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Specializing and Optimizing Declarative Domain Models 
Srinivas Nedunuri and William Cook 

Dept of Computer Sciences, University of Texas at Austin 

Abstract In this position paper we propose specifying platform independent models using a functional 
language with a view to specializing and optimizing them using equational or algebraic reasoning. We 
illustrate our idea with the example of a very simple editor. 

1. Introduction 
Lately, as part of a general trend towards viewing “models as code”, there 

has been growing interest in converting models from one form to another. For 
example, MDA from the OMG [Fr03] views the implementation process as one 
of converting a PIM (Platform Independent Model) to a PSM (Platform Specific 
Model). In transformational based development [CE00], the domain models are 
transformed via a series of intermediate domain models to a final 
implementation which is just a model in the target or implementation domain.  

We suggest that the transformation of a PIM to a PSM can be viewed as a 
series of steps, as illustrated in Figure 1. At the top, generic models are reusable 
components that provide well-defined but generic functionality. A typical 
application will be a composition of multiple Generic PIMs [MB02] which 
define a subset of the domain model [Fr03].  In this paper we investigate the use 
of pure functional languages to formalize generic PIMs. 

The first transformation step specializes the generic PIMs with domain 
knowledge. This is analogous to the specialization of the Business Domain 
Layer to the Business Section Layer described in [BGK+97]. In the second step, 
we introduced the notion of platform-independent optimization as a 
transformation of the specialized PIMs into a model that includes design considerations such as specific data 
structures, algorithms, design patterns, architectural patterns, etc. The third step is the traditional transformation to 
platform specific code. The last two steps have their analogs in compilers, which first perform platform independent 
optimizations prior to invoking backend specific optimizers. This paper discusses the first two steps. 

2. Generic PIMs 
Consider the modeling of a simple generic Editor which contains one content model, a clipboard and a selection. 

An  actual Editor application can be viewed as the composition of several PIMs as shown in the following domain 
chart: 

Editing

File System

File System Navigation

Persistence

GUI

 
 
In this paper we focus solely on the Editing domain. That is, we do not consider how model elements are 

presented on the screen (the View in the GUI domain) or the nature of the connection between the Editing and GUI 
domains (the Controller or bridge). A possible type model for the generic Editing PIM is shown in Figure 2. 
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Figure 1: Steps in transforming 
a PIM to a PSM 
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Editor

+ id : String

+ save ( [in] m : Model ) : Stream
+ open ( [in] from : Stream ) : Editor
+ close ( [in] m : Model ) : Editor
+ cut (  ) : Editor
+ paste ( [in] where : Location ) : Editor
+ copy (  ) : Editor

ContentModel

+ newElement ( [in] elementType : String ) : ModelElement
+ removeElement ( [in] element : ModelElement ) : ModelElement

Command

+ do (  )

«Standin»
Stream

Selection

+ addElement ( [in] elt : ModelElement )
+ clear (  ) : Selection
+ copyOf (  ) : [ModelElement]

Clipboard

+ addElement ( [in] elt : ModelElement ) : Clipboard
+ clear (  ) : Clipboard

- modelElements*

«interface»
Receiver

1

*

- selection1

- clipboard1

Cut Copy Paste

- model

1

- modelElements*

«interface»
ModelElement

+ copyElement ( [in] s : Selection ) : ModelElement a

- modelElements*

 
Figure 2: UML Type diagram of Generic Editor Model 

The generic domain model, analogous to a framework, defines the generic semantics of the Editing domain, 
which can be customized by the subdomains. The editor represents the information being edited as a 
ContentModel which contains a collection of ModelElements. ModelElement is an interface which must be 
supported by the specific types of model element being edited. The generic editor model supports abstractions for at 
least the cut, copy and paste commands. Our use of the Command pattern allows more commands to be added by the 
domain specific editors. The behavior of these operations is fully-specified by the generic model, but may also be 
specialized for particular applications. Although UML class diagrams are typically interpreted as representing object 
classes with mutable state, we apply a different interpretation to the classes as declarative data abstractions. Because 
our models are declarative (no side effects), the methods always return a new object, as indicated by the type 
declarations on the model above.  

