
The Native POSIX Thread Library for Linux
February 2003
by: Ulrich Drepper and Ingo Molnar

Abstract
The Linux Threads library which is currently part of the standard runtime
environment of a Linux system does a poor job of satisfying the demand for
POSIX compliant threading used in modern systems. It is not designed to
leverage the Linux kernel extensions present and in development today, it does
not scale efficiently, and it does not take modern processor architectures into
account. A completely new design is necessary and this paper will outline the
design and implementation.

Copyright ©2003 Red Hat, Inc.

Table of Contents
The Initial Implementation ...3
Improvements Over Time ...3
Problems with the Existing Implementation ..5
Goals For A New Implementation ...6
Design Decisions ...8

1-on-1 vs. M-on-N ...8
Signal Handling ...9
Helper/Manager Thread or Not ..10
List of all Threads ...11
Synchronization Primitives ...12
Memory Allocation ..12

Kernel Improvements ...13
Results ..15

Thread Creation and Destruction Timing ..16
Contention Handling ...17

Remaining Challenges ...17

The Native POSIX Thread Library for Linux 2

The Initial Implementation
The Linux Threads implementation, which is currently the standard POSIX
thread library for Linux, is based on the principles outlined by the kernel
developers at the time the code was written in 1996. The basic assumption was
that context switches among related processes would be fast enough to handle
each user-level thread by one kernel thread. Kernel processes can have various
degrees of relationships for sharing. The POSIX thread specification requires
sharing of almost all resources between threads.

Missing thread-aware Application Binary Interface Specifications (ABIs) for the
target architectures, the design did not use thread registers. The thread-local
memory was instead located using fixed relationships between the stack pointer
and the position of the thread descriptor.

A manager thread was required to implement correct semantics for signals,
thread creation, and various other parts of process management.

Perhaps the biggest problem was the absence of usable synchronization
primitives in the kernel which forced the implementation to resort to using
signals. The absence of a concept for thread groups in the kernel versions of the
time led to non-compliant and fragile signal handling in the thread library.

Improvements Over Time
The code of the thread library was significantly improved in the six years
following its creation. The improvements came in two principal areas: the ABI
and the kernel.

Newly defined ABI extensions allowed the use of thread registers or constructs,
which can work like registers. This was an essential improvement making
locating thread-local data a less time consuming operation. Locating thread-local
data is essential to almost any operation in the thread library itself. This data is
used by the rest of the runtime environment and user applications as well.

For some CPU architectures the changes were easy. Some had registers
specifically set aside for this purpose, while others had special processor
features which allowed storing values in the execution context. But some
architectures were left out since they had neither. Those architectures still
defered to the method of calculating the thread-local data position based on the
stack address. Besides being a time costing calculation, the APIs that allow the
programmer to select the position and size of the stack cannot function correctly
for these architectures. These interfaces are especially important when large
numbers of threads are used, either at one time or in succession.

The Native POSIX Thread Library for Linux 3

The solution used for Intel's 32-bit CPU Architecture (IA-32) is worth noting since
it is not straight-forward and, as undoubtedly the most prevalent microcomputer
architecture, it influences the design. IA-32, being register starved, has two
registers which were not used in the original ABI: the segment registers %fs and
%gs. Though not generally usable for storing arbitrary values, they can be used
to access memory at arbitrary positions in the virtual memory address space of
the process given a fixed offset. The segment register value is used to access
data structures the kernel creates for the processor to access and which
contains a base address for each valid segment index. With different base
addresses it is possible to access different parts of the virtual address space
using the same offset; this is exactly what is needed for thread-local data
access.

The problem with this approach is that the segment registers must be supported
by some data structures the processor uses. The base address of the segment
is stored in a descriptor table. Access to these data structures is limited to the
operating system itself and not the user level code, which means operations to
modify the descriptor table are slow. Context switching between different
processes is also slower since additional data structures must be reloaded at
every context switch. Additionally, the kernel must handle memory allocation for
the table which can be problematic if many entries are needed due to the limited
nature of the memory required (it must be in permanently mapped memory).
Finally, the number of different values the segment register can have, and
therefore the number of different addresses which can be represented, is limited
to 8192.

Overall, using "thread registers" brought more speed, flexibility, and Applications
Programming Interface (API) completeness but restricted the number of threads
and had negative impacts on the system's overall performance.

The changes made in the development of the kernel up to version 2.4 consisted
of stabilizing the functionality which allowed use of the IA32 segment registers
as well as improvements to the clone system call which is used to create the
kernel threads. These changes eliminate some of the requirements for the
existence of the manager thread and also provide the correct process ID
semantics as the process ID is the same for all threads.

