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Abstract 
This paper develops a system of explicit interfaces 

for object-oriented programming. The system provides 
the benefits of module interfaces found in languages 
like Ada and Modula-2 while preserving the expressive- 
ness that gives untyped object-oriented languages like 
Smalltalk their flexibility. Interfaces are interpreted as 
polymorphic types to make the system sufficiently pow- 
erful. We use interfaces to analyze the properties of in- 
heritance, and identify three distinct kinds of inheritance 
in object-oriented programming, corresponding to ob- 
jects, classes, and interfaces, respectively. Object inter- 
faces clarify the distinction between interface contain- 
ment and inheritance and give insight into limitations 
caused by equating the notions of type and class in many 
typed object-oriented programming languages. Interfac- 
es also have practical consequences for design, specifica- 
tion, and maintenance of object-oriented systems. 

1. Introduction 

An important contribution of languages like Ada, 
Mesa, and Modula-2 is the explicit separation of the in- 
terface and implementation of program modules. The in- 
terface provides a boundary between the implementa- 
tions of an abstraction and its clients. It limits the 
amount of implementation detail visible to clients. It 
also specifies the functionality that implementations 
must provide. 

In this paper we develop a system of explicit in- 
terfaces for object-oriented programming. The primary 
goal for the system of object interfaces presented here is 
to allow interface compatibility to be checked at com- 
pile-time (eliminating the possibility of certain run- 
time errors) while preserving the power and flexibility 
Permission to copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage, 
the ACM copyright notice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
0 1989 ACM 089791-333-7/89/0010/0457 $1.50 

of untyped object-oriented languages like Smalltalk. In- 
terpreting interfaces as types in a polymorphic lambda 
calculus is our main technique for moving towards that 
goal, We have implemented a type-checker for a typed 
programming language and are using it to test the feasi- 
bility and value of interfaces for object-oriented pro- 
gramming. 

Explicit interfaces are useful for clarifying the 
role of inheritance in object-oriented programming lan- 
guages. Using recent work on the semantics of inherit- 
ance, we describe three distinct kinds of inheritance in 
object-oriented programming, corresponding respective- 
ly, to objects, classes, and interfaces. Interface inherit- 
ance is important in reinforcing the difference between 
interface compatibility and implementation inheritance. 
It also gives insight into the limitations of typed ob- 
ject-oriented languages that equate the notions of type 
and class. 

In a more practical vein, this work addresses im- 
portant needs and opportunities in object-oriented soft- 
ware development. At Hewlett-Packard, large-scale ob- 
ject-oriented software development has suggested the 
need for the benefits that interfaces provide. Object in- 
terfaces provide a useful framework for specifying ob- 
jects when designing a system. Checking them should 
yield significant gains in productivity and quality in ob- 
ject-oriented software development. Interfaces may also 
be the basis of new tools for organizing object-oriented 
systems. 

In Section 2, we review the significance of inter- 
faces in large-scale software development. Section 3 de- 
velops the notion of object interface in contrast with 
object implementation and shows the essential role 
played by polymorphic types. Section 4 discusses vari- 
ous forms of inheritance in object-oriented program- 
ming, and the difference between the interface and im- 
plementation hierarchies in typed object-oriented pro- 
gramming. Section 5 briefly compares this work with 
other approaches to typed object-oriented programming. 
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2, Interfaces 
“The most important recent development in 
programming languages is the introduction of 
an explicit notion of interface to stand be- 
tween the implementation of an abstraction 
and its clients.” 

Burstall and Lampson, 1984 

When analyzing and designing software systems, 
interfaces enforce conceptual discipline and provide mod- 
ular specifications and documentation. Checking interfac- 
es may detect conceptual as well as superficial errors. 
Interfaces are also used in code to declare or annotate 
variable or operation names, making programs easier to 
understand and maintain. They provide for generic mod- 
ules and allow categorizing implementations, support- 
ing reuse and library administration. In all these forms, 
interfaces include the idea of a contractual agreement be- 
tween providers and users of system components, and 
what it means for the terms of the agreement to be sat- 
isfied. On the other hand, the contract is given in an ab- 
stract form that deliberately disregards details of how 
to accomplish its provisions. 

