
1

Safe Composition of Product Lines

Sahil Thaker, Don Batory, David Kitchin, and William Cook
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{sahilt,batory,dkitchin,wcook}@cs.utexas.edu

Abstract
Programs of a software product line can be synthesized by compos-
ing modules that implement features. Besides high-level domain
constraints that govern the compatibility of features, there are also
low-level implementation constraints: a feature module can refer-
ence elements that are defined in other feature modules. Safe com-
position is the guarantee that all programs in a product line are type
safe: i.e., absent of references to undefined elements (such as
classes, methods, and variables). We show how safe composition
properties can be verified for AHEAD product lines using feature
models and SAT solvers.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Modules and interfaces;
D.2.4 [Software Program Verification]: Assertion checkers;
D.2.11 [Software Architectures]: Data abstraction, Languages.

General Terms
Design, Languages, Verification.

Keywords
compositional programming, product lines, SAT solvers, features.

1. Introduction
The essence of software product lines is the systematic and efficient
creation of products [13]. Features are commonly used to specify
and distinguish members of a product line, where a feature is an
increment in program functionality. Features communicate product
functions to users in an easy-to-understand way, they express func-
tionalities concisely, and help delineate commonalities and variabil-
ities in a domain [30].

We have argued that if features are primary entities that describe
products, then modules that implement features should also be pri-
mary entities in software design and program synthesis. This line of
reasoning has lead us to compositional and declarative models of
programs for software product lines. A program is declaratively
specified by the list of features that it supports. Tools directly trans-
late such a specification into a composition of feature modules that
synthesize the target program [6][10].

Not all features are compatible. Feature models or feature diagrams
are commonly used to define the legal combinations of features in a
product line [29]. In addition to domain constraints, there are low-
level implementation constraints that must also be satisfied. For
example, a feature module can reference a class, variable, or
method that is defined in another feature module. Safe composition
is the guarantee that programs composed from feature modules are

type safe: i.e., absent of references to undefined classes, methods,
and variables. Safe composition is related to safe generation and
verifying properties of feature-based templates: i.e., providing
guarantees that generators synthesize programs with particular
properties [48][54] [51] [26][34][17].

In this paper, we show how type safety properties of AHEAD prod-
uct lines can be verified using feature models and SAT solvers. We
identify properties and verify that they hold for all product line
members for several product lines. Some properties that we analyze
do not reveal actual errors, but rather designs that “smell bad” and
that could be improved [22].

2. Formal Models of Product Lines
A feature model is a hierarchy of features that is used to distinguish
products of a product line [29][16]. Consider an elementary auto-
motive product line that differentiates cars by transmission type
(automatic or manual), engine type (electric or gasoline), and the
option of cruise control. A feature diagram is a common way to
depict a feature model. Figure 1 shows the diagram of this product
line. A car has a body, engine, transmission, and optionally a cruise
control. A transmission is either automatic or manual (choose one),
and an engine is electric-powered, gasoline-powered, or both.

Besides hierarchical relationships, feature models also allow cross-
tree constraints. Such constraints are often inclusion or exclusion
statements of the form if feature F is included in a product, then fea-
tures A and B must also be included (or excluded). A cross-tree con-
straint is that cruise control requires an automatic transmission.

A feature diagram is a graphical depiction of a context-free gram-
mar [28]. Rules for translating feature diagrams to grammars are
listed the grammar column of Figure 2. A bracketed term [B]
means that feature B is optional, and term S+ means select one or
more subfeatures of S. We assume products can have at most one
copy of a feature and the order in which features appear in a sen-
tence is the order in which they are listed in the grammar [11].

A specification of a feature model is a grammar and its cross-tree
constraints. A model of our automotive product line is listed in

Figure 1. A Feature Diagram

Car

Cruise Transmission Engine Body

Automatic Manual Electric Gasoline

and

choose1 1+

mandatory
optional

LegendCar

Cruise Transmission Engine Body

Automatic Manual Electric Gasoline

and

choose1 1+

mandatory
optional

Legend
mandatory
optional
mandatory
optional

Legend

2

Figure 3. A sentence of this grammar that satisfies all cross-tree
constraints defines a unique product and the set of all legal sen-
tences is a language, i.e., a product line [11].

Feature models are compact representations of propositional for-
mulas [11]. Rules for translating grammar productions into formu-
las are listed propositional formula column of Figure 2. (The
atmost1(A,B,C) predicate in Figure 2 means at most one of A, B,
or C is true. See [21] p. 278.) The formula of a grammar is the con-
junction of the formulas for each production, each cross-tree con-
straint, and the formula that selects the root feature (i.e., all
products have the root feature). Ordering constraints of feature
models can also be mapped to formulas, but we choose not to do so
for simplicity. It is the translation of feature models into proposi-
tional formulas that we will exploit in safe composition.

3. AHEAD
AHEAD is a theory of program synthesis that merges feature mod-
els with additional ideas [10]. First, each feature is implemented by
a distinct module. Second, program synthesis is compositional:
complex programs are built by composing feature modules. Third,
program designs are algebraic expressions. The following summa-
rizes the ideas of AHEAD that are relevant to safe composition.

3.1 Algebras and Step-Wise Development
An AHEAD model of a domain is an algebra that consists of a set
of operations, where each operation implements a feature. We
write M = {f, h, i, j} to mean model M has operations (or fea-
tures) f, h, i, and j. One or more features of a model are constants
that represent base programs:

f // a program with feature f
h // a program with feature h

The remaining operations are functions, representing program
refinements or extensions:

i•x // adds feature i to program x
j•x // adds feature j to program x

where • denotes function composition and i•x is read as “feature i
refines program x” or equivalently “feature i is added to program
x”. The design of an application is a named expression (i.e., com-
position of features):

prog1 = i•f // prog1 has features i and f
prog2 = j•h // prog2 has features j and h
prog3 = i•j•h // prog3 has features i, j, h

AHEAD is based on step-wise development [55]: one begins with
a simple program (e.g., constant feature h) and builds a more com-
plex program by progressively adding features (e.g., adding fea-
tures i and j to h in prog3).