3. Why declarative models? 
It has been suggested that avoiding side effects makes it easier to both develop correct programs [VAB00] and 

subsequently comprehend them [DLO+03]. Unfortunately, it is not easy to completely avoid side effects in most 
programming languages such as Java, C++, etc and still have an idiomatic efficient program. A related approach to 
developing correct programs known as Design by Contract [Me97] is to specify the program declaratively using a 
contract, and then write the body of the specification imperatively. However, it is rare to find a model that is fully 
specified using contracts. Part of the problem, we believe, is that after writing a declarative contract, one still has to 
write the imperative model, which increases, not decreases, the work effort. Functional languages take another 
approach to this problem: A functional program can be considered as a specification that is both side-effect free and 
executable. This gain can sometimes come at the cost of efficiency. Note, however, that in MDA, the idea is to 
develop the PIM with correctness, rather than efficiency, being the main criterion. Efficiency is addressed when 
transforming the PIM to a PSM. For this reason, we believe that functional language may be highly suitable for 
specifying the PIM. Functional languages also have a long history of research into program transformation [Da82], 
[BW89]. We hope to leverage off some of this work for transformation of the PIM to a PSM. 

As a consequence of choosing a functional specification language, we can employ algebraic or equational 
transforms. That is, the expression (model) resulting from applying a transform is algebraically equal to the 
expression (model) to which it was applied. This very useful property enables us to view proofs as derivations and 
vice versa. That is, the resulting synthesized efficient model is correct by construction. Furthermore, because the 
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derivations are also expressed in the same language, every intermediate stage in the derivation is also a valid 
program. 

By choosing a specification language with powerful language capabilities such as higher order functions, lazy 
evaluation, type inference, pattern matching, etc. we hope to make the specification process itself more productive. 
Our first candidate specification language has been Haskell. 

4. Declarative models in Haskell 
Haskell is a modern functional programming language that is freely available [Th96]. In Haskell, types such as 

Editor,  Model and others become abstract data types (ADTs) that are captured as modules in Haskell1. For 
example, the Editor module might be defined: 

 
module Editor (Editor, save, open, close, copy, cut, paste) where 
import Selection 
import ContentModel 
import Clipboard 
 
data ModelElement modelElementT => Editor modelElementT =   
  Editor { 
     name :: String, 
     model :: ContentModel modelElementT, 
     selection :: Selection modelElementT, 
     clipboard :: Clipboard modelElementT 
     } 
      
<… function definitions here …> 
 

The ADT is defined inside a module, denoted by the keyword module. It exports the Editor type and the 
functions save, open, close, copy, cut, paste. The imports import all the dependent ADT modules, 
analogous to class imports in Java. The data part defines the fields or attributes of an Editor type. There are 4 
fields, name, model, selection, and clipboard. The modelElementT is a type parameter, analogous to 
the type parameter that is used when defining generics in Java. The type parameter is qualified by requiring any 
specific type that instantiates the type parameter to be in the ModelElement typeclass (The OO analogue of this is 
requiring that the type supports the ModelElement interface). Thus, interfaces in the model become type classes in 
Haskell. Types in the ModelElement typeclass must have the copyElement function defined. This is stated as 
follows: 

 
class ModelElement modelElementT where 
 copyElement :: modelElementT -> Selection -> modelElementT 
 

All of this mirrors fairly closely the type model for the Editing domain shown earlier.  
As mentioned earlier, we ought to be able to use this framework to build a simple text editor and indeed we can 

do this by specializing the generic model  

4.1. Domain Specialization of the Generic Model (Domain Specific Editors) 
By specializing the generic Editing domain model shown earlier to particular domains (Step 1 in Fig. 1) we get 

domain specific editors. For example, in a logic circuit editor the ModelElements become AND, OR, NAND Gates, 
Buses, and Timers, there might be attributes such as output, input1, input2, etc. For a state model editor the 
ModelElements might be State, Transition, Action (perhaps subtyped as EntryAction and ExitAction), 
with attributes like name, actions, guards, incoming, and outgoing, substates, etc. A third example might 
be a text editor, with its metamodel shown in Figure 3. 

There are two specializations on the model. The first is Letter implementing the ModelElement interface. The 
second is the association a’ between Letter instances which is a specialization of the generic parent association a 
between model elements. (In general, there can be any number of specializations of the generic association). 