Ideally, interfaces should contain a formal de- 
scription of the behavior of operations, for example as a 
logical theory. Module connections would then be vali- 
dated by theorem proving. There is much work in pro- 
gram specification and validation that is motivated by 
this model lEM85, GHW85]. However, this approach 
requires mechanical theorem proving support which is 
currently an obstacle for including it in practical pro- 
gramming languages. Moreover, the application of speci- 
fication and validation techniques to object-oriented pro- 
gramming is not yet well understood. 

Interfaces have been used in a variety of ways in 
traditional software development. During design, inter- 
faces are typically semi-formal descriptions of how an 
abstraction interacts with the rest of a system. Together 
with appropriate naming and documentation conven- 
tions, they provide partial specifications. In the imple- 
mentation phase, interfaces usually describe the names 
and the parameter and result types of operations sup- 
plied by a module as in Ada, Mesa, and Modula-2. In 
Ada, for example, one distinguishes between package 
specification and package body. The package specification 
presents an interface as a list of type, procedure and otb- 
er declarations. Explicit interfaces are important in real- 
izing data abstraction, data encapsulation and separate 
compilation. 

In Ada, Mesa, and Modula-2, the module inter- 
faces can be interpreted as types [BL84]. While the ob- 
ject interfaces discussed below are structurally differ- 

ent, they admit an analogous type-theoretic interpreta- 
tion. In all these cases, interface checking reduces to 
type-checking, for which there is an existing technolo- 
gy. Interfaces consisting only of operation names and 
types are weaker than complete behavioral specifica- 
tions. Nevertheless, this compromise has proven success- 
ful in practice, both in terms of expressiveness, user ac- 
ceptance and automated support from compilers and pro- 
gramming environments. 

30, Objects and Their Interfaces 

3.1. Introduction 

In this section we develop the notion of separat- 
ing interface from implementation in object-oriented 
programming. Our language model for object-oriented 
programming is patterned after Smalltalk- [GR83]. 
Object-oriented systems are characterized by objects 
which group together data and the operations for manip- 
ulating that data. The operations, called method& can be 
invoked only by sending messages to the object. Sending 
a message names the operation and supplies necessary ar- 
guments, but does not determine how the operation is 
implemented, The target of the message (the receiver) 
determines what action takes place when the message is 
received. Since the data (instance variables) in an object 
can be accessed only by the methods of that object, and 
methods can be invoked only by sending messages, ob- 
jects are encapsulated data abstractions. 

Our goal is to provide a language with the flexi- 
bility of Smalltalk, but with the additional structure 
and protection that comes from making interfaces ex- 
plicit, and verifying the safety of message sends at com- 
pile-time. The rest of this section describes object im- 
plementations and then object interfaces. The basic ideas 
in this section have appeared in previous work, as dis- 
cussed in Section 5. In our treatment of recursive and 
polymorphic interfaces, we have attempted greater con- 
sistency with object-oriented programming. 

3.2. Object Implementations 

As described above, an object is a collection of in- 
stance variables and methods. Each method provides a 
concrete implementation of some abstract operation. A 
method can implement an operation by manipulating the 
instance variables, giving them new values or sending 
messages to them, or by sending messages to self. Fig- 
ure 1 shows an example of a definition of an object 
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object origin implements Point 
variable rho:Real := 0.0 
variable theta:Real := 0.0 

method x0 returns Real 
return rho * sine(theta) 

method y() returns Real 
return rho * cosine(theta) 

method equal(p:Point) 
returns Boolean 

return (self.x() = p.xO) and 
(self.yO =~p.yO) 

. . . 

Figure 1 

which uses polar coordinates to represent a point in the 
plane. 

This example illustrates a common characteristic 
of object implementations, namely their recursive struc- 
ture. The recursive references are indicated by occurrenc- 
es of self in a method. The recursion is not obvious in 
the textual form because se1 f is a pseudo-variable that 
is implicitly declared. The graphical representation of 
Figure 2 should make the recursion apparent. 

When the equal method is invoked, the pseudo- 
variable self is bound to the receiver of the message 
(i.e. the object origin). In this way, when the equal 
method sends the x message to self, the appropriate x 
method is invoked. 