The relationship between feature models and AHEAD is simple:
the operations of an AHEAD algebra are the primitive features of a
feature model; compound features (i.e., non-leaf features of a fea-
ture diagram) are AHEAD expressions. Each sentence of a feature
model defines an AHEAD expression which, when evaluated, syn-
thesizes a product. The AHEAD model Auto of the automotive
product line is:

Auto = { Body, Electric, Gasoline, Automatic,
 Manual, Cruise }

where Body is the lone constant. Some products (i.e., legal expres-
sions or sentences) of this product line are:

c1 = Automatic•Electric•Body
c2 = Cruise•Automatic•Electric•Gasoline•Body

c1 is a car with an electric engine and automatic transmission. And
c2 is a car with both electric and gasoline engines, automatic trans-
mission, and cruise control.

3.2 Feature Implementations
Features implement program refinements. For example, let BASE
be a feature that encapsulates an elementary buffer class with set
and get methods. Let RESTORE denote a “backup” feature that
remembers the previous value of a buffer.

Figure 2. Feature Diagrams, Grammars, and Propositional Formulas

S

A B C

S

A B C

S

A B C

S : A [B] C ;

... S ...

S : A | B | C ;

... S+ ...

S : A | B | C ;

(S⇔A) ∧ (B⇒S) ∧ (C⇔S)

(S ⇔ A ∨ B ∨ C)
∧ atmost1(A,B,C)

S ⇔ A ∨ B ∨ C

diagram notation grammar propositional formulaconcept

and

alternative
(choose1)

or
(choose 1+)

// grammar of our automotive product line

Car : [Cruise] Transmission Engine+ Body ;

Transmission : Automatic | Manual ;

Engine : Electric | Gasoline ;

// cross-tree constraints

Cruise ⇒ Automatic ;

Figure 3. A Feature Model Specification

3

Figure 4a shows the buffer
class of BASE and Figure 4b
shows the buffer class of
RESTORE•BASE. The under-
lined code indicates the
changes RESTORE makes to
BASE. Namely, RESTORE adds
to the buffer class two mem-
bers, a back variable and a
restore method, and modi-
fies the existing set method.
While this example is simple,
it is typical of features. Add-
ing a feature means adding
new members to existing
classes and modifying existing
methods. As programs and
features get larger, features
can add new classes and pack-
ages to a program as well.

Features can be implemented in many ways. The way it is done in
AHEAD is to write program refinements in the Jak language, a
superset of Java [10]. The changes RESTORE makes to the buffer
class is a refinement that adds the back and restore members
and refines the set method. This is expressed in Jak as:

refines class buffer {
int back = 0;
void restore() { buf = back; }
void set(int x) { back = buf; Super.set(x); }

} (1)

Method refinement in AHEAD is accomplished by inheritance;
Super.set(x) indicates a call to (or substitution of) the prior def-
inition of method set(x). By composing the refinement of (1)
with the class of Figure 4a, a class that is equivalent to that in
Figure 4b is produced [10]. Other implementations, such as using
aspects, are discussed in Section 6.

3.3 Safe Composition
The problem of safe composition
is illustrated by the following
example. Let PL be a product
line with three features: base,
addD, and refC. Figure 5 shows
their modules. The base feature
that encapsulates class C with
method foo(). Feature addD
introduces class D and leaves
class C unchanged. Feature refC
refines method foo() of class C
and references the constructor of
class D. Now suppose the feature
model of PL is a single produc-
tion with no cross-tree con-
straints:

PL : [refC] [addD] base ; // feature model

The product line of PL has four programs that represent all possible
combinations of the presence/absence of the refC and addD fea-
tures. All programs in PL use the base feature. Question: are there
programs in PL that have type errors? As PL is so simple, it is not
difficult to see that there is such a program: it has the AHEAD
expression refC•base. Class D is referenced in refC, but there is
no definition of D in the program itself. This means one of several
possibilities: the feature model is wrong, feature implementations
are wrong, or both. Designers need to be alerted to such errors.

Currently, the only way to verify that all programs of a product line
are type safe is to generate them all and compile them. But product
lines can have huge numbers of programs. Brute force is impracti-
cal. We need efficient ways to verify type safety (i.e., safe compo-
sition) properties of all programs of a product line. In the following
sections, we explain how this can be done.

4. Safe Composition Verification
Our solution to safe composition is accomplished in two steps. The
first compiles each feature module in order to satisfy lightweight
global consistency constraints. The second and more difficult step
addresses the combinatorics of feature modules.

4.1 Step 1: Lightweight Global Consistency
The first step in testing safe composition properties is a lightweight
global consistency check that compiles all feature modules. This
check (a) determines how each class, method, and field reference
in every module binds to a declaration, and (b) identifies ambigu-
ities and other problems related to module compilation. We used a
variation of a technique that was pioneered in Hyper/J for compil-
ing hyperslices (i.e., Hyper/J modules) [41]. As an approximation,
an AHEAD feature module is a hyperslice. To compile a hyper-
slice, stubs are created for all classes and members that are not
introduced by that hyperslice. This makes them declaratively com-
plete. Once stubs are available, the Java classes of a hyperslice can
be compiled into bytecode. Hyper/J then uses bytecode composi-
tion tools to compose independently compiled hyperslices. We fol-
low a similar approach.

