British Columbia, Canada (2001)

14. Concern Manipulation Environment (CME).www.eclipse.org/cme/
15. Cook, W.R.: Object-Oriented Programming versus Abstract Data Types. Workshop on

FOOL, Lecture Notes in Computer Science, Vol. 173. Spring-Verlag, (1990) 151-178
16. Coyler, A., Rashid, A., Blair, G.: On the Separation of Concerns in Program Families.

TRCOMP-001-2004, Computing Department, Lancaster University, UK (2004)
17. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley (2000)
18. Douence, R., Fradet, P., Südholt, M.: Composition, reuse and interaction analysis of stateful

aspects. AOSD (2004)
19. Driver, C.: Evaluation of Aspect-Oriented Software Development for Distributed Systems.

Master’s Thesis, University of Dublin, Ireland, September (2002)
20. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development.

Addison-Wesley (2004)
21. Flatt, M., Felleisen, M.: Units: Cool modules for HOT languages. PLDI (1998)
22. Findler, R.B., Flatt, M.: Modular Object-Oriented Programming with Units and Mixins.

ICFP, (1998) 94-104
23. Jagadeesan, R., Jeffrey, A., Riely, J.: A Typed Calculus of Aspect Oriented Programs. Sub-

mitted for publication.
24. Kang, K., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. CMU/SEI-

90-TR-21, Carnegie Mellon Univ., Pittsburgh, PA, Nov. (1990)
25. Kiczales, G., Hilsdale, E., Hugunin, J., Kirsten, M., Palm, J., Griswold, W.G.: An overview

of AspectJ. ECOOP (2001)
26. Laddad, R.: AspectJ in Action. Practical Aspect-Oriented Programming. Manning (2003)
27. Loughran, N., Rashid, A., Zhang, W., Jarzabek, S.: Supporting Product Line Evolution with

Framed Aspects. ACP4IS Workshop, AOSD (2004)

28. Lopez-Herrejon, R.E., Batory, D.: Improving Incremental Development in AspectJ by
Bounding Quantification. SPLAT Workshop at AOSD (2005)

29. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating Support for Features in Advanced
Modularization Technologies. Extended Report. The University of Texas at Austin, Depart-
ment of Computer Sciences, Technical Report TR-05-16, April (2005)

30. Masuhara, H., Kiczales, G.: Modeling Crosscuting Aspect-Oriented Mechanisms. ECOOP
(2003)

31. McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New age components for old-fashioned Java.
OOPSLA (2001)

32. McDirmid, S., Hsieh, W.C.: Aspect-Oriented Programming with Jiazzi. AOSD (2003)
33. McDirmid, S., The Jiazzi Manual (2002)
34. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. AOSD (2003)
35. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming

and Aspects. SIGSOFT04/ FSE-12 (2004)
36. Misra, J.: A Discipline of Multiprogramming. Springer-Verlag (2001)
37. Murphy, G., Lai, A., Walker, R.J., Robillard, M.P.: Separating Features in Source Code: An

Exploratory Study. ICSE (2001)
38. Odersky, M., et al.: An Overview of the Scala Programming Language. September (2004),

scala.epfl.ch

39. Odersky, M., et al.: The Scala Language Specification. September (2004),
scala.epfl.ch

40. Odersky, M., Cremet, V., Röckl, C., Zenger, M.: A nominal theory of objects with depen-
dent types. ECOOP (2003)

41. Ossher, H., Tarr, P.: Multi-dimensional separation of concerns and the Hyperspace
approach. In Software Architectures and Component Technology, Kluwer (2002)

42. Partsch, H., Steinbrüggen, R.: Program Transformation Systems. ACM Computing Sur-
veys, September (1983)

43. Reynolds, J.C.: User-defined types and procedural data as complementary approaches to
data abstraction. Theoretical Aspects of Object-Oriented Programming, MIT Press, (1994)

44. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of behavior.
ECOOP (2003)

45. Schinz, M.: A Scala tutorial for Java programmers. September (2004), scala.epfl.ch
46. Software Engineering Institute. Predictable Assembly from Certified Components.

www.sei.cmu.edu/pacc

47. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N Degrees of Separation: Multi-Dimen-
sional Separation of Concerns. ICSE (1999) 107-119

48. Tarr, P., Ossher, H.: Hyper/J User and Installation Manual. IBM Corporation (2001)
49. Torgersen, M.: The Expresion Problem Revisited. Four new solutions using generics.

ECOOP (2004)
50. Wadler, P.: The expression problem. Posted on the Java Genericity mailing list (1998)
51. Walker, D., Zdancewic, S., Ligatti, J.: A Theory of Aspects. ICFP (2003)
52. Xin, B., McDirmid, S., Eide, E., Hsieh, W.C.: A comparison of Jiazzi and AspectJ. Techni-

cal Report TR UUCS-04-001, University of Utah (2004)
53. Zave, P.: FAQ Sheet on Feature Interaction. www.research.att.com/~pamela/

faq.html

54. Zenger, M., Odersky, M.: Independently Extensible Solutions to the Expression Problem.
Technical Report TR IC/2004/33, EPFL Switzerland (2004)

	Evaluating Support for Features in Advanced Modularization Technologies
	1 Introduction
	2 A Standard Problem: The Expressions Product-Line
	2.1 Problem Description
	2.2 Feature Modularization

	3 Basic Properties for Feature Modularity
	3.1 Feature Definition Properties
	3.2 Feature Composition Properties

	4 AspectJ
	4.1 Feature modules and their composition
	4.2 Evaluation

	5 Hyper/J
	5.1 Feature modules and their composition
	5.2 Evaluation

	6 Jiazzi
	6.1 Feature modules and their composition
	6.2 Evaluation

	7 Scala
	7.1 Feature modules and their composition
	7.2 Evaluation

	8 AHEAD
	8.1 Feature modules and their composition
	8.2 Evaluation

	9 Perspective Beyond Individual Technologies
	10 Related Work
	11 Conclusions and Future Work
	12 References