In our system as in Smalltalk, an object may be 
an instance of a class. A class is a pattern that can be 
used to create many objects with common structure. Spe- 
cifically, a class describes what instance variables each 

riqin obiect +--id- equa 1 method 

Figure 2 

instance will have, the code for each method, and how 
to create instances. Figure 3 shows a class for objects 
similar to the object from Figure 1. 

class polargoint(x:Real, y:Real) 
implements Point 
variable rho:Real := 

sqrt( (x*x)+(y*y)) 
variable theta:Real := 

arctangent(y/x) 

method x0 returns Real 
return rho * sinettheta) 

xnethod y() returns Real 
return rho * cosine(theta) 

method move(dx:Real, dy:Real) 
returns Point 

return 
new myclass(self.xO+dx, 

self.y()tdy) 

method equal(p:Point) 
returns Boolean 

return (self.xO = p.xO) and 
(self-y0 = p.yO) 

Figure 3 

Instances of class polar_point will share the 
same structure and methods, but can have different val- 
ues for their instance variables. The objects that are cre- 
ated from polar_point have the same recursive struc- 
ture that the object origin did. Figure 3 illustrates an- 
other form of recursion that occurs in classes. This 
recursion is indicated by occurrences of the pseudo-vari- 
able myclas s which is used to create an object of the 
sameclass as self (myclass has the same meaning as 
the expression self class in Smalltalk). As with 
object recursion, the graphical presentation of Figure 4 
should clarify this structure. In this example, the recur- 
sive reference is to class polargo int . 

3.3. Object Interfaces 

As described earlier, an interface provides the in- 
formation necessary to use a module. In object-oriented 
systems, the only way to use an object is to send mes- 
sages to it, so the interface to an object is a description 
of the messages the object understands. These collec- 
tions of messages are known as protocols [GR83]. In 
our system we define an object interface to be such a col- 

October l-6, 1989 OOPSLA ‘89 Proceedings 459 



W any object that can handle a given set of 
Instance polargoint class 

/ 

move method 

self 

messages (sati@es an interface) in a con- 
text that sends just those messages 
(re@es that interface) independent of 
how the messages are implemented inside 
the object. This provides a form of poly- 
morphism that allows multiple implemen- 
tations of an interface to interact within 
the same program (in contrast with other 
programming paradigms). For example, a 
function that requires a parameter satisfy- 
ing the point interface and computes its 
distance from the origin, works equally 
well on objects that internally use polar 
coordinates and on objects that use rectan- 

Figure 4 

lection, where each message is given with the interfaces 
for the parameters it requires and for the result it re- 
turns. As an example, the interface for the planar point 
objects described above is shown in Figure 5. 

Like object implementations, object interfaces 
have some interesting structural aspects which are illus- 
trated by this example. 

1. Interfaces are constructed from other in- 
terfaces. The Point interface makes use 
of the Real and Boolean interfaces. 
The Boolean interface would contain 
messages like not, and, and or. 

2. Interfaces are often recursively defined. 
There are two places this recursion ap- 
pears, in a parameter interface of a mes- 
sage (e.g. equal), and in the result 
interface of a message (e.g. move). 

3. Interfaces do not contain information 
about the internal representation of the ob- 
ject. The x and y messages in the Point 
interface provide information about an ob- 
ject, but they do not imply that the object 
contains x and y instance variables. 

In other programming paradigms, interfaces are 
used to ensure certain correctness properties of pro- 
grams. In object-oriented programming, the correctness 
property is that messages sends are safe. This means that 
a run-time message error will never occur. Safety is 
guaranteed by compile-time type-checking which uses 
the declarations of instance variables and formal parame- 
ters (e.g. p:Point in class polargoint) to ensure 
that variables always refer to objects that understand 
all the messages that are sent to them. 

A significant part of the flexibility of untyped 
object-oriented programming is the potential of using 

gutar coorctmates as long as both objects understand all 
the messages in the point interface. 

interface Point 
x0 returns Real 
y 0 returns Real 

Real) returns Point move(Rea1, 
equal(Point) returns Boolean 

Figure 5 

L 

On closer examination, we see that this function 
will also work with objects thar understand other mes- 
sages in addition to those in the point interface. In its 
most general form, this idea, called inte&ce contuin- 
mentl, provides flexibility in the use of code (and ob- 
jtxts). hfOrmally, we say Big contains Small if an 
object satisfying interface Big can be used in a context 
requiring interface Small. More precisely, Big con- 
tains Small if it contains all the messages that Small 
does, and for each of these common messages, each pa- 
rameter interface for Small contains the corresponding 
parameter interface for Big while the result interface 
for Big contains the result interface for Small. The 
important thing to notice here is that the condition on 
parameter interfaces is reversed. 