We exploit the fact that we have the source for all feature mod-
ules.1 For every class, we automatically create a stub that contains
the union of the signatures of all fields, methods, and declarations
that could appear in that class. This provides us the stubs that are
needed to individually compile feature modules, without dealing
with the feature combinatorics that is the subject of the next sec-
tion. An example of a global consistency problem is for a feature
module F to reference a method that is not defined in any feature
module. We catch this error because module F fails to compile.

Ambiguities are another source of errors that our consistency
check catches. Consider the base program BaseP in Figure 6a,
which consists of two interfaces (I,J) and three classes (X,A,B)
BaseP is consistent in isolation: the foo(x) call in Figure 6a binds
to the foo(I) method of class A.

class buffer {
int buf = 0;
int get() {return buf;}

 void set(int x) {
buf=x;

}
}

class buffer {
int buf = 0;
int get() {return buf;}
int back = 0;

 void set(int x) {
back = buf;
buf=x;

}
void restore() {

buf = back;
}

}

(a)

(b)

Figure 4. Buffer Variations

class C {
void foo(){..}

}

class D {...}

refines class C {
void foo(){

... new D() ...
Super.foo();

}
}

(a) base

(b) addD

(c) refC

Figure 5. Three Feature
 Modules

1. If we had only binaries for some features, we could extract information
for our analysis using reflection.

4

Now consider feature module
ExtendX of Figure 6b that
makes class X also implement
interface J. This global knowl-
edge is exposed by our class
stubs, and module BaseP fails
to compile as a consequence:
the foo(x) call is ambiguous
as it could be bound to either
the foo(I) or foo(J) meth-
ods of class A. These checks
are verified by the Java com-
piler when feature modules are
compiled individually.

The next section assumes we
have the bytecodes of each fea-
ture module from which we can extract field, method, and class
and interface references.

4.2 Step 2: Feature Module Combinatorics
The feature model of a product line (Section 2) defines the permit-
ted compositions of feature modules. We want to know if any of
these compositions yield programs that are not type safe. This
involves examining compositions of feature modules and verifying
properties of these compositions. In this section, we identify a set
of properties (constraints) that are central to type safety and
explain how these properties are verified.

4.2.1 Verification Properties (Constraints)
We identify five properties (constraints) (2)-(6) that are essential
to safe composition. In Section 6 we consider whether these con-
straints are sufficient.

Refinement Constraint. Suppose a member or class m is intro-
duced (i.e., defined) in features X, Y, and Z, and is refined by fea-
ture F. Products in a product line that contain feature F must satisfy
the following constraints to be type safe:

(i) X, Y, and Z must appear prior to F in the product’s AHEAD
expression (i.e., m must be defined prior to being refined), and
(ii) X, Y, or Z must appear in every product that contains
feature F.

Property (i) is verified by examining the feature model, as it linear-
izes the composition of features. Property (ii) requires the follow-
ing constraint to be satisifed:

F ⇒ X ∨ Y ∨ Z (2)

Reference Constraint. Let feature F reference member m of class
C. This means that some feature must introduce m in C or m is intro-
duced in some superclass of C.

Let Hn be a superclass of C, where n is the number of ancestors
above C. Thus H0 denotes class C, H1 is the superclass of C, H2 is the
super superclass of C, etc. Let Supn(m) denote the predicate that is
the disjunction of all features that define method m in Hn (i.e., m is
defined with a method body and is not abstract). If features X and Y
define m in H1, then Sup1(m)=X∨Y. If features Q and R define m in

H2, then Sup2(m)=Q∨R. And so on. The constraint that m is defined
in class C or in some superclass of C is:

F ⇒ Sup0(m) ∨ Sup1(m) ∨ Sup2(m) ∨ ... (3)

Note: Special cases of m are constructor, field, and super
references.

Stepwise refinement requires F to be composed after all features
that are listed to the right of the implication sign (i.e., m must be
defined before it is referenced). We examine the feature model to
verify this ordering.

Single Introduction Con-
straint. As a general rule, a
member or class is introduced
(i.e., defined) only once. If it
is defined multiple times, only
the last definition is retained.
We call this definition replac-
ing. While not necessarily an
error, replacing a member or
class can invalidate the feature
that first introduced this class
or member. For example, sup-
pose feature A introduces the
Value class, which contains
an integer member and a
get() method (Figure 7a).
Feature B replaces — not
refines (extends) — the
get() method by returning the double of the integer member
(Figure 7b). Both A and B introduce method get(). Their compo-
sition, B•A, causes A’s get method to be replaced by B’s get (see
Figure 7c). If subsequent features depend on the get() method of
A, the resulting program may not work correctly.

It is possible for multiple introductions to be correct; in fact, we
carefully used such designs in building AHEAD. More often, such
designs are symptomatic of inadvertent captures [32]: a member is
inadvertently named in one feature identically to that of a member
in another feature, and both members have different meanings. In
general, these are “bad” designs that could be avoided with a more
structured design where each member or class is introduced pre-
cisely once in a product. Testing for multiple introductions can
either alert designers to actual errors or to designs that “smell bad”
[22]. We note that this problem was first recognized by Flatt et al
in mixin compositions [19], and has resurfaced elsewhere in object
delegation [31] and aspect implementations [4].

Suppose member or class m is introduced by features X, Y, and Z.
The constraint that no product has multiple introductions of m is:

atmost1(X,Y,Z) // at most one of X,Y,Z is true (4)

The actual constraint used depends on the features that introduce m.

