
1. Onward!: Panel
New Programming Constructs

Beyond Inheritance, Patterns, and Notation:

William Cook, Phd
CTO, Allegis Corporation

2. Where are we?

Not on a gentle slope of progress

� Reality is more like chaotic experimentation

� Objects are important, but not everything

� No clear consensus on where to go next

Some suggestions…

3. What’s Left?

Postmodernism
� Collage of paradigms

Descriptive Language
� Quality of description

Linearity
� Change in requirements Change in implementation

Domain-Specific Modeling
� Are components / libraries enough?

Culture
� Do the big work, and the small

4. Postmodernism

Keys
� Human, not idealized
� Reject overall narrative

� Everything is an object.
� Objects model the real world

Collage of paradigms
� Make the pieces fit together

Examples
� Adding regular expressions to a language

� Can do with with classes, but not truly integrated
� Compilation? Binding variables?

� Relational Model and Object-Oriented Programming
� Still don’t have them working together well

� Allegis
� Configurable workflow processes, user-defined classification, roles, targeting
� Declarative user interface, security policies, declarative data model, event/action model
� HTML, JScript, C++, declarative transactions, Java C#, IDL, SQL, make, Excel, Outlook

Projects on SourceForge

Some say
� Objects model the real world

No…
� Encapsulated state+behavior is one way to model concepts

� Concepts are in your head, may or may not be aligned to real world
� The “way” may or may not be appropriate (Sapir-Whorf)

Instead ask…
� Does program describe things that matter in a way that makes

sense?
Examples
� Cross-object constraints

� Where do I implement “The person who
manages a product must work for the
company that sells the product”?

� Swing
� Is a Java Swing program the best way to describe a user interface?

5. Descriptive Language

Person Product

Company

manages

sellsworks for

6. Linearity

Linearity
� A change in requirements is proportional to the change in

implementation [Sussman]
� Or… program can be refactored simlar change is proportional next

time
� More important than encapsulation, modularity, reuse

Examples
� Aspects

� Localizing global policies
� Aspects identify a good problem

– But is pattern-matching and wrapping code the right solution?
� SQL

� Small change in query results in large change in query plan
– who cares, because it is automatic

7. Domain-Specific Modeling

� Benefits
� Models can provide descriptive language, locality
� Reuse the machines that make the parts, not the parts
� More abstraction, ability to do global analysis

� Languages and Architectures
� Markup languages
� Precise UML
� OMG Model-Driven Architecture
� Domain-specific languages

� Implementation Techniques
� Generative programming
� Meta-programming
� Staged computation
� Macros

� The next big thing
Glue

Domain-Specific Models

Model
Interpreter/Compiler

Components/Objects

8. Culture

Do the big work, and the small
� Make the basic things trivial

� Web and XML are simple ideas with great impact
� Look for incremental improvement in addition to revolutionary ideas

� Then solve the hard problems

Academia & Industry working together
� Industry needs help now, not just in 10 years
� Need more mutual understanding
� No more Colored Points
� Consider Academic and industrial value systems

9. Summary

Postmodernism
� Making paradigms work together is hard

Descriptive Language
� Does program describe things that matter in a way that makes sense?

Locality and Linearity
� Architecture should localize things that are important

Domain-Specific Modeling
� “Everything is a model”

Culture
� Do the big work, and the small