 
                                                           
1 There are object-oriented declarative languages such as O Haskell [OH] which provide direct support for OO 
concepts such as methods and inheritance, while still retaining all the feature of functional programming. To 
simplify the presentation, we will just use ordinary Haskell in this paper. The core of our idea is not affected. 
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Letter

+ ch : Char
+ fontName : String

+ next
a'

«interface»
ModelElement

+ copyElement ( [in] s : Selection ) : ModelElement a

 
Figure 3: Specialization of generic model element for text 

Of course, the above representation is quite unwieldy when it comes to text. We are not making use of the 
linearity property of text. That is, a Letter is associated with at most one other Letter (to its right). Put another 
way, if we were writing a text editor from scratch, it is unlikely that we would chose to represent the text as a graph 
of letter nodes. Instead a more direct linear form, such as an array or list is likely to be used. However, the rest of the 
model, which presumably provides functionality and services that we desire, not to mention all the other domains 
upon which this domain depends, expect to be able to interact with the model via the given graph based interface. 
This is achieved by defining an implementation of the Letter ADT that is based on lists, instead of graph nodes: 

 
module TextAsList (Letter, singleLetter, newLetter, char, fontName, next, 
set_next) where 
import ObjectGraph 
type Letter = [LetterData] -- the actual letter is the first elt in the list 
-- it is done this way to create the impression of a graph of nodes. 
data LetterData = LetterData { 
     m_char::Char, 
     m_fontName::String, 
      } deriving Show 
singleLetter :: Char -> String -> Letter 
-- construct the actual letter and place it in a singleton list 
singleLetter char fontname = [LetterData char fontname] 
 
newLetter :: Char -> String -> Letter -> Letter 
-- construct the actual letter and prefix to the front of the existing text 
newLetter ch fontName next = (LetterData ch fontName) : next 
 
char = m_char . head 
fontName = m_fontName . head 
next = tail 
set_next letterData:_ nextLetter = letterData:nextLetter 
 

In this implementation of the ADT, a Letter is defined as a list (sequence) of LetterData objects. In order 
that we can access the “next” letter in the sequence, the actual letter is just the first element in the list (head). The 
remainder of the list is the tail of the list. In order to get for example the m_char attribute, the corresponding 
accessor function, char, first accesses the head of the list, and then applies the built-in m_char accessor. This is 
written in Haskell using the function composition operator ‘.’. The fontName accessor is defined similarly. (Note 
that function application in Haskell is denoted by adjacency. That is, f x is f applied to x.) Because there is no 
destructive update, the “setters” (for example set_next) will just return a new instance. Two constructor methods 
are provided, newLetter and singleLetter. Both just turn around and call the automatically generated 
constructor “Letter”.  

As an example of using the ADT interface, the model representing the string “cat” with ‘t’ in Times Roman and 
the rest in Arial font would be constructed with the following function calls: 

 
newLetter 'c' "Arial" (newLetter 'a' "Arial" (singleLetter 't' "TimesRoman")) 



 5

4.1.1. Proof of Correctness 
In order to prove the correctness of the above implementation of a Letter ADT as a list we first define an 

implementation of the ADT which is a direct representation of the object graph. Then we use the fact that in a 
functional language, an expression such as the one shown above to construct the string “cat” is not just a just the 
sequence of calls to construct the string, but is also a term that represents the string itself. This allows us to induct 
over such expressions and show their equivalence in the two implementations. Space does not permit us to go into 
the details here. However, the proofs of this and the other transformations in this paper, as well as the complete 
executable code for the example are available from the authors. Having satisfied ourselves of the relationship 
between the external interface and internal representation, we can (with care) use the more direct list based 
representation when convenient. 

Next we look at transformations that figure in the step of converting the PIM to a design PIM, which was 
identified as the 2nd step in Figure 1. 

4.2. Optimizing the Specialized PIM to a Design PIM 
As an example, consider the copy method in Editor. Below is a sequence diagram for the method: 

 
A typical scenario for its usage is as follows: A user selects multiple diagram elements on the screen (perhaps by 

stretching a bounding box), the GUI Controller (part of the MVC pattern) repeatedly adds elements to the selection – 
using selection.add(element). When done, the user might select the Copy menu command or use Ctl-C, or 
whatever other option the GUI provides. At that point, the controller calls copy on the editor, which then asks the 
selection for a copy of its elements (returned as a list, cp). Then the editor asks the clipboard to clear itself in 
preparation for pasting elements to it, and paste is called next. Finally, the selection is also asked to clear itself. 