Abstract Class Constraint. An abstract class can define abstract
methods (i.e., methods without a body). Each concrete subclass C
that is a descendant of an abstract class A must implement all of A’s
abstract methods. To make this constraint precise, let feature F

interface I {}
interface J {}
class X implements I {}
class A {

void foo(I b) {}
void foo(J d) {}

}
class B {

void bar(A a,X x) {
a.foo(x);

}
}

refines class X
implements J {}

Figure 6. Uncompilable
 Feature Modules

(a)

(b) class Value {
int v;
int get()
{ return v; }

}

refines class Value {
int get()
{ return 2*v; }

}

class Value {
int v;
int get()
{ return 2*v; }

}

(a) A

(b) B

(c) B•A

Figure 7. Overriding Members

5

declare an abstract method m in abstract class A. Let feature X intro-
duce concrete class C, a descendant of A. If F and X are compatible
(i.e., they can appear together in the same product) then C must
implement m or inherit an implementation of m. Let C.m denote
method m of class C. The constraint is:

F ∧ X ⇒ Sup0(C.m) ∨ Sup1(C.m) ∨ Sup2(C.m) ∨ … (5)

That is, if abstract method m is declared in abstract class A and C is
a concrete class descendant of A, then some feature must imple-
ment m in C or an ancestor of C.

Note: to minimize the number of constraints to verify, we only
need to verify (5) on concrete classes whose immediate
superclass is abstract; A need not be C’s immediate superclass.

Note: Although this does not arise in the product lines we
examine later, it is possible for a method m that is abstract in
class A to override a concrete method m in a superclass of A.
(5) would have to be modified to take this possibility into
account.

Interface Constraint. Let feature F define member m in interface
I. Let feature X either introduce class C that implements I or that
refines class C to implement I (i.e., a refinement that adds I to C’s
list of implemented interfaces). If features F and X are both present
in a program, then class C must implement or inherit m. Let C.m
denote method m of class C. The constraint to verify is:

F ∧ X ⇒ Sup0(C.m) ∨ Sup1(C.m) ∨ Sup2(C.m) ∨ ... (6)

This constraint is identical in form to (5), although the parameters
F, X, and m may assume different values. F and X must be com-
posed after all features that are listed to the right of the implication
otherwise a back-reference violates ordering constraints.2

4.2.2 Property Verification
By examining the code base of feature modules, it is possible to
identify and collect instances of each of the constraints of
Section 4.2.1. These constraints, called implementation con-
straints, are a consequence of feature implementations. They can
be added as cross-tree constraints to the feature model and obeying
these additional constraints will guarantee type safety. That is, only
programs that satisfy domain and implementation constraints will
be synthesized. Of course, the number of implementation con-
straint instances may be huge for large programs.

Czarnecki [17] observed that implementation constraints should be
implied by domain constraints. Let PLf be the propositional for-
mula of product line PL. If there is a constraint R that is to be satis-
fied by all members of PL, then the formula (PLf ∧ ¬R) or
equivalently ¬(PLf ⇒ R) can not be satisfiable. If it is, we know
that there is a product of PL that violates R. To make our example
concrete, to verify that a product line PL satisfies property (2), we
want to prove that all products of PL that use feature F also use X,
Y, or Z. A satisfiability (SAT) solver can verify if (PLf ∧ F ∧ ¬X ∧
¬Y ∧ ¬Z) is satisfiable. If it is, there exists a product that uses F

without X, Y, or Z. The variable bindings returned by the solver
identifies the offending product. In this manner, we can verify that
all products of PL satisfy (2). Theorem provers, such as Otter [5],
could be used.

Note: In effect, we are inferring composition constraints for
each feature module; these constraints lie at the module’s
“requires-and-provides interface” [18]. When feature modules
are composed, we must verify that their “interface” constraints
are satisfied. If composition is a linking process, we are
guaranteeing that there will be no linking errors. The
difference with normal linking is that we check all
combinations of linkings allowed by the feature model.

4.3 Beyond Code Artifacts
The ideas of safe composition transcend source code [17][52].
Consider an XML document; it may reference other XML docu-
ments in addition to referencing internal elements. If an XML doc-
ument is synthesized by composing feature modules [10], we need
to know if there are references to undefined elements or files in
these documents. Exactly the same techniques that we just outlined
could be used to verify safe composition properties of a product
line of XML documents (see [52] for an example). The same holds
for product lines of other artifacts (grammars, makefiles, etc.) as
well. The reason is that we are analyzing properties of structures
that are common to all kinds of documents; herein lies the general-
ity and power of our approach.

5. Results
We analyzed the safe composition properties of many different
AHEAD product lines. Table 1 summarizes their size statistics. For
lack of space in this paper, we explain in detail our findings of the
first two product lines listed, and give statistics for the remaining.
Note that the size of the code base and average size of a generated
program is listed both in Jak LOC and translated Java LOC.

The properties that we verified are grouped into five categories:

• Refinement (2)
• Reference (3)
• Single Introduction (4)
• Abstract Class (5)
• Interface (6)

For each constraint, we generate a proposition to verify that all
products in a product line satisfy that constraint. Duplicate propo-
sitions can be generated. Consider features Y and ExtendY of
Figure 8. Method m in ExtendY references method o in Y, method
p in ExtendY references field i in Y, and method p in ExtendY
refines method p defined in Y. We create a proposition for each
constraint; all propositions are of the form ExtendY⇒Y. We elimi-

2. Not all clauses on the right of the implication will result in a feature. For instance,
method C.m may not be defined at the first level of super-class. Thus, all resulting
features on the right hand side of the implication are ones introducing method C.m.

Product
Line

of
Features

of
Programs

Code Base
Jak/Java LOC

Program
Jak/Java LOC

PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

Table 1: Product Line Statistics

6

nate duplicate propositions, and report in our experiments only the
number of failures per category. If a proposition fails, our tools
report all (in Figure 8, all three) sources of errors. Finally, very few
abstract methods and interfaces were used in the product lines of
Table 1. So the numbers that we will report in our experiments for
the last two categories are small.