While this reversal looks counter-intuitive, the 
example in Figure 6 proves that the non-reversed condi- 
tiOn (i.e. claiming Actual-Parameter contains For- 
ma1 Parameter) is incorrect. The function test re- 
qU& an argument satisfying Formal-Parameter, 
since it sends the message msg to its formal parameter. 

* The propfzties of interface containment, or subtype potymor- 
phism, which allows writing programs that work on values that have 
types that are arbitrary subtypes of a particular type, are well 
known[Car84]. 
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Calling test with an actual parameter ob j that satis- 
fies Actual-Parameter will do p .msg (s).This in- 
vokes the msg method from ob j which expects a param- 
eter satisfying Big, but passes it s which only satisfies 
Small. This is clearly incorrect as the msg method 
could send s a message that it doesn’t understand (i.e. a 
message in Big but not in Small) resulting in a run- 
time error. 

interface Formal-Parameter 4 describes another relation between interfaces, which 
msg (Small) returns Boolean solves this problem. 

interface Actual-Parameter 
msg(Big) returns Boolean 

3.4. Parametric Polymorphism 

function test(p:Formal-Parameter) 
variable s:Small = . . . 

if p.msg(s) then . . . 

variable obj:Actual-Parameter=... 

test(obj) 

Figure 6 

In addition to subtype polymorphism, there is an- 
other kind of polymorphism known as parametric poly- 
morphism [CWSS] which provides the ability to write 
programs admitting a form of type parameterization. 
Due in part to their lack (or limited form) of paramet- 
ric polymorphism, most strongly-typed object-oriented 
programming languages have sacrificed flexibility when 
compared with untyped object-oriented languages 
[E 1HJ87, Str861. 

class stack[T] implements StackIT] 
variable elts:List[Tl := 

new ListIT] Since many object interfaces are recursive, it is im- 
portant to understand what interface containment means 
for recursively defined interfaces. As is typical for re- 
cursive structures, induction is used to determine wheth- 
er two recursive interfaces are in a containment relation. 
A recursive interface Big contains another recursive in- 
terface Small if assuming Big contains Small implies 
that the corresponding message parameter and result in- 
terfaces in Big and Small are in the required contain- 
ment relations. 

Unfortunately the reversal of the interface con- 
tainment relation between message parameter interfaces 
combined with the recursive structure of object interfac- 
es leads to a problem in using interface containment in 
object-oriented programming. Many pairs of object in- 
terfaces that appear intuitively to be in a containment re- 
lationship are not. The interface to colored planar 
points in Figure 7 provides a good illustmtion. 

The ColorPoint interface does not contain the 
Point interface because the equal message in the 
ColorPoint interface requires a ColorPoint param- 
eter and that contradicts the constraint that message pa- 
rameter interfaces be in a reverse containment relation. 

Interface containment with structured interfaces 
is sufficient to type-check many object-oriented pro- 
grams, but is too restrictive for the recursive interfaces 
that are appropriate for many Smalltalk classes. Section 

interface ColorPoint 
x() returns Real 
y() returns Real 
color (I returns Color 
move (Real, Real) returns ColorPoint 
equal(ColorPoint) returns Boolean 

Figure 7 

method push (x : T) returns nothing 
elts := elts.prepend(x) 

method pop 0 returns T 
variable tmp:T := elts.head() 
elts := elts.tai.10 
return tmp 

I method top 0 returns T 
I return elts .head() 

method empty?0 returns Boolean 
return elts.empty?() 

Figure 8 

One use of parametric polymorphism is for build- 
ing generic (or parameter&d) modules. A simple ob- 
ject-oriented example is the stack class of Figure 8. 