First we show the definition that is provided in Haskell as part of the generic PIM: 

4.3. The Straightforward Definition of Selection 
The goal of the copy method on Selection is to make a properly terminated copy of the graph of model elements 

contained in the selection. By “properly terminated” we mean that the associations to the other graph elements are 
only included if those other elements are themselves part of the selection. Below is (part of) the definition of the 
Selection ADT: 

 
module Selection where 
import Text -- or State or ... 
type Selection modelElementT = [modelElementT] 
newSelection = [] 
addElement element selection = element:selection 
toList = id 
 

This is just defining the addElement “method” as the builtin Haskell operation to prefix an element to a list (:); 
The toList method is just the identity function. 

:GUI :Edito :Selection :ModelElement cb:Clipboard 

copy() 
copyTo(cb

copyElement()*

cp = copyOf()

clear()

paste(cp)

clear()
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Now consider the definition of the copyTo function. Given a definition of an Element (like for example the ones 
for State, or Letter above), we can generate the copyTo function in the following way: Each element in the source is 
copied over including its primitive attributes. However, other elements to which the given element is associated are 
copied over only if they also lie in the source. This ensures that only the given subgraph is copied over2.  

A fully generic definition of copy requires the use of reflection or generic programming [HJ03, RJ03]. A 
function uses reflection to access meta-information: in this case copyElement needs access to the type information 
about the content model and its associations. Generic programming provides exactly this kind of polymorphism 
through the definition of type-indexed values: a function that includes generic cases for different kinds of types can 
be applied to any specific type. We have not yet applied generic programming in our implementation, but have 
instead created the required specialized copyElement function manually. The pattern for creation of the copy 
functions is given below: 

 
copyTo src dest = dest ++ copyOf src 
 
copyOf selection =  
 [copyElement elt selection | elt <- theStronglyRootedElementsOf selection] 
 
copyElement elt selection = 
 let assoc1Val = confirm (assoc1 elt) selection 
  assoc2Val = confirm (assoc2 elt) selection 
  ... 
  assocnVal = confirm (assocn elt) selection 
 in 
  elt{assoc1=assoc1Val, assoc2=assoc2Val,...,assocn=assocnVal} 
 
confirm (Just val) set =  
 if (val `elem` set) then Just (copyElement val set) else Nothing 
confirm Nothing set = Nothing 
 

copyTo appends a copy of the src onto the dest (using the list concatenation operator ++).  
copyOf looks at each strongly rooted element (that is, elements in the object graph that do not have any 

association links between them. The roots however serve as the point to navigate to the rest of the connected 
component of the object graph) and calls copyElement on that object. 

copyElement looks at the object at the other end of each association link (assoc1 .. assocn) from the current 
object and copies it only if it is also contained in the selection. (`elem` is the membership function for a list. ). Just 
and Nothing are data constructors belonging to the Maybe monad. They permit an association to either be empty or 
hold a value, somewhat analogous to the use of null vs. an object reference in Java. 

Based on this template, we see that in the case where the ModelElement is a Letter, the specialization of 
copyElement for a Letter would be: 

 
copyElement letter selection = 
 let nextVal = if ((next letter) `elem` selection)  
             then copyElement (next letter) selection 
             else Empty 
 in letter{next=nextVal} 

4.4. The Optimized Definition of Selection  
While this definition of Selection (and the contained method copy) by straightforward specialization of the PIM 

does the job, it is not the most efficient. If we know that a Selection of Letters in a text document must be 
contiguous (as it is in most text editors like Notepad or Word), there are some domain specific optimizations we can 
make. Firstly, because the selection is contiguous, there can only be one strongly rooted component. So when an 
element is added to the selection, we know that it is linked to the first (or last) element already in the selection. This 
permits us to eliminate a list of multiple components, and represent the selection by just two pieces of information: 
namely, the first letter of the selection and its length. The relevant code is shown below: 

 

                                                           
2 To simplify the presentation, we are assuming an acyclic object graph. General graphs can be handled using 
Haskell’s graph library module 
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data Selection = Selection{firstLetter::Letter, len::Int} deriving (Show, Eq) 
_JUNK = (singleLetter 'x' "x") 
newSelection = Selection _JUNK 0 
addElement newSelection letter =  
 selection{firstLetter = letter, len=length letter} 
 where 
  possUpdated1stLetter =  
   if (len selection)== 0  -- if it’s a new selection 
   then letter 
      -- if the selection is being extended to the left 
   else if (length letter) == (len selection) + 1 
    then letter 
    -- else its being extended to the right, don't change firstLetter 
    else (firstLetter selection) 
  newLength = (len selection) + 1 -- always update the length though! 
 

