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Transforming Declarative Models Using Patterns in MDA 
Srinivas Nedunuri and William Cook, Dept. of Computer Sciences, University of Texas at Austin, Austin, TX 78712 
 
Abstract In this paper we propose to specify platform independent models using a functional language with a view to 
transforming them with architectural and design patterns by applying equational or algebraic reasoning. We illustrate 
our idea using a couple of known architectural and design patterns. 

Introduction 
The domain based approach to software development [CE00, MB02] views software development as the composing 
together of various domain models, and if necessary performing transformations on those models to arrive at an 
efficient implementation on some target architecture (itself possibly defined by a domain model). In order to bring this 
idea a step closer to reality, the OMG1 has recently proposed an initiative called Model Driven Architecture [MDA]. The 
idea behind MDA is to transform a platform independent model (PIM) to a platform specific model (PSM). The PIM is 
roughly a subset of a domain model [Fr03]. It is the model in which the software solution is most clearly and elegantly 
expressed. The PSM on the other hand is the “ugly but efficient” form that runs on a specific platform. The essential 
idea is to facilitate reuse by allowing the PIM to be re-targeted at a variety of different architectures and platforms.  
 
Based on the experience of one of the authors (Nedunuri) in building an MDA tool for generating J2EE applications, 
we believe it is quite possible to generate quite a reasonable class of applications (for example CRUD applications) 
from PIMs by applying straightforward code templates, that may even incorporate some simple patterns such as Proxy 
[GHJV95]. However, as the complexity and sophistication of the generation grows, it becomes necessary to 
understand the transformations, how they interact, and how they may be modified, composed, and used to optimize 
models. This is going to be difficult without precise definitions of the models and the transformations. Providing such 
definitions is a challenging problem that the MDA community is only just beginning to tackle in earnest. We believe that 
functional languages provide not only the required precision (which could also be done in OO, see for example the 
work of the precise UML group [pUML]), but equally importantly, allow for equational or algebraic reasoning by virtue 
of referential transparency. Any functional program derived using equational reasoning is a valid working program and 
is, furthermore, guaranteed correct by construction. 
 
In this paper, we look at transformations that effect design improvements. An example of the kind of design 
improvements we would like to make are captured by design and architectural patterns [GHJV95], [BMR+96]. In fact, 
as suggested in [TB95] we can view patterns themselves as transformations. Here we show how patterns can be 
viewed as transformations on declarative models (specified as functional programs) that can in principle be derived by 
equational reasoning. 

Why Declarative Models? 
It has been suggested that avoiding side effects makes it easier to both develop correct programs [Bl01] and 
subsequently comprehend them [DLO+03]. Unfortunately, it is not easy to completely avoid side effects in most 
programming languages such as Java, C++, etc and still have an idiomatic efficient program. A related approach to 
developing correct programs known as Design by Contract [Me97] is to specify the program declaratively using a 
contract, and then write the body of the specification imperatively. However, it is rare to find a model that is fully 
specified using contracts. Part of the problem, we believe, is that after writing a declarative contract, one still has to 
write the imperative model, which increases, not decreases, the work effort. Functional languages take another 
approach to this problem: A functional program can be considered as a specification that is both side effect free and 
executable. This gain can sometimes come at the cost of efficiency. Note, however, that in MDA, the idea is to develop 
the PIM with correctness, rather than efficiency, being the main criterion. Efficiency is addressed when transforming 
the PIM to a PSM. For this reason, we believe that functional language may be highly suitable for specifying the PIM. 
Functional languages also have a long history of research into program transformation [Da82], [BW89]. We hope to 
leverage off some of this work for transformation of the PIM to a PSM. 

As a consequence of choosing a functional specification language, we can employ algebraic or equational transforms. 
That is, the expression (model) resulting from applying a transform is algebraically equal to the expression (model) to 
which it was applied. This very useful property enables us to view proofs as derivations and vice versa. That is, the 
resulting synthesized efficient model is correct by construction. Furthermore, because the derivations are also 
expressed in the same language, every intermediate stage in the derivation is also a valid program. 

                                                           
1 The Object Management Group -- responsible for the UML, CORBA, and IIOP standards, amongst others 
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By choosing a specification language with powerful language capabilities such as higher order functions, lazy 
evaluation, type inference, pattern matching, etc. we hope to make the specification process itself more productive. 
Our first candidate specification language has been Haskell. 

The Value List Handler J2EE Pattern 
Consider a very simple model for lists.  