We conducted our experiments on a Mobile Intel Pentium 2.8 GHz
PC with 1GB memory running Windows XP. We used J2SDK ver-
sion 1.5.0_04 and the SAT4J Solver version 1.0.258RC [46].

5.1 The Prevayler Product Line
Prevayler is an open source application written in Java that main-
tains an in-memory database and supports plain Java object persis-
tence, transactions, logging, snapshots, and queries [44]. We
refactored Prevalyer into the Prevaler Product Line (PPL) by giv-
ing it a feature-oriented design. That is, we refactored Prevalyer
into a set of feature modules, some of which could be removed to
produce different versions of Prevalyer with a subset of its original
capabilities. Note that the analyses and errors we report in this sec-
tion are associated with our refactoring of Prevayler into PPL, and
not the original Prevayler source.3

The code base of the PPL is 2029 Jak LOC with seven features:

• Core — This is the base program of the Prevayler framework.
• Clock — Provides timestamps for transactions.
• Persistent — Logs transactions.
• Snapshot — Writes and reads database snapshots.
• Censor — Rejects transactions by certain criteria.
• Replication — Supports database duplication.
• Thread — Provides multiple threads to perform transactions.

A feature model for Prevayler is shown in Figure 9. Note that there
are constraints that preclude all possible combinations of features.

Results. The statistics of our PPL analysis is shown in Table 2. We
generated a total of 882 propositions, of which 791 were dupli-
cates. To analyze the PPL feature module bytecodes, generate and
remove duplicate propositions, and run the SAT solver to prove the
91 unique propositions took 8 seconds.

We performed two sets of safe composition tests on Prevalyer. In
the first test, we found 15 reference constraint violations, of which
8 were unique errors, and 12 multiple-introduction constraint
errors. These failures revealed an omission in our feature model:
we were missing a constraint “Replication ⇒ Snapshot”. After
changing the model (to that shown in Figure 9) we found 11 refer-
ence failures, of which 4 were unique errors, and still had 12 multi-
ple-introduction failures. These are the results in Table 2.

Two reference failures were due to yet another error in the feature
model that went undetected. Feature Clock must not be optional
because all other features depend on its functionality. We fixed this
by removing Clock’s optionality.

A third failure was an implementation error. It revealed that a code
fragment had been misplaced — it was placed in the Snapshot
where it should have been placed in Replication. The other fail-
ure was similar. A field member that only the Thread feature
relied upon, was defined in the Persistent feature, essentially
making Persistent non-optional if Thread is selected. The error
was corrected by moving the field member into Thread feature.

Making the above-mentioned changes resolved all reference con-
straint failures, but 12 multiple-introduction failures remained.
They were not errors, rather “bad-smell” warnings. Here is a typi-
cal example. Core has the method:

public TransactionPublisher publisher(..) {
return new CentralPublisher(null, ...);

}

Clock replaces this method with:

public TransactionPublisher publisher(..) {
return new CentralPublisher(new Clock(), ...);

}

Alternatively, the same effect could be achieved by altering the
Core to:

ClockInterface c = null;
public TransactionPublisher publisher(..) {

return new CentralPublisher(c, ...);
}

3. We presented a different feature refactoring of Prevayler in [38]. The
refactoring we report here is similar to an aspect refactoring of Godil and
Jacobsen [23].

class D {
static int i;
static void o() {..}
void p() {..}

}

class C {
void m() { D.o(); }

}

refines class D {
void p() {

Super.p();
D.i=2;

}
}

Figure 8. Sources of
ExtendY⇒Y

(a) Y

(b) ExtendY

// grammar
PREVAYLER : [Thread] [Replication] [Censor]

 [Snapshot] [Persistent] [Clock] Core ;

// constraints
Censor ⇒ Snapshot;
Replication ⇒ Snapshot;

Figure 9. Prevayler Feature Model

Constraint # of
Propositions

Failures

Refinement 39 0
Reference to Member or a Class 830 11

Single Introduction 12 12
Abstract Class 0 0

Interface 1 0

Table 2: Prevayler Statistics

7

And changing Clock to refine publisher():

public TransactionPublisher publisher(..) {
c = new Clock();
return Super.publisher(..);

}

Our safe composition checks allowed us to confirm by inspection
that the replacements were performed with genuine intent.

5.2 The Bali Product Line
The Bali Product Line (BPL) is a set of AHEAD tools that manipu-
late, transform, and compose AHEAD grammar specifications
[10]. The feature model of Bali is shown in Figure 10. It consists
of 17 primitive features and a code base of 8K Jak (12K Java) LOC
plus a grammar file from which a parser can be generated.
Although the number of programs in BPL is rather small (8), each
program is about 8K Jak LOC or 12K Java LOC that includes a
generated parser. The complexity of the feature model of Figure 10
is due to the fact that our feature modelling tools preclude the rep-
lication of features in a grammar specification, and several (but not
all) Bali tools use the same set of features.

The statistics of our BPL analysis are shown in Table 3. We gener-
ated a total of 3453 propositions, of which 3358 were duplicates.
To analyze the BPL feature module bytecodes, generate and
remove duplicate propositions, and run the SAT solver to prove the
95 unique propositions took 4 seconds.

We found several failures, some of which were due to duplicate
propositions failing, and the underlying cause boils down to two
errors. The first was a unrecognized dependency between the
requireBali2jcc feature and the require feature, namely

requireBali2jcc invokes a method in require. The feature
model of Figure 10 allows a Bali tool to have
requireBali2javacc without require. A similar error was the
requireComposer feature invoked a method of the require fea-
ture, even though require need not be present. These failures
revealed an error in our feature model. The fix is to replace rules 1-
3 in Figure 10 with:

bali2jak ⇒ (require ⇔ requireBali2jak); // new 1

bali2jcc ⇒ (require ⇔ requireBali2jcc); // new 2

composer ⇒ (require ⇔ requireComposer); // new 3

We verified that these fixes do indeed remove the errors.