This also means that copyOf has to deal with only one element: 
copyTo selection dest = copyOf selection ++ dest 
copyOf selection = [copyElement (firstLetter selection) selection] 

Secondly, instead of a test and copy of each element in the chain, copyElement can just perform a block copy of 
the required letters: 

copyElement letter selection = take (length selection) letter 
where take n returns the first n elements of a list. This kind of optimization that crosses encapsulation 

boundaries is difficult to do in an imperative setting because of possibility of global state update. Note also that this 
optimized definition of the Selection ADT is algebraically derivable from the original (given the conditions stated 
above, namely that the ADT interface is restricted to singleton selections) 

Finally as another example of domain specific optimization, if the text editor is a very simple one in which 
individual characters cannot differ in font (e.g. as in an editor like Notepad), we can eliminate the font attribute 
completely and replace LetterData in 

type Letter = [LetterData]  
by the character type (Char). In Haskell, String = [Char], so we end up with 

type Letter = String 
Since we no longer have position information, we would of course revert back to the original definition of 

Selection as a list. Again it is possible to algebraically derive this transformation. 

5. Future Work 
The example presented in this paper was intended to provide a flavor of the approach we are investigating. 

Though the example is rooted in something “real world”, we have not addressed issues of scale and usage. For 
example, transformations of the type we have shown will need to be carried out many times in the process of 
mapping to an implementation. In order to capture design patterns as transformations, as suggested by Tokuda and 
Batory [TB95], we would need to be able to “chunk up” several derivation steps into one. This is where we think 
good proof assistants will come in useful. We would also like to be able to synthesize solutions rather than 
attempting to derive them after the fact. 

Good tool support to carry out transformations and manage libraries of transformations is going to be essential. 
We plan to look at tools such as MAG [MS] and XT [JVV01] from the program transformation world. 

We would also like to investigate “fusion” languages such as Scala [OAC04] and O Haskell [No99] that provide 
support for OO concepts such as classes and inheritance within a functional programming paradigm. This would 
make for a smoother conversion from OO models (defined for example in a declarative UML subset) to the 
specification language. We hope to be able to use one of the model transformation tools such as GMT[BEW03] for 
this purpose. 

6. Related Work 
Our work shares the same goals as much of the work in the fields of domain modeling and of MDA. The MIC 

group at Vanderbilt has been very active in the area of model transformation and aspect weaving. For example, 
[SAL+03] uses graph grammars to transform domain models. However, their emphasis is primarily on structural 
transformation. We believe that transforming behavior is at least as important as transforming structure. Also, they 
do not discuss how to prove or derive their transformations. Gray et.al. [GZL+04] apply transformation rules to 
legacy code using the DMS toolkit from Semantic Designs [SD]. However, their goal is reverse engineering rather 
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than forward synthesis. [CH03] surveys and classifies the main transformational approaches, and also explains why 
intermediate models are useful.  

The primary difference is in our use of declarative models, and of algebraic transforms on those models. Also, to 
the best of our knowledge, there has not been extensive work in the MDA arena on specializing generic models. 

Functional programming has a long history of work in program transformation [Da82]. Almost every book on 
functional programming has a chapter or two on program synthesis [BW89], [Th96]. But, despite the fact that 
transformations have been studied quite extensively in functional programming, much of the attention has been 
focused on reducing algorithmic complexity and not on structural or model transformation. We want to leverage 
such work towards solving a slightly different problem. 

There is also an extensive body of work in algebraic specification [Ba89], particularly dealing with proofs of 
ADT implementation. However, algebraic specifications are not in general executable. We believe that executability 
is very important for the purposes of validation. 
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