
Integrating
Programming Languages

& Databases

William Cook
Assistant Professor, UTCS

(with thanks to students in CS 395T fall 2003)

2

• System = Computation + Persistence

Applications are point of integration

Programming
Languages

Programming Language + Database

Applications

Databases

3

Examples

– Mail/news/IM server/client
– E-Commerce application
– Spreadsheet, word processor
– Multi-user games
– Web applications
– Business (ERP, CRM, PRM, HRM, SCM)
– Source code control, file server
– Bibliography DB
– Factory/process control systems
– Just about any system you can thing of…

4

Approaches

• Lots of solutions
– Embedded SQL
– Call Level Interfaces (CLI)
– Persistent programming language (PPL)
– Database programming languages (DBPL)
– Object-oriented database (OODB)
– Transaction middleware (EJB, COM+)
– Object-relational mapping (O/R)

• Lots of partial success…

5

History

RDBOO

ORDB

O/R map

ODMG

JDO

PPL

XML

MTS

TM

OODB

XML+DB

HTML

XML+PL

'85-'95

'95-present

EJB

6

Goals

• Persistent systems that are
– High performance, scalable, reliable
– Logical, clean programming model

· consistency, static typing
– Scales to multiple, concurrent…

· Users (concurrency)
· Machines (clustering, redundancy)
· Developers (modularity)

– Effective design, maintenance & evolution

What’s the problem?

8

Negative Synergy

• Connecting PL and DB is hard because
– Models don’t match: “Impedance Mismatch”

Flat tables Complex objects
Declarative queries Procedural programs
Transactions Synchronization
Optimization Modularity

– Cultural mismatch
· DP people don’t understand PLs

– “everything is a database”
· PL people don’t understand DBs

– “why can’t I write everything in Java?”

9

Factors for Evaluating Solutions

• Technical metrics
– Performance

· throughput
· latency

– Reliability
– Scalability

· Amount of data
· Number of users
· Complexity
· Rate of change
· Team size

– Consistency
– Correctness

• Human metrics
– Modularity
– Encapsulation
– Development effort
– Maintenance costs
– Scalability of group
– Clarity
– Beauty
– (Hard to measure)

Most solutions only address
some of these factors

10

What Are Databases Good For?

1. Search algorithm compiler
– Queries specify what to find, not how
– Optimizations

· Ordering of operations
· Indexes, content heuristics
· Physical characteristics (e.g. page size)

– Runtime compiler

2. Concurrency control
– Manage concurrent reads and writes
– Transactions
– ACID: Atomic, Consistent, Isolated, Durable

11

Programming Languages Good For?

• General-purpose computation
– Algorithms

· Cooperative concurrent computation
– Abstraction

· Reuse, Modularity

• Performance
– Good at local optimizations
– Global optimization is much harder

· Object-oriented programs are difficult to
optimize

• Summary: anything and nothing…

12

Two Views of Concurrency

Programming Languages
Cooperation,

Synchronization
May share objects/memory

Databases
Competition, Isolation
Independent operation
Only point of sharing is database
Atomic

[S. Blackman: Concurrency – the Fly in the Ointment]

How to put them together?

14

Approaches to discuss

• Database APIs
– “Call Level Interfaces”

• Persistent objects
– Object-Oriented Databases
– Persistent Programming Languages
– Object-Relational Mappers

• Transaction managers
– MTS/COM+, EJB

• Blend of the above
– Java Data Objects

15

Approaches (not discussed)

• Other ideas
– Embedded programming languages
– Active databases
– Database Programming Languages
– Object-relational databases
– XML

• High rate of change…
– Many new proposals every year for last 10 years

Call Level Interfaces

The “state of the art” in practice

17

Call Level Interface (CLI)

• Set of APIs to run SQL commands
– These are the workhorse of database

interfaces technologies

• Basic operations
– Connect to database
– Execute SQL commands (with parameters)
– Iterate over result set (if there is one)

• Variations
– Access meta-data, convert data

• Note
– An interface to the database engine, not to

a particular logical database
18

Some DB Interface APIs

Standard based on ODBC1995SQL/CLI

Java version of ODBC1996JDBC

Required preprocessor???Embedded
SQL

All languages, uses~2001ADO.NET
VB and web scripting~1996ADO
high-performance, C level~1996OLE DB
VB and any DB~1996RDO

VB and Jet DB engine~1992DAO

For “C”1992ODBC

19

ADO Example

Dim db as new ADODB.Connection
Call db.Open("ODBC;DSN=" & DatabaseName

& ";UID=" & UserName & ";PWD=" & UserPassword)

Dim rs as new ADODB.recordset

Call rs.Open(db, “SELECT Name, Phone FROM Employee”)
Write “<Table>”
Do while not rs.EOF

Write “<TR><TD>” & rs.Field(“Name”).value & “</TD>”
Write “<TD>” & rs.Field(“Phone”).value & “</TD></TR>”
rs.MoveNext

Loop
Write “</Table>”

20

Calling Database Procedures

• Call a simple database function
– pass a status parameter
– return list of rows and number of rows

• What we would like to write

(List, NumRows) = DB.GetRecords(Status)