Another source of errors deals with replicated methods (i.e., multi-
ple introductions). When a new feature module is developed, it is
common to take an existing module as a template and rewrite it as
a new module. In doing so, some methods are copied verbatim and
because we had no analysis to check for replication, replicas
remained. Since the same method replaces a copy of itself in a
composition, no real error resulted. This error revealed a “bad
smell” in our design that has a simple fix — remove replicas.

We found other multiple introductions. The kernel feature
defines a standard command-line front-end for all Bali tools. To
customize the front-end to report the command-line options of a
particular tool, a usage() method is refined by tool-specific fea-
tures. In some tools, it was easier to simply replace usage(),
rather than refine it with a tool-specific definition. In another case,
the replacing method could easily have been restructured to be a
method refinement. In both cases, we interpreted these failures as
“bad smell” warnings and not true errors.

5.3 Other Product Lines
We evaluated other product lines w.r.t. safe composition properties.
Some of these product lines were considerably larger than those
presented in previous sections. The results were similarly encour-
aging: product lines whose code base is close to 50K Java LOC
and whose programs are 35K Java LOC apiece took under 30 sec-
onds to analyze, which incidentally is less time that it takes to gen-
erate and compile one of these programs.

6. Future Work
The system and implementation described here indicates an impor-
tant new direction for ensuring verifiable properties — in particu-
lar, safe composition properties — of software product lines. (See
[52] for other properties that can be verified).

Although we have implemented this system and evaluated it in
practice, we have not presented a formal proof of its correctness.
There is as yet no guarantee that all constraints are accounted for.
Such a proof does not fit the standard form for proving type sound-
ness. We are developing a new approach that uses a constraint-
based type system to account for variations in a product family,
and then validating that the constraints are sufficient to ensure safe
composition.

We are exploring a formal model of feature composition in a sub-
set of Java. Candidates include Featherweight Java (FJ) [27],

Bali : Tool [codegen] Base ;

Base : [require] [requireSyntax] collect
visitor bali syntax kernel;

Tool : [requireBali2jak] bali2jak
| [requireBali2jcc] bali2jcc
| [requireComposer] composer
| bali2layerGUI bali2layer

bali2layerOptions ;
%%
composer ⇒ ¬codegen;
bali2jak ∨ bali2layer ∨ bali2javacc ⇔ codegen;
bali2jak ∧ require ⇒ requireBali2jak; // 1
bali2jcc ∧ require ⇒ requireBali2jcc; // 2
composer ∧ require ⇒ requireComposer; // 3
require ⇒ requireSyntax;

Figure 10. Bali Feature Model

Constraint # of
Propositions

Failures

Refinement 42 0
Reference to Member or a Class 3334 7

Single Introduction 18 7
Abstract Class 41 0

Interface 18 0

Table 3: Bali Product Line Statistics

8

Lightweight Java [49], and Classic Java [20]. Roughly, this
approach requires four steps:

• Extend the chosen formal model with a syntax for features,

• Define a function that composes features to generate code in
the formal model,

• Define a constraint system to validate both global constraints
and compositional constraints, and

• Prove formally that this constraint system will only permit the
generation of type-safe code.

We have determined that FJ is not suitable as the underlying for-
mal model. This is because FJ encodes a stateless subset of Java,
which causes difficulties for features that add fields to an object. FJ
requires all fields to be listed in a call to a class constructor, so add-
ing a new field invalidates all existing constructor calls. AHEAD
avoids this problem by using Java's default constructors and
default values for new fields. We are currently applying our con-
straint-based approach to Lightweight Java.

7. Related Work
Undefined methods and classes can arise in the linking or run-time
loading of programs when required library modules cannot be
found [39]. Our work addresses a variant of this problem from the
perspective of product lines and program generation.

Safe generation is the goal of synthesizing programs with specific
properties. Although the term is new [26], the problem is well-
known. The pioneering work of Goguen, Wagner, et al using alge-
braic specifications to create programs [54], and the work at
Kestrel [48] to synthesize programs from formal models are exam-
ples. Synthesis and property guarantees of programs in these
approaches require sophisticated mathematical machinery.
AHEAD relies on simple mathematics whose refinement abstrac-
tions are virtually identical to known OO design concepts (e.g.,
inheritance).

MetaOCaml adds code quote and escape operations to OCaml (to
force or delay evaluation) and verifies that generated programs are
well-typed [51]. Huang, Zook, and Smaragdakis [26] studied safe
generation properties of templates. Templates are written in a syn-
tax close to first-order logic, and properties to be verified are writ-
ten similarly. Theorem provers verify properties of templates. Our
work is different: feature modules are a component technology
where we verify properties of component compositions.

The closest research to ours, and the inspiration for our work, is
that of Czarnecki and Pietroszek [17]. Unlike our work, they do
not use feature modules. Instead, they define an artifact (e.g., spec-
ification) using preprocessor directives, e.g., an element is
included in a specification if a boolean expression is satisfied. The
expression references feature selections in a feature model. By
defining constraints on the presence or absence of an element, they
can verify that a synthesized specification for all products in a
product line is well-formed. Our work on safe composition is an
instance of this idea. Further, as AHEAD treats and refines all arti-

facts in the same way, our results on safe composition are applica-
ble to non-code artifacts as well. See [52] for an example.

We analyze feature source code to expose properties that must be
satisfied by a program in which a feature module can appear.
Krishnamurthi and Fisler analyze feature/aspect modules that con-
tain fragments of state machines, and use the information collected
for compositional verification [33][34].