 
Now consider mapping (implementing) this to a distributed architecture, such as J2EE in which the list (perhaps a long 
directory of names or objects) needs to be displayed on the client. Making a round trip call to the server to access 
each element on demand is not acceptable from a performance standpoint. On the other hand, if the list is a very long 
one, pulling the entire list from the server may not work because the client may not have enough cache space. It is 
also wasteful in the (many) cases where the user simply wishes to look at the first few elements and then dismiss the 
page. To handle situations such as this, Sun has defined a number of J2EE design patterns, which have been 
captured in a recent book [ACM01]. One pattern addressing this problem is the Value List Handler. This pattern is 
illustrated by the generic model below: 
 

 

«type»
List

+at(index : int) : Object
+append(otherList : List) : List
+delete(index : int) : List
+add(element : Object) : List

+length : int

«type»
Object
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The ValueListHandler  (implementing the ValueListIterator  interface) provides an iterator for iterating over 
the list. The list is a collection of ValueObjects . The ValueObjects  are serializable transfer objects constructed 
from data supplied by the DataAccessObjects  which interface with the database. The essence of this pattern, 
which is what we will focus on here, is that the list resides on the server, and is lazily fetched to the client where it is 
cached. One such lazy strategy is when a request is made for an element that is not in the cache, to fetch all the 
elements up to and including the desired element. The resulting program is designed to run efficiently on such an 
architecture. However, when defining the domain of lists, we want the modeler to write their solution in the clearest 
way possible. This means we have to transform the clear version into the optimized version. Note that although the 
pattern above is considered a J2EE pattern, there is nothing about it specific to the J2EE platform. It could apply 
equally well to other distributed architectures, such as CORBA, .Net, or indeed even a simple client server 
architecture. For this reason, we refer to the PIM that is optimized with such patterns as a Design PIM, rather than a 
PSM. The Design PIM is subsequently transformed to a PSM by applying platform specific (e.g. J2EE specific) 
optimizations. 

A Declarative PIM 
Consider the rough analog of the above models in a pure functional language. In the PIM, List  becomes an abstract 
data type, defined in Haskell as a module that exports the required methods: 
 
 module List (length, at, append, delete, add) wher e 
 <module definition> 
 
In what follows, we will interpret methods on an OO type as functions which take the type as the first argument2. Thus 
the method for accessing an element in the list, called "at" becomes the “at” function in Haskell (also known as the “!!” 
operator in the standard library), defined as follows: 
 
 at :: [t] -> Int -> t 

at (x:xs) 0 = x 
 at (x:xs) (n+1) = at xs n 
 at [] n = ⊥ 
 
The first line is a type declaration that states that at  is a function that takes a list of any type (designated by the type 
parameter t ) and an Int  and returns an element of the list type t . The type parameter plays a similar role to the type 
parameter in Java’s generics. The next 3 lines define the at  function by case. The first case is where we want the first 
element in the list (position = 0). The correct value to return is simply the first element of the list (x:xs  is one of 
several standard patterns in Haskell - in this case one that matches a list to decompose it into its head (the first 
element) and the tail (the rest of the list)). The second case is the recursive case where we want some element other 
than the 0th (indicated by the pattern n+1 ). Finally, the error case is where we are attempting to access an element of 
an empty list (denoted by the pattern [] ). The returned value in this case is the nonterminating computation ⊥. 

A Declarative Design Oriented PIM 
What we want to do here is depicted in the following diagram: 
    PIM 
     | 

    | 
    v 

      “design” PIM 
There are a number of design improvements we can make to a List. For example, we may want to implement it as a 
mutable structure. Or we would like to incorporate the architectural pattern discussed earlier. In order to enable this, 
we will need to define the design version of the List ADT somewhat differently. The design definition will be based on 
monads. Monads are described in [Wa95]. They provide a way of conveniently wrapping housekeeping work, such as 
state update or error propagation, so it does not clutter up regular code. For our purposes, the List  monad could be 
defined as follows  
 
 data List t u = List(ListHandle t -> (u, ListHandl e t)) 
 
A ListHandle is an opaque reference to a list structure, perhaps on the server. It is not necessary to expose it to clients 
because the List monad datatype above allows us to define a number of access functions or actions (of type 
                                                           