21

Set objCon = New ADODB.Connection
Set objCom = New ADODB.Command

'Creating the DB connection string
'Please change the below connection string as per your
server and database being used.
objCon.ConnectionString =
"PROVIDER=SQLOLEDB.1;PASSWORD=;PERSIST
SECURITY INFO=TRUE;USER ID=sa;INITIAL
CATALOG=TestSQL;DATA SOURCE=Rockets"

'Opening the connection
objCon.Open objCon.ConnectionString

'assigning the command object parameters
With objCom
.CommandText = "GetRecords“

'Name of the stored procedure
.CommandType = adCmdStoredProc

'Type : stored procedure
.ActiveConnection = objCon.ConnectionString
End With

'Create 2 output parameters
Set objPara = objCom.CreateParameter("rows",

adInteger, adParamOutput)
Set objpara2 = objCom.CreateParameter("Status",

adVarChar, adParamIn, 50)
objpara2.Value = InputStatus

'Append the output parameters to command object
objCom.Parameters.Append objPara
objCom.Parameters.Append objpara2

'Store the result in a recordset
Set objRS = objCom.Execute

'Open the recordset
Do While Not objRS.EOF
For k = 0 To objRS.Fields.Count - 1
write objRS(k).Name & ": " & objRS(k).Value
Next
objRS.MoveNext
Loop

'retrieve the output parameters values
MsgBox "Total records returned: " & objPara.Value
MsgBox

'close connection
objRS.Close
objCon.Close

22

CLI Issues

• No static syntax checking (!)
– rs.Open(“SELECT Name, Phone FROM Emp”)

• No static type checking
– rs.Field(“Phone”).value

• Complex, error-prone programming
– lots of code that doesn’t do much

• Hard-coded dependencies
– difficult to maintain

23

CLI Issues

• No semantic connection between
database and program

Program

Compiler

Database

DBMS

24

CLI Summary

• Everyone knows it is terrible
• Lots of effort to do better
• Yet CLI is still ubiquitous

Object/Relational Mapping

26

Architecture of Business System

• Create a mapping
between objects
and relational
database

Persistence Layer

Application

User Interface
Views and Actions

Business Objects

Mapping Objects

DB

27

Database Access Layer Options

1 2 3

Object-oriented language (C++, Smalltalk, Java, …)

Relational Database or other DBMS

Object-oriented
Database System

(OODBMS)

Object
Access Layer

Object/Relational
Access Layer

Relational Database
Access Layer

View Interface

28

Mapping Classes to Tables

• Instance variables in object
– Columns in table

• References to other objects
– Foreign keys

· Single valued and multi-valued
· Relationships have “two sides”

• Inheritance
– Several strategies

29

Many-to-One

class Order {
int OrderID;
date Date;
Item items[];

}
class Item {

int ItemID;
Order order;
Product product;
int quantity;

}

Order
OrderID integer KEY
Date date

Item
ItemID integer KEY
OrderID integer
ProductIDinteger
Quantity integer

30

Many-to-Many
class Course {

int CourseID;
String room;
Student enrolled[];

}
class Student {

int StudentID;
String name;
Course registered[];

}

Course
CourseID integer KEY
Room char(30)
…

Student
StudentIDinteger KEY
Name char(50)
…

Enrollment
CourseID integer
StudentID integer

31

One Inheritance Tree = One Table

• All in one table
– fast query with cost of overloading
– ambiguity: if attributes can be null

AllClasses
SyntheticID integer
TypeCode Base | A | B
BaseAttribute …
Attribute_A1 …
Attribute_B1 …

Base

BaseAttribute

A

Attribute_A1

B

Attribute_B1

32

One Class = One Table

• Map each class to a separate table
– fast query for base type
– requires join for children
– less redundancy

A
SyntheticID integer
Attribute_A1 …

Base

BaseAttribute

A

Attribute_A1

B

Attribute_B1

Base
SyntheticID integer
BaseAttribute …

B
SyntheticID integer
Attribute_B1 …

33

One Inheritance Path = One Table

• Map each class to a separate table, include
parent attributes
– fast query for children, slower for base type
– no redundancy here

A
SyntheticID integer
BaseAttribute …
Attribute_A1 …

Base

BaseAttribute

A

Attribute_A1

B

Attribute_B1

Base
SyntheticID integer
BaseAttribute …

B
SyntheticID integer
BaseAttribute …
Attribute_B1 …

34

Issue: Type Mismatch?

• Object-relational mapping shows..
– Object and relational types are compatible

• Is it really Object-Oriented?
– Object Behavior (methods) are not in DB

· some OODBs have done this

35

Issue: Efficiency

• Objects are loaded when needed
– Leads to “one at a time” load model
– Many-valued sets can be loaded together

• Result:
Many queries (could be hundreds!)
à fixed by caching?
à cache coherence across machines?

• “Clustered Read” problem
– How do you provide high performance access

to large chunks of data via an O/R access
layer?