Our work is related to module interconnection languages (MILs)
[18][45] and architecture description languages (ADLs) [47] that
verify constraints on module compositions. When feature modules
are used, a feature model becomes an MIL or ADL.

Our approach to compile individual feature modules and to use
bytecode composition tools follows the lead of Hyper/J [41]. How-
ever, our technique for compiling feature modules is provisional. A
more general approach, one that encodes a language’s type theory
as module composition constraints, is exemplified by work on sep-
arate class compilation [2]. Recent programming languages that
support mixin-like constructs, e.g., Scala [40] and CaesarJ [4], sug-
gest an alternative approach to defining, compiling, and compos-
ing feature modules. The basic idea is to define features so that
their dependencies on other features is expressed via an inheritance
hierarchy. That is, if feature F extends definitions of G, F is a “sub-
feature” of feature G in an inheritance hierarchy. Neither Scala or
CaesarJ use feature models, which we use to encode this informa-
tion. At feature composition time, a topological sort of dependen-
cies among referenced features is performed, which linearizes their
composition. The linearization of features is precisely what our
feature models provide. One of the advantages that feature models
offer, which is a capability that is not evident in Scala and CaesarJ,
is the ability to swap features or combinations of features and to
define arbitrary propositional constraints for using feature mod-
ules. To us, as long as grammar and cross-tree constraints are satis-
fied, any composition of features is legal. It is not clear if Scala and
CaesarJ have this same flexibility. We believe our work may be
relevant to these languages when safe composition properties need
to be verified in product line implementations.

Propagating feature selections in a feature model into other devel-
opment artifacts (requirements, architecture, code modules, test
cases, documentation, etc.) is a key problem in product lines [43].
Our work solves an instance of this problem. More generally, veri-
fying properties of different models (e.g., feature models and code
implementations of features) is an example of Model Driven
Design (MDD) [50][35][24][12]. Different views or models of a
program are created; interpreters extract information from multiple
models to synthesize target code. Other MDD tools verify the con-
sistency of different program (model) specifications. Our work is
an example of the latter.

We mentioned earlier that aspects can be used to implement refine-
ments. AHEAD uses a small subset of the capabilities of AspectJ.
In particular, AHEAD method refinements are around advice with
execution pointcuts that capture a single join point. Aspect imple-
mentations of product lines is a topic of current research (e.g.,
[1][14]), but examples that synthesize large programs or product
lines are not yet common. Never the less, the techniques that we
outlined in this paper should be relevant to such work.

9

8. Conclusions
The importance of product lines in software development will pro-
gressively increase. Successful products spawn variations that
often lead to the creation of product lines [42]. Coupled with this is
the desire to build systems compositionally, and to guarantee prop-
erties of composed systems. A confluence of these research goals
occurs when modules implement features and programs of a prod-
uct line are synthesized by composing feature modules.

We presented techniques for verifying safe composition (i.e., type
safety) properties for all programs in a product line. We mapped
feature models to propositional formulas, and analyzed feature
modules to identify their dependencies on other modules. Not only
did our analysis identify previously unknown errors in existing
product lines, it provided insight into how to create better designs
and how to avoid designs that “smell bad”. Further, the perfor-
mance of using SAT solvers to verify propositions was encourag-
ing: non-trivial product lines of programs of respectable size (e.g.,
product lines with over 50 members, each program of size 35K
LOC) could be analyzed and verified in less than 30 seconds. Fur-
ther, our techniques are not limited to composing source code; our
analysis is structural, meaning that it can be applied to the synthe-
sis of other non-code artifacts (e.g., XML documents). For this rea-
son, we feel the techniques presented are practical.

Our work is but a first step toward more general and useful analy-
ses directed at software product lines. We believe this will be an
important and fruitful area for future research.

Acknowledgements. This work was support in part by NSF’s Sci-
ence of Design Project #CCF-0438786. We thank Shriram Krish-
namurthi and the referees for their helpful comments.

9. References
[1] M. Anastasopoulos and D. Muthig. “An Evaluation of

Aspect-Oriented Programming as a Product Line Implemen-
tation Technology”. ICSR 2004.

[2] D. Ancona, et al. “True Separate Compilation of Java
Classes”, PPDP 2002.

[3] Apache Ant Project. http://ant.apache.org/
[4] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann. “An

Overview of CaesarJ”, Journal of Aspect Oriented Develop-
ment, 2006.

[5] Argonne National Laboratory. “Otter: An Automated Deduc-
tion System”, www-unix.mcs.anl.gov/AR/otter/

[6] D. Batory and S. O’Malley. “The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents”, ACM TOSEM, October 1992.

[7] D. Batory, B. Lofaso, and Y. Smaragdakis. “JTS: Tools for
Implementing Domain-Specific Languages”. 5th Int. Confer-
ence on Software Reuse, Victoria, Canada, June 1998.

[8] D. Batory, Rich Cardone, and Y. Smaragdakis. “Object-Ori-
ented Frameworks and Product Lines”. Software Product Line
Conference (SPLC), August 2000.

[9] D. Batory, AHEAD Tool Suite. www.cs.utexas.edu/
users/schwartz/ATS.html.

[10] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-
Wise Refinement”, IEEE TSE, June 2004.

[11] D. Batory. “Feature Models, Grammars, and Propositional
Formulas”, Software Product Line Conference (SPLC), Sep-
tember 2005.

[12] D. Batory “Multi-Level Models in Model Driven Develop-
ment, Product-Lines, and Metaprogramming”, IBM Systems
Journal, Vol. 45#3, 2006.

[13] P. Clements. private correspondence 2005.
[14] A. Colyer, A. Rashid, G. Blair. “On the Separation of Con-

cerns in Program Families”. Technical Report COMP-001-
2004, Lancaster University, 2004.