Clearly, nothing in class stack depends on what 
type of elements are stored in the stack. It is important 
to be able to provide one stack class that can be reused 
for elements satisfying different interfaces and to be 
able to type-check the class. For example, the result of 
sending top to a stack of windows must satisfy the 
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Window interface. The major idea introduced by para- 
metric polymorphism is that of an interface variable. 
In class stack, T is an interface variable representing 
the interface of the objects stored on the stack. The in- 
troduction of T makes it possible to declare variables 
with interface T and define methods that take arguments 
or return results with interface T, and still type-check 
the class definition. 

Just as it is possible to have parameter&d class- 
es, it is also possible to have parameterized interfaces. 
Class stack claims that it implements the parameter- 
ized interface Stack [T] shown in Figure 9. Interface 
Stack uses the interface variable T to express the fact 
that it is independent of the interface of the elements 
stored in the stack. 

interface Stack [T] 
push (T) returns nothing 
pop (1 returns T 

top0 returns T 
empty? 0 returns Boolean 

Figure 9 

For the stack class, T represents an arbitrary in- 
terface. Sometimes it is necessary to restrict the inter- 
face variable to interfaces that contain certain messages. 
Combining the ideas of interface variables and interface 
containment into a notion called bounded parametric 
polymorphism [CW85, CCH891 accomplishes this re- 
striction. Again this can be most easily explained using 
an example (Figure 10). 

The key point is that the member? method sends 
the equal message to a variable with interface T, so it 
would not type-check without restricting T to the inter- 
faces that contain an equal message. This restriction al- 
so prevents the creation of sets of elements that do not 
have an equal operation. 

The forms of parametric polymorphism shown so 
far are not specific to object-oriented programming. 
Similar functionality is available, for example, in ML 
[H&IT881 and Ada DOD831. The following form for 
methods however, is specific to and needed for object- 
oriented programming. It requires a type system strict- 
ly more powerful than those of most languages2. 

%ll - e first order polymorphism found in ML [HMT88] will not handle this 
situation since the quantified type variable doe.s not occur at the outer- 
most level. The interfaces described here are interpreted in an extension 
of the higher-order system of Gird-Reynolds [Gir72, Rey74] , which is 
sufficient,butmore complex[CHO88]. 

class set [T] implements Set [T] 

where T contains 
equal(T) returns Boolean 

I . . . 
xnethod member? (x:T) returns Boolean 

variable y:T 

I 

. . . 
if x.equal(y) then return TRUE 

1.. 

Figure 10 

Suppose we want to add a method called se- 
lect-nearest to class polar-point that takes a 
set of objects satisfying the point interface, and re- 
turns the element of the set that is closest to the receiv- 
er. An obvious way to add select-nearest to the 
point interface wouldbe: 

select-nearest (Set [Point] 1 
returns Point 

This is not really what we want. If we send se- 
lect-nearest to an object along with a set of ob- 
jects satisfying the Colorpoint interface, the type- 
checker has been told that we get back an object satisfy- 
ing only the point interface (i.e. we lose the informa- 
tion that we selected an element from a set of Color- 
P o in t objects). The solution is to use bounded paramet- 
liC polymorphism again, this time on the 
select nearest method rather than on a class: - 

select-nearestIT contains Point] 
(s:Set [Tl) returns T 

This form of bounded parametric polymorphism re- 
stricts T to interfaces COntaining the Point interface. 

It also ensures that the type-checker will know that 
select-nearest returns a object that satisfies the 
appropriate interface. Bounded polymorphism as present- 
ed here solves the problem for interfaces containing 
point. The full solution, which also handles interfaces 
like Colorpoint that are closely related but do not 
contain point, requires a generalization of bounded 
polymorphism as described in [CCH89]. It is based on 
the idea of interface inheritance developed in Section 4.4. 

3 The perceptive reader will recall that CoLorPoint does not con- 

tain Point . For the moment assume that it does. 
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object instrumented 
implements Point 
inherits origin 

variable x-count:Integer := 0 
variable y count:Integer := 0 - 

method x () returns Real 
x count := x count + 1 
rSur:n origG.x() 

. . . 

Figure 11 

4. Inheritance 

4.1. Introduction 

This section discusses inheritance in object-orient- 
ed ‘languages and its relation to interfaces. The inherit- 
ance mechanism used here provides a unified framework 
that describes the traditional forms of delegation and 
class inheritance, and exposes new connections with in- 
terfaces. Interfaces have their own form of inheritance 
which is important for understanding the interfaces aris- 
ing from delegation [Lie861 and class inheritance 
[GR83], and explaining the difference between inhexit- 
ante and interface containment. 