2 A more OO like solution is possible in one of the functional OO languages such as O’Haskell [No99], but we do not 
pursue that here as our goal is to present the essence of the idea. 
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ListHandle t -> (u, ListHandle t) ) with which lists can be manipulated. Actions differ from simple values 
like 2 or “hello”  in that evaluating the action causes some useful “side effect” to be carried out. Examples are such 
things as updating a table, or reading a line from IO. Each action takes the list handle, performs a computation and 
returns a pair consisting of the result of the computation of interest to the client and, conceptually, a new list handle. 
We say conceptually because the implementation of the list handle may in fact use a mutable structure. Monads allow 
us to elegantly isolate such details from the rest of the declarative code.   
Now we can provide some useful functions on top of the basic actions, called commands. In Haskell, commands are 
just expressions that reduce to actions (as opposed to ordinary expressions that reduce to values). An example of 
such a command is the at function discussed above, which we call at’  to distinguish it from the one in the PIM 
 
 at’ :: int -> List t u 

at’ = �i->List ( �listH->(at (dataFromHandle listH) i, listH)) 
 
This defines at’  using a lambda abstraction. The lambda abstraction defines an anonymous function that takes a 
parameter i , and returns another instantiated lambda abstraction that actually carries out the action. This second 
abstraction takes a list handle, and returns a pair consisting of the required value at the given index and the new list 
handle, using dataFromHandle , a (server side) function that maps handles to lists. Note that an expression such as 
“at’ 3 ” does not do anything until the returned action is evaluated. 
 
Client code to access lists would now look something like: 
 
 do i <- <some command calculates an index> 
    x <- at’ i  -- get the value at index i and ass ign to x 
    y <- at’ 10 -- get the value at index 10 and as sign to y 

   …compute using x and y… 
    return <result> 
 …etc… 
The do syntax is a way of sequencing commands so that the list handle is automatically passed from one command to 
the next. 

Incorporating a cache 
In order to get the more efficient caching form of this monad, the state now has to incorporate the cache. For this we 
replace the ListHandle  type with CList (for Cached List). That is: 
 
 data List t = List(CList t -> (u, CList t)) 
 data CList t = (Cache t, ListHandle t) 
 data Cache t = [t] 
 
the definitions of the two required monadic operators (>>= and return ) are as follows: 
 instance Monad List where 
  
 (>>=) :: List t -> (t -> List u) -> List u 

List cmd1 >>= lambda_cmd2 
  = List( λcList -> cmd2 refreshedCList 
                where List cmd2 = lambda_cmd2 cmd1V alue 
                      refreshedCList = refresh newC List  
                      (cmd1Value, newCList) = cmd1 cList 
 
That is, the left command cmd1 is evaluated first. The second element of the result, namely the possibly updated list is 
passed to refresh  to refresh the cache. Then the lambda-wrapped second command is unwrapped3 using the 
computed value returned by cmd1 and evaluated with the refreshed list.  
 

return :: t -> List t 
return x = List ( λcList ->(x, cList)) 

 
return  is just a way of turning a value into a command. 
 

                                                           
3 technically, a β reduction 
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(>>= is a slight variation on the usual definition for a state monad, with the inclusion of a call to the refresh function, 
which refreshes the cache, as defined below) 
 
Now instead of at’ , we have a function cat’  (for caching at’ ) which, is very similar to at’ , except that reads its 
data from the cache part of the incoming object instead of the list handle. 
 

cat’ :: int -> List t 
cat’ = λi–>List ( λcList–>(at cache i, cList)) 

where cache = fst cList  
 
Since all the details of the cache refresh are inside the >>= operator it would have been nice to simply reuse the 
original at’ command. However, they have slight differences in their operation which prevents that.  
 
refresh  is a function that looks at cache  and the desired index (i ) and determines whether or not the cache needs 
to be extended. Its definition is: 
 

refresh :: CList t -> Int -> CList t 
refresh (cache, handle) i = 

if length cache > i 
then (cache, handle) 

 else (fetchDataFromServer (cache, handle) i, handl e) 
 
fetchDataFromServer is a primitive function on the server which appends the next n elements to the given list's cache 
and returns the new cache. Its behavior is specified as shown below. Note however, that this is not how it is likely to be 
actually implemented 
 
 fetchDataFromServer (cache, handle) n = 

    cache ++ additionalElements 
     where 
  additionalElements = sublist (length cache) n (da taFromHandle handle) 
  sublist m n = take (n-m+1) . drop m  
 
A proof outline of the correctness of the transformation of the straightforward version of at to the optimized version cat’ 
is sketched out in the Appendix. 
 
The next example looks at deriving the composition of patterns in a functional language. 