[15] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to
Algorithms, MIT Press,1990.

[16] K. Czarnecki and U. Eisenecker. Generative Programming
Methods, Tools, and Applications. Addison-Wesley, Boston,
MA, 2000.

[17] K. Czarnecki and K. Pietroszek. “Verification of Feature-
Based Model Templates Against Well-Formedness OCL Con-
straints”. GPCE 2006.

[18] T.R. Dean and D.A. Lamb. “A Theory Model Core for Mod-
ule Interconnection Languages”. Conf. Centre For Advanced
Studies on Collaborative Research, 1994.

[19] M. Flatt, S. Krishnamurthi, and M. Felleisen. “Classes and
Mixins”, POPL 1998.

[20] M. Flatt, S. Krishnamurthi, and M. Felleisen, “A Program-
mer's Reduction Semantics for Classes and Mixins”. Formal
Syntax and Semantics of Java, chapter 7, pages 241--269.
Springer-Verlag, 1999.

[21] K.D. Forbus and J. de Kleer, Building Problem Solvers, MIT
Press 1993.

[22] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[23] I. Godil and H.-A. Jacobsen, “Horizontal Decomposition of
Prevayler”. CASCON 2005.

[24] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi. Soft-
ware Factories: Assembling Applications with Patterns, mod-
els, Frameworks and Tools, Wiley, 2004.

[25] I.M. Holland. “Specifying Reusable Components Using Con-
tracts”. ECOOP 1992.

[26] S.S. Huang, D. Zook, and Y. Smaragdakis. “Statically Safe
Program Generation with SafeGen”, GPCE 2005.

[27] A. Igarashi, B. Pierce, and P. Wadler, “Featherweight Java A
Minimal Core Calculus for Java and GJ”, OOPSLA 1999.

[28] M. de Jong and J. Visser. “Grammars as Feature Diagrams”.
www.cs.uu.nl/wiki/Merijn/PaperGrammarsAsFea-
tureDiagrams, 2002.

[29] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study”. Technical Report, CMU/SEI-90TR-21, Nov. 1990.

[30] K. Kang. private communication, 2005.
[31] G. Kniesel, “Type-Safe Delegation for Run-Time Component

Adaptation”, ECOOP 1999.
[32] E. Kohlbecker, D. P. Friedman, M. Felleisen, and B. Duba.

“Hygienic Macro Expansion”. SIGPLAN ‘86 ACM Confer-
ence on Lisp and Functional Programming, 151-161.

[33] S. Krishnamurthi and K. Fisler. “Modular Verification of Col-
laboration-Based Software Designs”, FSE 2001.

[34] S. Krishnamurthi, K. Fisler, and M. Greenberg. “Verifying
Aspect Advice Modularly”, ACM SIGSOFT 2004.

10

[35] V. Kulkarni, S. Reddy. “Separation of Concerns in Model-
Driven Development”, IEEE Software 2003.

[36] R.E. Lopez-Herrejon and D. Batory. “A Standard Problem for
Evaluating Product Line Methodologies”, GCSE 2001, Sep-
tember 9-13, 2001, Erfurt, Germany.

[37] R.E. Lopez-Herrejon and D. Batory. “Using Hyper/J to imple-
ment Product Lines: A Case Study”, Dept. Computer Sci-
ences, Univ. Texas at Austin, 2002.

[38] J. Liu, D. Batory, and C. Lengauer, “Feature Oriented Refac-
toring of Legacy Applications”, ICSE 2006, Shanghai, China.

[39] C. McManus, The Basics of Java Class Loaders, www.java-
world.com/javaworld/jw-10-1996/jw-10-
indepth.html

[40] M. Odersky, et al. An Overview of the Scala Programming
Language. September (2004), scala.epfl.ch

[41] H. Ossher and P. Tarr. “Multi-dimensional Separation of Con-
cerns and the Hyperspace Approach.” In Software Architec-
tures and Component Technology, Kluwer, 2002.

[42] D.L. Parnas, “On the Design and Development of Program
Families”, IEEE TSE, March 1976.

[43] K. Pohl, G. Bockle, and F v.d. Linden. Software Product Line
Engineering: Foundations, Principles and Techniques,
Springer 2005.

[44] Prevaler Project. www.prevayler.org/.
[45] R. Prieto-Diaz and J. Neighbors. “Module Interconnection

Languages”. Journal of Systems and Software 1986.
[46] SAT4J Satisfiability Solver, www.sat4j.org/
[47] M. Shaw and D. Garlan. Perspective on an Emerging Disci-

pline: Software Architecture. Prentice Hall, 1996.
[48] Specware. www.specware.org.
[49] R. Strnisza and M. Parkinson, “Lightweight Java: A Fully-

Formalized, Extensible Minimal Imperative Fragment of
Java”, http://www.cl.cam.ac.uk/~rs456/lj/

[50] J. Sztipanovits and G. Karsai. “Model Integrated Computing”.
IEEE Computer, April 1997.

[51] W. Taha and T. Sheard. “Multi-Stage Programming with
Explicit Annotations”, Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM), 1997.

[52] S. Thaker. “Design and Analysis of Multidimensional Pro-
gram Structures”, M.Sc. Thesis, Department of Computer
Sciences, The University of Texas at Austin, 2006.

[53] M. VanHilst and D. Notkin. “Using C++ Templates to Imple-
ment Role-Based Designs”, JSSST Int. Symp. on Object Tech-
nologies for Advanced Software. Springer Verlag, 1996.

[54] E. Wagner. “Algebraic Specifications: Some Old History and
New Thoughts”, Nordic Journal of Computing, Vol #9, Issue
#4, 2002.

[55] N. Wirth. “Program Development by Stepwise Refinement”,
CACM 14 #4, 221-227, 1971.