As recent work has shown, inheritance is inti- 
mately connected to self-reference [Coo89a, CP89, 
Red883. In these models, inheritance is defined as a 
mechanism for deriving modified versions of recursive 
structures. The characteristic pattern of inheritance is 

recursion and inheritance and to apply it to strongly- 
typed object-oriented programming. 

4.2. Object Inheritance 

Object inheritance is the form of inheritance asso- 
ciated with object recursion that was illustrated in Fig- 
ure 2. It is used to create a new object from an existing 
object (called a prc~otype) by describing how the new 
object differs from the prototype. These differences are 
expressed in terms of adding or replacing methods, and 
adding instance variables. Methods that are not replaced 
are inherited from the prototype. Figure 11 demon- 
strates object inheritance by creating an instrumented 
planar point object (Figure l), that counts how many 
times the x and y messages are sent to it. 

This object shows the change in recursive refer- 
ence that is characteristic of inheritance. When the 
equal message is sent to instrumented, no equal 
method is found so the equal method defined by its 
prototype (object origin) is invoked. However, when 
the equal method then sends the x message to self 
(i.e. self.x()), the x method defined for instru- 
mented is invoked4. Thus the result of object inherit- 
ance is that the instrumented x method is invoked even 
by message sends from methods originally defined for 
object origin. Reinterpreting self in the context of 
instrumented accomplishes this result as illustrated 
graphically in Figure 12. 

An object’s interface includes all the messages 
from its prototype’s interface. In particular, an object 
can handle all the messages that its prototype sends to 
self, Intuitively this suggests that an object’s inter- 
face contains the interface of its prototype. While this 
is often true, it does not hold in general as discussed be- 

that self-reference in the inherited structure is changed 
to refer to the modified definitions. One 
result of this interpretation is that ev- 
ery recursive construct is an opportuni- 
ty for inheritance. Recalling the three 
forms of self-reference (object, class, 
and interface) presented in the last sec- 
tion, this principle gives three corre- 
sponding kinds of inheritance. The first 
two of these correspond respectively to 
notions of delegation and class inherit- 
ance. The notion of interface inheritance 
is new; it plays a crucial roIe in repre- 
senting the interfaces for objects ob- 
tained from the two other kinds of inher- 
itance. The examples that follow serve 
to illustrate this relationship between 

instrumented object 
I 1 

x --+ 

Variables 
vx_count 

1 y-count 1 

I I 

equal method 

equal. - self 
1 

X 

Y w 

Variables 
rho 

theta 

I J 

Figure 12 
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Class inheritance is the form of 
inheritance associated with the recursion 
in class definitions described in Figure 
4. It is essentially the form of inherit- 
ance found in most object-oriented lan- 
guages. It is used to create a new class, 
called the child class or subclass, from 
an existing parent dass by describing 
how the instances of the child class dif- 
fer from those of the parent class. As 
with object inheritance, class inherit- 
ance provides for adding and redefining 
methods, and adding instance variables 
In addition, class inheritance takes into 
account recursion in the pseudo-variable 
myclas s. Figure 13 illustrates creat- 
ing a class of colored points that inher- 
its from class polar-point (Figure 
3). 

r 
Instance 

I class Zonstructor 

Variables 

4.3. Class Inheritance 

Messages 

parent 

H color 

equal 

rlargoint 

Jonstructor 

Messages 

I 

move method 

myclass 

J self 

L J 

Figure 14 

class color_point( a :Real, 
b:Real, 
c:Color) 

implements ColorPoint 
inherits polargoint(a,b) 

translating new myclass (x, y) 
to new myclass(x, 

Yl 
self.color()) 

variable color:Color = c 

method color () returns Color 
return color 

method equal(p:ColorPoint) 
returns Boolean 

return (self.x() = p.x()) and 
(self.yO = p.yO) and 
(self.colorO =p.color()) 

Figure 13 

Class inheritance reinterprets self in the con- 
text of the new class just as object inheritance did. In 
addition, it also reinterprets the pseudo-variable 
myclass. For example, class color_point inherits 
the move method from polar-point, which contains: 

return new myclass(self.xO + dx, 
self.yO + dy) 

