Programming Language + Database

+ System = Computation + Persistence

Integrating
Programming Languages
& Databases

Applications

Programming
William Cook Languages Databases

Assistant Professor, UTCS
(with thanks to students in €S 395T fall 2003)

Applications are point of integration

Examples Approaches
— Mail/news/IM server/client + Lots of solutions
— E-Commerce application — Embedded SQL

— Spreadsheet, word processor

— Multi-user games

— Web applications

— Business (ERP, CRM, PRM, HRM, SCM)

— Source code control, file server

— Bibliography DB

— Factory/process control systems

— Just about any system you can thing of...

— Call Level Interfaces (CLI)

— Persistent programming language (PPL)
— Database programming languages (DBPL)
— Object-oriented database (OODB)

— Transaction middleware (EJB, COM+)

— Object-relational mapping (O/R)

* Lots of partial success...

History Goals

+ Persistent systems that are
— High performance, scalable, reliable
— Logical, clean programming model
» consistency, static typing
— Scales to multiple, concurrent...
« Users (concurrency)
* Machines (clustering, redundancy)
+ Developers (modularity)
— Effective design, maintenance & evolution

Negative Synergy

+ Connecting PL and DB is hard because

— Models don't match: "Impedance Mismatch”
Flat tables Complex objects
. Declarative queries Procedural programs
What's the pr‘oblem? Transactions Synchronization
Optimization Modularity
— Cultural mismatch
+ DP people don't understand PLs
- “everything is a database”
« PL people don't understand DBs
- "why can't I write everything in Java?"

Factors for Evaluating Solutions

+ Technical metrics + Human metrics
— Performance - Modularity
« throughput - Encapsulation
* latency — Development effort
— Reliability — Maintenance costs
— Scalability — Scalability of group
» Amount of data ~ Clarity
+ Number .of users - Beauty
: ;Z:‘ep;x::ange - (Hard fo measure)
+ Team size
- Consistency Most solutions only address
— Correctness

some of these factors

What Are Databases Good For?

1. Search algorithm compiler
- Queries specify what to find, not how
— Optimizations
Ordering of operations
Indexes, content heuristics
Physical characteristics (e.g. page size)
- Runtime compiler

2. Concurrency control
— Manage concurrent reads and writes

— Transactions
— ACID: Atomic, Consistent, Isolated, Durable

9 10
Programming Languages Good For? Two Views of Concurrency
* General-purpose computation Programming Languages
— Algorithms 'Y s Ty Coope_ratlpn,
» Cooperative concurrent computation i Syr_mchronlzatlon
_ Abstracti May share objects/memory
A SRT‘GC on . Ledape e Oy erriol TLE L
- Reuse, Modularity -~ -
+ Performance /
— Good at local optimizations Tibalines P ok
— Global optimization is much harder Databases . ([Fombuamenins 3
+ Object-oriented programs are difficult to Competition, ISOIat"_)n e
optimize Independent operation
. . Only point of sharing is database
+ Summary: anything and nothing... Ator);i[:; 9
1 12 [S. Blackman: Concurrency — the Fly in the Ointment]
Approaches to discuss
+ Database APIs
— “Call Level Interfaces”
+ Persistent objects
How to puf them Toge'l'her? — Object-Oriented Databases
— Persistent Programming Languages
— Object-Relational Mappers
* Transaction managers
- MTS/COM+, EJB
+ Blend of the above
- Java Data Objects
14

Approaches (not discussed)

+ Other ideas
— Embedded programming languages
- Active databases
— Database Programming Languages
— Object-relational databases
- XML

+ High rate of change...