Combining Patterns: Iterator and Observer 
The Iterator pattern [GHJV95] allows flexibility in traversing a collection, such that a number of ways of traversing the 
collection are available independent of the exact data representation of the collection. The Observer pattern [GHJV95] 
allows an arbitrary number of observers to be notified of changes to an entity, such that the entity itself need not be 
aware of which and how many observers are interested in the changes. In some situations it is common for several 
observers to be observing a fairly large dataset (for example information returned from a database query). If we 
naively combine the two patterns, each observer will be notified in turn of changes to the dataset and will then iterate 
over that dataset to take whatever action it needs. For large datasets, this could be quite inefficient. This is something 
we would like to address when transforming the PIM to a design PIM. A solution to this problem, called the Iterator-
Observer Pattern is described in [Bi03]. Iterator-Observer replaces each observer iterating separately over the dataset 
with a single iteration over the dataset where each observer is notified in turn at each data element. Below we show 
how to define the functional language equivalent of Iterator-Observer.  
 
First we need to introduce some rough functional analogs of the standard Iterator and Observer patterns.  

Observer 
For the functional analog of the Observer pattern, we assume there are n update functions (or callbacks) that are to be 
called when an Observable (a piece of data) changes. The function required to do this is somewhat the compliment of 
the Haskell library function map, except that it takes a list of functions and a single piece of data (as opposed to a 
single function and a list of data) and applies each function in turn to the piece of data. We will call this function mapfs 
and define it as follows: 
 
 mapfs :: [t->u] -> t -> [u] 
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 mapfs [] x = [] 
 mapfs (observer:observers) x = (observer x):mapfs observers x 

Iterator 
In the OO world, Iterator allows traversal over a collection, calling a fixed method at each element. To keep things 
simple, we will approximate this in the functional world with the use of the library function map which applies a function 
to each element in a collection. The following expression does the trick: 
 

map update collection  
 
Note that each update takes a piece of data and returns a result. 

Notification 
The function to carry out notification of changes to an Observable we call notify.  

 
notify :: [t->u] -> [t] -> [[u]] 

 
Notify takes a list of functions (updates) and invokes them in turn over the dataset. In the absence of Iterator-Observer,  
Notify is implemented by straightforward composition of the two patterns: 
 
 notify updates dataset =  

mapfs (map map updates) dataset                           (1)   
 
Intuitively, the innermost expression (map map updates ) maps the map function over the list of update functions 
(updates ) to arrive at a list of closures, each of which can map an update  function. mapfs  then “closes” each 
closure with the dataset  argument. As an example, suppose the dataset  is 
 [d1, d2,…,dn] 
and the list of update functions is 
 [fa, fb] 
Then map map updates is 
 [map fa, map fb]  
Therefore mapfs (map map updates) dataset is  
 [map fa dataset, map fb dataset] 
= 
 [[fa d1, fa d2, …, fa dn] 
  [fb d1, fb d2, …, fb dn]] 

Iterator-Observer 
Now consider introducing the Iterator-Observer pattern. To do this, the first iteration must be over the dataset, applying 
each update in turn to a data element. 
 
 map (mapfs updates) dataset 
 
In the above the map represents the “outer” iteration, the mapfs represents the “inner” iteration applying each update 
to the data element. However, the result will be transposed w.r.t. to the required result above. Therefore we finally 
apply a transpose function to the intermediate result to arrive at the transformed form of notification 

 
notify updates dataset =  

transpose (map (mapfs updates) dataset)                               (2)  
 
Taking the example earlier, 
 map (mapfs updates) dataset 
gives 

[mapfs [fa fb] d1,  
 mapfs [fa fb] d2, 
 … 
 mapfs [fa fb] dn] 

= 
[[fa d1, fb d1],  
 [fa d2, fb d2], 
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 … 
 [fa dn, fb dn]]  

Transposing this list gives 
 [[fa d1, fa d2, …, fa dn] 
  [fb d1, fb d2, …, fb dn]] 
 
Notice that in the informal description of the pattern in [Bi97], it is not immediately obvious that application of Iterator-
Observer is slightly different to applying Iterator to each invocation of Observer. The danger is that such subtle 
differences may not show up until run time and produce unexpected behavior (in the OO case, if each observer for 
example updates some visual display as it iterates over the dataset, the two forms will produce slightly different visual 
effects). On the other hand, the functional form, because it can be algebraically derived, makes it clear that the 
transpose function is required to really equate the two.  

Future Work 
We would like to look at more sophisticated example of functional program transformation for the purposes of mapping 
large scale functional programs to implementations. Again, we wish to draw inspiration from the use of design 
patterns, architectural patterns, and model transformation in use in the OO community. Of course, this is only possible 
if we have precise definitions of the source domains. Formulating such definitions is another area for exploration which 
we feel will be fruitful.  
 