Using class inheritance, new myclass is rein- 
terpreted as creating instances of class colorgoint. 
However, since instantiating class colorgoint takes 
an extra color argument in addition to the initialization 
arguments for class polar_point, the inheritance 
mechanism must provide a translation to create instanc- 
es of class colorgoint using the initialization pa- 
rameters provided by class polar_point. This transla- 
tion is provided in the inherits clause in Figure 13. 
Using this translation, the class inheritance mechanism 
ensures that when a colored point is moved, it retains 
its color. Figure 14, shows the resulting system of 
classes and objects with the new connections for my- 

class and self in the inherited move method. 

The translation mechanism described here, which 
is required for general class inheritance, goes beyond the 
capabilities of current object-oriented languages [CCH, 
Coo89a]. While most object-oriented languages have a 
notion of class inheritance, there are considerable differ- 
ences in the treatment of myc lass. In Eiffel [Mey87], 
creating values of type like Current corresponds to 
calling new myclass, while in Smalltalk, one in- 
vokes self class new. In some languages, including 

4 
In this example, one might not have wanted calls to equal to incre- 

ment the counters. ‘Ihis effect could be provided by extending the usual 
notion of inheritance to distinguish loose and tight references to 
self. Devising language mechanisms to express and apply such alter- 
natives is an interesting problem which we are currently investigating. 
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Ccc, there is no corresponding mechanisms; classes are 
referred to only by explicit name. 

When comparing interfaces for the instances of 
parent and child classes, the same considerations apply 
as were discussed for object inheritance above. Class in- 
heritance, however, introduces additional connections be 
tween the recursive structures of classes and interfaces. 
Notice, for example, that the interface to the move 
method for a polar_point object is: 

move(Real,Real) returns Point 

whilefora color_point itis: 

move (Real,Real) returns ColorPoint 

Methods that return self in object or class in- 
heritance, or new myclass in class inheritance, im- 
pose recursion in the interfaces. As a result, the follow- 
ing notion of interface inheritance plays a central role in 
describing the interfaces of objects arising from object 
and class inheritance. 

4.4. Interface Inheritance 

Interface inheritance is the form of inheritance as- 
sociated with the recursive definition of object interfac- 
es described in Section 3.3. Interfaces are typically modi- 
fied by adding new messages or by changing the parame- 
ter or result interfaces of a message. Interface 
inheritance allows this change to take place so that ev- 
ery recursive reference is changed as well. As an exam- 
ple, the interface ColorPoint can be viewed as inherit- 
ing interface point, because a message is added and oc- 
currences of Point are changed to ColorPoint. 
Abstractly, this mechanism is the same as the change of 
self in object or class inheritance. 

Interface inheritance characterizes a collection of 
interfaces that have similar recursive structure. All in- 
terfaces that inherit from Point will have the form: 

interface X 
. . . 
move(Real,Real) return8 X 
equal(X) returns Boolean 
. . . 

This collection is different from the interfaces that are 
related by containment. For example, ColorPoint 
does not contain Point, even though it is derivable by 
inheritance. 

5 ‘he effect can be simulated (although typing can stiJ.l be a pmbkm) 
by factoring all calls to the constructor through an ordinary message that 
must be manually redefined in each subclass. 

Interface inheritance provides exactly the form of 
interface change that is required to express the effect of 
object and class inheritance. Specifically, col- 
or_point is defined by inheriting polarJoint, and 
the interface ColorPoint is produced by interface in- 
heritance from Point. Since ColorPoint does not 
contain Point, this shows that the class inheritance hi- 
erarchy and the interface containment hierarchy are dis- 
tinct. 

The Eiffel language [Mey87] provides an implicit 
form of interface inheritance that occurs when the type 
like Current is used to type amethod. Ifthis meth- 
od is defined by a class P then like Current is 
bound to P for instances of class P. But if the method is 
inherited by a class C, then like Current represents 
C. However, the Eiffel type system in its current form 
is unsound [Coo891 because it assumes that instances of 
sub-classes always satisfy the interfaces of their super- 
classes, which we have shown not to be the case in gen- 
eral. 

A more detailed analysis of the properties of ob- 
ject, class, and interface inheritance, and the relations be- 
tween them, is currently in preparation[CCXJ. 