— Many new proposals every year for last 10 years

Call Level Interfaces

The "state of the art” in practice

Call Level Interface (CLI)

- Set of APIs to run SQL commands

— These are the workhorse of database
interfaces technologies

+ Basic operations

— Connect to database

— Execute SQL commands (with parameters)
— Iterate over result set (if there is one)

+ Variations

— Access meta-data, convert data

* Note

— An interface to the database engine, not to
a particular logical database

Some DB Interface APIs

Embedded | ??? Required preprocessor
sQL

ODBC 1992 For “C"

SQL/CLI |1995 Standard based on ODBC
DAO ~1992 |VB and Jet DB engine
JDBC 1996 Java version of ODBC
RDO ~1996 |VB and any DB

OLE DB |~1996 |high-performance, C level
ADO ~1996 |VB and web scripting
ADO.NET | ~2001 | All languages, uses

17 18
ADO Example Calling Database Procedures
Dim db as new ADODB.Connection « Call a simple database function
Call db.Open("ODBC;DSN=" & DatabaseName
& ";,UID=" & UserName & ";PWWD=" & UserPassword) ~ pass a status parameter
— return list of rows and humber of rows
Dim rs as new ADODB.recordset . .
+ What we would like to write
Call rs.Open(db, “SELECT Name, Phone FROM Employee”)
Write “<Table> A
Do while not rs.EOF (L|S1’, NUmROWS) = DB.GGTRCCOrdS(STOTUS)
Write “<TR><TD>" & rs.Field(“Name”).value & “</TD>
Write “<TD>" & rs.Field(“Phone”).value & “</TD></TR>
rs.MoveNext
Loop
Write “</Table>
19 20
‘Create 2 output t
Set objCon = New ADODB.Connection Serte:b?Pa(r):EZb?éL?ZE:(ePamrré%er("roows“, CLI Issues
oo = teger, tput)
SetobjCom = New ADODB.Commeand Setobjpara2 = objComzrga?gsrar:me?;(r“nst:tzz"),
3 y y . adVarChar, adParamin, 50) . * H
Pleast ahange the helow conneclon sting asper your | ©DIPara2\Value = InputStatus No static syntax checking (!)
zE;ZTSig:;zzig;ﬁgEUSEd' 'Append the output parameters to command object - r‘S.Open("SELECT Nﬂme, Phone FROM Emp”)
"PROVIDER=SQLOLEDB.1:PASSWORD=PERSIST | ©biGom Parameters.Append objPara . .
SECURITY INFO=TRUE;USER ID=sa;INITIAL objCom.Parameters.Append objpara2 * No static type checkmg
CATALOG=TestSQL;DATA SOURCE=Rockets" .)
Store_theresult.marecordset —prs Field(“PhOne”) VGIUe
‘Opening the connection Set 0bjRS = objCom.Execute . .
objCon.Open objCon.ConnectionString ‘Openthe recordset . Com |ex error rone ro rammin
'as_signil_wgthe command object parameters E;‘;w('ﬂlgq‘_gt:gjsssﬁgzs Count - 1 P ! p , p g g
WinobiCom e it GBS Nama & & 0BRS(9 Valus — lots of code that doesn't do much
N fthe stored d ex .
CommandType = adCmaSioreaProc obRS. MoveNex * Hard-coded dependencies
'Type : storeq proced_ure Loop
E?znﬁ; = objConC 'retrieve the output parameters values - dlff|CUH' 1-0 m0|n1'0|n
MsgBox "Totalrecordsreturned: " & objPara.Value
MsgBox
‘closeconnection
objRS.Close
objCon.Close
21 22
CLI Issues CLI Summary
* No semantic connection between + Everyone knows it is terrible
database and progral
program + Lots of effort to do better
*+ Yet CLI is still ubiquitous
Program Database
Compiler DBMS
23 24