36

Scalability via Replication

• Load-balancing Multiple machines
– Load is distributed across machines

· Scalability
· Availability

– Use of shared resources must be controlled

• Problems
– Cache coherency

· ensuring that changes on multiple machines are
consistent

– Locking
· Distributed transactions

37

Concurrency

• Two transactions accessing same object
– How do you know what operation they will

perform?
– Both read, or will either of them write?

• Approaches to Isolation:
– 1) Copying

· Each transaction have a copy, in case one writes
· What if both update their copy of the object?
· How will the resulting changed be merged?

– 2) Locking
· Only one transaction at a time can access the object

– 3) Distinguishing reads/write methods
· Difficult to do for general OOP

Middleware

39

Middleware

• Transaction is a unit of work
– Begin Transaction

· Do work…
– Commit or Abort

• Key issues
– Concurrency

· Multiple transactions running together
– Failure

· Handling catastrophic system failures

40

ACID Transaction Principles

• Properties that must be preserved by
DBMS

Once a transaction completes, its
affect is permanent even in the event
of complete system failure

DurableD

There is no interference between
concurrent transactions

IsolatedI

The database must be in a consistent
state at the start and end of every
transaction

ConsistentC

Either all the operations in a
transaction are performed or none are

AtomicA

41

Transactions from Client Viewpoint

• Client code must indicate transaction
boundaries
– BeginTransaction

· Do work…
– EndTransaction

• This is a problem for modularity
– How do we assemble a composite transaction

from multiple parts, if each is
beginning/ending its own transaction

• Review solutions in Middleware area

42

Microsoft Transaction Server

• Problem
– Programs that use begin/end transaction are

not reusable
– Transactions may involve multiple machines

and distributed computation
– How do transactions and objects

interrelate?

• Need for
– Compositional distributed transactions

43

MTS – Approach

• Declare certain classes as transactional
– new/require/support transaction

• Unify object and transaction lifetime
– creating new/required object starts transaction
– supporting objects enlisted in transaction
– transaction commits when main object is freed

• Resource dispensers track operations
– database, email, message queue, (file system)

• No explicit entity-relational mapping

44

MTS à EJB

• Evaluation
– Good model of modular transactions

• Basis for design of EJB
– session beans = MTS transactional objects
– entity beans were added

· (have to be different in some way)
· Used for entity-relational mapping

Java Data Objects

46

JDO Introduction

• Standard for transparent Java object
persistence
– Developed through the Java Community

Process (JCP).
– JDO became a standard in March,2002
– Designed to allow “pluggable” vendor drivers

• Combination of..
– Orthogonal persistence
– CLI
– Object-relational mapping

47

Goals

• Transparent object persistence
– Minimal constraints on building classes
– No new data access language

• Use in a range of implementations
– J2SE (client-server)
– J2EE (Enterprise Java Beans)

• Data store independence
– Relational
– object, object relational
– file system…

48

Why JDO?

• From an Application developer’s
perspective:
– No need to write persistent management code
– Applications view data and relationships as a

class hierarchy
– Data store independence

· No vendor lock-in
· Portability between relational and object data

stores
– Object oriented features are supported
– No coding using SQL

49

Using JDO

• Build process
– Write your classes
– Describe persistence needs in a XML file
– Apply JDO enhancer to add hooks to .class

• Main classes
– Use the PersistentManager to create a

Transaction or a Query
– Use Transaction to control transaction

boundaries
– Use a Query to find objects

50

JDO Architecture

• Managed JDO architecture - EJB
– Implicit connection and transaction

management.

Enterprise Information
Systems

Bean

Servelet

Application Server

Container

Transaction Manger

R
e

so
u

rce
 A

d
a

p
te

r

JD
O

 Im
p
le

m
e
n

ta
tio

n

51

Life Cycle of JDO Instances

Transient

Persistent
new-deleted

Persistent-new Hollow

makePersistent

rollback

Commit, rollback

deletePersistent

commit

Life Cycle of New-
Persistent Instances

Persistent-clean

Persistent-dirty

Hollow

Commit, rollback

Commit, rollback

Read field
Write field

Write field

Life Cycle of Datastore
Transactions

52

JDO Query Example

Class Employee
{

String name;
Float salary;
Department dept;
Employee boss;

}
Class Department
{

String name;
Collection emps;

}

Class eClass = Employee.class;
Extent cEmp= pm.getExtent(eClass, false);
String fil = "salary > 3000";
Query q = pm.newQuery(eClass, cEmp, fil);
Collection emps = (Collection) q.execute();
Employee e = (Employee) emps.getItem(1);
print (e.getName());
The salary comparison value is

parameterized.
String param = “float sal";
q.declareParameters(param);
Collection emps =

(Collection) q.execute(new Float(30000));

Selects all ‘Employee’ instances from the candidate
collection whose ‘salary’ is greater than 3000

53

JDO Issues

• Like Orthogonal Persistence and O/R:
– Does not solve “clustered read”
– Issues with distribution

• Like CLI:
– No syntax static of database code
– No static typing of database interface

54

Summary

• Negative Synergies

• Important research opportunity

Batch operationsSequential execution
Declarative QueriesImperative Programming
Dynamic SQLStatic Typing
TransactionsObject Sharing
Query OptimizationModularity

DatabasesProgramming Languages