5. Related Work 

There have been several attempts to introduce in- 
terfaces into object-oriented programming. Efforts 
within the object-oriented language community include 
the work of Boming and Ingalls [BI82], the Emerald 
group [BHJ87], and Johnson et al. [JGZ88], all of whom 
have a notion of interface as message protocol. [BI82] 
and 862881 describe type systems for Smalltalk with 
types based both on classes and protocols. The [BI82] 
work is less formal and does not distinguish interface 
containment from inheritance; nevertheless, it captures 
much of the essential structure of object interfaces. The 
more recent [JGZ88] work is interesting for its mixing 
of class-based and interface types, and has a limited 
form of polymorphism as found in ML. Emerald intro- 
duces interfaces to provide uniformity in a distributed 
object system. However, the interface system supports 
only limited parametric polymorphism and there is no 
notion of inheritance. Similarly, Modula-3 [CDK89] has 
notions of object and interface, but without polymor- 
phism. 

In most typed object-oriented languages, includ- 
ing Simula, C++, and Eiffel, the notion of type is dif- 
ferent from ours. In those languages, classes are types, 
so that a type gives information about how objects are 
implemented. This improves performance and also pro- 
vides the benefits of static type-checking, but at a cost 
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in flexibility, which is significant for system develop- 
ment. In addition to collapsing the distinction between 
interface and implementation, the notions of interface 
containment and inheritance are confused[Coo89]. The re- 
sult is that programs that would be correct in Small- 
talk cannot be type-checked in these languages. 

From another direction, object-oriented program- 
ming has been studied in the typed functional program- 
ming community [Car84, Car86, CW85, CM88, JM88, 
BL88, Wan891. While many features of our system were 
derived empirically, its basic structure is generally con- 
sistent with that earlier work. Our treatment of inherit- 
ance and polymorphism, however, gives a more faithful 
representation of conventional object-oriented program- 
ming than other type-theoretic work [CHOSS, CCH89, 
CCHJ. Our treatment of subtyping is taken from 
Cardelli [C&88]. The paper [BCG89] gives a semantics 
for a language which shares most of the properties of 
our object interfaces. 

The structure of object interfaces is different 
from interfaces in Mesa and Modula-2 modules or Ada 
packages. For example, with an Ada package providing 
complex numbers, the interface is used to check that the 
package is used correctly, but it is not an interface to 
individual complex numbers provided by the package. In 
contrast, object interfaces are interfaces for individual 
data values (objects). This reflects a difference in the 
way object-oriented programming distributes data and 
procedural information. 

Interfaces, and especially the notion of separate 
containment and inheritance hierarchies, suggest new 
ways of organizing object-oriented systems. Tools for 
managing such systems, such as the Smalltalk system 
browser [GR831 which relies on the class hierarchy, can 
be extended. Not only are there new hierarchies avail- 
able, there are also important relations between them 
which can add power to these new tools. Interface check- 
ing makes it possible to maintain relations dynamically 
between implementations and the interfaces that they 
satisfy. A software library can then organize classes us- 
ing both interfaces and inheritance to classify them. The 
development of interface-based tools is an active area of 
applied research at Hewlett-Packard Laboratories. 

6. Conclusion 

Interfaces for object-oriented programming are a 
valuable addition to the paradigm. By using the interpre- 
tation of interface as a type that formalizes the notion 
of an object protocol it is possible to develop a rich sys- 
tem of interfaces providing strong typing without com- 

promising the programming model of untyped Small- 
talk. 

Analogous to Ada’s package interfaces, explicit. 
object interfaces have many uses which bear on quality 
and productivity in object-oriented software develop- 
ment. These include compatibility checking, system de- 
sign and documentation, and software reuse. Interfaces 
are also the basis of the design of new tools for object- 
oriented software development. 

Interfaces help to clarify the role of inheritance 
in object-oriented programming, and to distinguish be- 
tween interface containment and implementation inherit- 
ance. There are different forms of inheritance corre- 
sponding to objects, classes, and interfaces. In particu- 
lar, delegation and class inheritance are given a unified 
treatment. Understanding their respective roles, along 
with the roles of interface containment and parametric 
polymorphism, leads to improved design of systems and 
languages for object-oriented programming. 
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