Object/Relational Mapping

Architecture of Business System

* Create a mapping

between objects

. User Interface
and relational

da'l'abase ‘ Views and Actions

Application

‘ Business Objects

Persistence Layer
- ‘ Mapping Objects

26
Database Access Layer Options Mapping Classes to Tables
1 2 3 - Instance variables in object
‘ Object-oriented language (C++, Smalltalk, Java, ...) — Columns in table
+ References to other objects
Object Foreign k
Access Layer — Foreign Keys
« Single valued and multi-valued
- Relationships have “two sides”
o + Inheritance
Relational Database Object-oriented .
Access Layer Database System — Several strategies
(OODBMS)
‘ Relational Database or other DBMS
27 28
Many-to-One Many-to-Many
class Order { class Course {
i int CourseID; Course
int OrderID; !) 0 eI CourselD integer KEY
date Date; String room; Room char(30)
' Order .
Item items[]: OrderID integer KEY Student enrolled(]:
Date date }
} N Enroliment
class Ttem { e S it b
int TtemID: int StudentID;
. String name;
Order order: Item Course registered[]; Student
Product product; ItemID integer KEY 9 g StudentIDinteger KEY
. . =~OrderID integer } Name char(50)
int quantity; ProductIDinteger
} Quantity integer
29 30
One Inheritance Tree = One Table One Class = One Table
+ All in one table * Map each class to a separate table
— fast query with cost of overloading — fast query for base type
— ambiguity: if attributes can be null — requires join for children
— less redundancy Base
Base SyntheticID integer
Base BaseAttribute
BaseAttribute AliClasses)
SyntheticlD integer BaseAttribute
|::> TypeCode Base |A | B A
BaseAttribute ... |::> SyntheticlD integer
A B Attribute_A1 Attribute A1 ...
Attribute_B1 A B
Attribute A1 | | Attribute_B1 B
AbUETAT Gl SyntheticlD integer
Attribute B ...
31

32

One Inheritance Path = One Table

Map each class to a separate table, include
parent attributes

— fast query for children, slower for base type

- no redundancy here

Issue: Type Mismatch?

+ Object-relational mapping shows..
— Object and relational types are compatible

| Iharabhases

Fragrammming Lanmagos

Base dats mrodels TP VST
— g\a”stletthifizllnlate Tteger schema TP SEPICsRcL
:Jil'-lllil.‘iE '-\.'iI:'iiII:.E
BaseAttribute A database 2xreot v
|:> SymheticI_D integer
e . - Is it really Object-Oriented?
a B — Object Behavior (methods) are not in DB
Attribute_AL Attribute_B1 B + some OODBs have done this
SyntheticlD integer
BaseAttribute ...
Attribute_B1
33 34
Issue: Efficiency Scalability via Replication
+ Objects are loaded when needed * Load-balancing Multiple machines
— Leads to “one at a time" load model — Load is distributed across machines
— Many-valued sets can be loaded together + Scalability
R s * Availability
esult: — Use of shared resources must be controlled
Many queries (could be hundreds!)
; ; + Problems
- fixed by caching?
> cache coherence across machines? ~ Cache coherency A .
« ensuring that changes on multiple machines are
+ "Clustered Read” problem consistent
— How do you provide high performance access — Locking
to large chunks of data via an O/R access + Distributed fransactions
layer?
35 36
Concurrency
+ Two transactions accessing same object
— How do you know what operation they will
perform?
— Both read, or will either of them write? iddl
+ Approaches to Isolation: Middleware
- 1) Copying
« Each transaction have a copy, in case one writes
* What if both update their copy of the object?
» How will the resulting changed be merged?
— 2) Locking
« Only one transaction at a time can access the object
— 3) Distinguishing reads/write methods
« Difficult to do for general OOP
37
Middleware ACID Transaction Principles
+ Transaction is a unit of work + Properties that must be preserved by
— Begin Transaction DBMS
- Do work... A Atomi Eh TTh - -
. omic ither all the operations in a
- Commit or Abort transaction are performed or none are
° Key issues C | Consistent | The database must be in a consistent
— Concurrency state at the start and end of every
« Multiple transactions running together fransaction
Fail I |Isolated |There is no interference between
— Failure concurrent transactions
+ Handling catastrophic system failures
D | Durable Once a transaction completes, its
affect is permanent even in the event
of complete system failure
39 40

Transactions from Client Viewpoint

+ Client code must indicate transaction
boundaries

— BeginTransaction
+ Do work...