Complementary to the problem of mapping to a target architecture is the equally challenging problem of weaving 
together functional specifications, the way aspects are weaved together. 
 
Good tool support to carry out transformations and manage libraries of transformations is going to be essential. We 
plan to look at tools such as MAG [MS] and XT [JVV01] from the program transformation world. 

We would also like to investigate “fusion” languages such as Scala [OAC+04] and O Haskell [No99] that provide 
support for OO concepts such as classes and inheritance within a functional programming paradigm. This would make 
for a smoother conversion from OO models (defined for example in a declarative UML subset) to the specification 
language. We hope to be able to use one of the model transformation tools such as GMT[BEW03] for this purpose. 

Related Work 
As noted earlier, viewing patterns as transformations was suggested by Tokuda and Batory [TB95] in the context of 
object oriented programs. Opdyke in his PhD thesis [Op92] suggested refactorings be viewed as transformations. And 
recently [TR01] refactoring has also been applied to functional programs. However, refactorings are a simple case of 
transformation in which the structure, but not the meaning, of the code is changed. Meanwhile, in the functional 
programming community, program transformation has been studied for quite some time. Over twenty years ago, 
Darlington discussed program transformation based on equational reasoning [Da82]. Many books on functional 
programming ([BW89], [Th96]) have at least a chapter or two on synthesizing or proving properties of functional 
programs. However, much of the attention on transformation in functional programming has been focussed on 
reducing algorithmic complexity and not on structural or model transformation. We want to leverage such work towards 
solving a slightly different problem. 
 
Our work also shares the same goals as much of the work in the fields of domain modeling and of MDA. The MIC 
group at Vanderbilt has been very active in the area of model transformation and aspect weaving. For example, 
[SAL+03] uses graph grammars to transform domain models. However, their emphasis is primarily on structural 
transformation. We believe that transforming behavior is at least as important as transforming structure. Also, they do 
not discuss how to prove or derive their transformations. Gray et.al. [GZL+04] apply transformation rules to legacy 
code using the DMS toolkit from Semantic Designs [SD]. However, their goal is reverse engineering rather than 
forward synthesis.  

The primary difference is in our use of declarative models, and of algebraic transforms on those models.  
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Appendix – Sketch of Proofs 
For our transformed function (cat’ ) to be correct w.r.t. to the simple version, at’ , we need to show that 

fst (at’ i xsh) = at xs i 
where xs  is an abbreviation for dataFromHandle xsh   
and  that 

cat’ i (c, xsh) = at’ i xsh 
when c <= xs  
where c <= xs  means c  is a prefix of xs  (that is, c  = take n xs  for some n < |xs|) 
 
The first requirement is straightforward to prove: 
 
fst (at’ i xsh) 
= {unfold defn of at’} 
fst ((�i->List (�listH->(at (dataFromHandle listH) i, listH))) i xsh) 
= {β reduction} 
fst (at (dataFromHandle xsh) i, xsh)) 
= {xs = dataFromHandle xsh} 
fst (at xs i, xsh) 
= {defn of fst} 
at xs i 
� 
 
The essence of the proof of the second requirement is to show that refresh preserves cache coherence. That is, we 
wish to show that 

fst (refresh (c, xsh) i) <= xs 
when c <= xs  
 
it is sufficient to show c  is always a prefix of xs  that is “long enough”  (i.e. of length at least i+1 ). Below is a sketch of 
a proof of that c  is a prefix of xs  (the full proof can be obtained from the authors). 
 

fst (refresh (c, xsh) i) 
= {case: i < |c|} 
 fst (c, xs) 
= {defn of fst} 
 c 
<= {assumption} 
 xs 
 

fst (refresh (c, xs) i) 
= {case: i >= |c|} 
 fst fetchDataFromServer (c, xsh) i 
= {defn of fetchDataFromServer } 
 c ++ sublist xs (length c) i 
= {defn of sublist} 
 c ++ take (i – length c + 1).drop (length c) xs 
<= {lemma, see below} 
 xs 
 
To complete this proof we need a technical lemma, which we do not prove here: for any lists xs , ys : 

xs ++ (take i).(drop |xs|) xs++ys  <= xs ++ ys, for  any i < |ys| 
 
We can demonstrate that c is “long enough”, by noting that the resulting list is always at least i+1  elements long, and 
is therefore “long enough”. 
 
A more detailed proof of the correctness of the transformation is available from the authors. 
� 
 