— EndTransaction

+ This is a problem for modularity

— How do we assemble a composite transaction
from multiple parts, if each is
beginning/ending its own transaction

- Review solutions in Middleware area

Microsoft Transaction Server

+ Problem

— Programs that use begin/end transaction are
not reusable

— Transactions may involve multiple machines
and distributed computation

— How do transactions and objects
interrelate?

* Need for

— Compositional distributed transactions

41 42
MTS - Approach MTS > EJB
Declare certain classes as transactional + Evaluation
~ hew/require/support transaction — Good model of modular transactions
+ Unify quect and Atransgchon lifetime ' - Basis for design of EJB
— creating new/required object starts transaction . . .
~ supporting objects enlisted in transaction — session beans = MTS transactional objects
— fransaction commits when main object is freed — entity beans were added
+ Resource dispensers track operations + (have to be d-iffer‘en‘r‘in some wgy)
— database, email, message queue, (file system) Used for entity-relational mapping
+ No explicit entity-relational mapping
43 44
JDO Introduction
+ Standard for transparent Java object
persistence
— Developed through the Java Community
. Process (JCP).
Java Data ObJeCTS — JDO became a standard in March,2002
— Designed to allow "pluggable” vendor drivers
+ Combination of ..
— Orthogonal persistence
- CLI
— Object-relational mapping
46
Goals Why JDO?
+ Transparent object persistence + From an Application developer’s
— Minimal constraints on building classes perspective:
— No new data access language — No need to write persistent management code
- Use in a range of implementations B gzgls'cﬁ:;ﬁ;fc\(\'ew data and relationships as a
— J2SE (client-server) . Y
) — Data store independence
— J2EE (Enterprise Java Beans) . No vendor lockin
+ Data store independence + Portability between relational and object data
. stores
B Re!a‘rlonal .) — Object oriented features are supported
— object, object relational . .
. — No coding using SQL
— file system...
47 48

Using JDO

+ Build process
— Write your classes
— Describe persistence needs in a XML file
— Apply JDO enhancer to add hooks to .class

* Main classes

— Use the PersistentManager to create a
Transaction or a Query

— Use Transaction to control transaction
boundaries

- Use a Query to find objects

49

50

JDO Architecture

* Managed JDO architecture - EJB

— Implicit connection and transaction

@Iication Server

Enterprise Information
\ et

Life Cycle of JDO Instances

makePersistent commit
Persistent-new

rollback
deletePersistent
Commit, rollback Persistent Life Cycle of New-
new-deleted

Persistent Instances

. Commit, rollback
Persistent-clean

Read field

Class Employee

}

Class Department

JDO Query Example

Selects all ‘Employee’ instances from the candidate
collection whose ‘salary’ is greater than 3000

Class eClass = Employee.class:

Extent cEmp= pm.getExtent(eClass, false):
String name; String fil = "salary > 3000";

Float salary; Query q = pm.newQuery(eClass, cEmp, fil):
Department dept: Collection emps = (Collection) q.execute():
Employee boss: Employee e = (Employee) emps.getItem(1);
print (e.getName());

The salary comparison value is

Writefield o { parameterized.
Writefield S*IT"Q name; String param = “float sal";
Persistent-dirt Life Cycle of Datastore Collection emps; :
) P | GecloreParameters(paran)
(Collection) q.execute(new Float(30000)):
51 52
JDO Issues Summary
+ Like Orthogonal Persistence and O/R: * Negative Synergies
— Does not solve “clustered read”) -
. o rogramming Languages Databases
— Issues with distribution - —
. Modularity Query Optimization
* Like CLI: - : ;
. Object Sharing Transactions
- No syntax static of database code Static Tvoi 5 vl
— No static typing of database interface arc Typing ynamic SQ
Imperative Programming | Declarative Queries
Sequential execution Batch operations
+ Important research opportunity
53 54