Unfortunately, the manager thread still could not be eliminated completely for a
number of reasons. One reason is that the stack memory deallocation could not
be performed by the thread which uses the memory itself. A second reason is
that terminated threads must be waited on in order to avoid zombie kernel
threads. Since these and numerous other problems were not yet solved, there
was limited incentive to rewrite the thread library to take advantage of the new
features which became available.

The Native POSIX Thread Library for Linux 4

Problems with the Existing
Implementation
The existing Linux Threads implementation has been found to perform
reasonably well in many applications;nevertheless, it has numerous problems,
especially when operated in extreme circumstances:� The existence of the manager thread causes problems. If the manager thread

gets killed the remainder of the process is in a state which must be manually
cleaned up. Having the manager handle operations like thread creation and
cleanup makes it a bottleneck.� The signal system is severely broken. It does not conform with the behavior
POSIX specifies. Sending a signal to the process as a whole could not be
implemented.� The use of signals to implement the synchronization primitives causes
enormous problems. The latency of the operations is high and the already
complicated signal handling in the thread library gets even more complicated.
Spurious wakeups are frequent and must be distinguished from normal
wakeup conditions and handled appropriately. In addition to the probability of
misinterpreting a wakeup, this adds additional pressure on the kernel signal
system.� The incorrect implementation- of SIGSTOP and SIGCONT is a noteworthy
case of broken signal handling. Without the kernel handling these signals
correctly the user cannot stop a multi-threaded process (e.g., with Control-Z
in shells with job handling support). In that case only one thread is stopped.
Debuggers make use of this interface and therefore have similar problems.� Each thread having a different process ID causes compatibility problems with
other POSIX thread implementations. This is in part a moot point since
signals can'tbe used very well but is still noticeable.� On IA-32, the artificial limit on the number of threads (8192, minus one for the
manager) has proven troublesome. Although threads are often misused in
such situations, the offending applications are known to work on other
platforms.

On the kernel side there are also problems:� Processes with hundreds or thousands of threads render the /proc file system
barely usable. Each thread shows up as a separate process.

The Native POSIX Thread Library for Linux 5

� The problems with the signal implementation are mainly due to missing
kernel support. Special signals like SIGSTOP would have to be handled by
the kernel and for all threads.� The misuse of signals to implement synchronization primitives adds even
more to the problems. Delivering signals is a very heavy-handed approach to
ensure synchronization.

Goals For A New Implementation
Trying to incrementally fix the existing implementation would not have been
efficient. The whole design is centered around limitations of 1996-era Linux
kernel technology. A complete rewrite taking into account modern kernel
features was necessary. The goal was to be ABI compatible with Linux
Threads,which is not an unobtainable goal thanks to the way the old thread API
was designed. Still it was necessary to reevaluate every design decision made.
Making the right decisions meant knowing the requirements of the
implementation. The requirements which were collected include:

POSIX compliance

Compliance with the latest POSIX standard is the highest goal to achieve source
code compatibility with other platforms. This does not mean that extensions
beyond the POSIX specification are not added, but rather that POSIX
compliance must take precedence.

Effective use of SMP

One of the main goals of using threads is to provide means to use the
capabilities of multi-processor systems. Splitting the work in as many parts as
there are CPUs can ideally provide linear speedups.

Low startup cost

Creating new threads should have very low associated costs so that it's
possible to create threads even for small pieces of work.

Low link-in cost

Programs linked with the thread library (directly or in-directly) but not using
threads should be minimally affected.

The Native POSIX Thread Library for Linux 6

Binary compatibility

The new library should be maximally binary compatible with the Linux Threads
implementation. Some semantic differences are unavoidable as the Linux
Threads implementation is not POSIX compliant; the non-compliant functionality
necessarily must change.

Hardware Scalability

The thread implementation should run sufficiently well on large numbers of
processors. The administrative costs should not rise much with increasing
numbers of processors.

Software Scalability

Another use of threads is to solve sub-problems of the user application in
separate execution contexts. In Java environments threads are used to
implement the programming environment due to missing asynchronous
operations. The result is the same: enormous amounts of threads can be
created. The new implementation should ideally have no fixed limits on the
number of threads or any other object.

Machine Architecture Support

Designs for mainframe machines have always been more complicated than
those for consumer and mainstream machines. Efficient support for these
machines requires the kernel and user-level code close to the OS to know
details about the machine's architecture. For instance, processors in these
machines are often divided into separate nodes, and using resources on other
nodes is more expensive.

NUMA Support

One special class of future machines of interest are based on non-uniform
memory architectures (NUMA). Code like the thread library should be designed
with this in mind to leverage the benefits of NUMA when using threads on such
machines. For these systems the design of data structures is critical.

Integration With C++

C++ defines exception handling, which deals automatically with the cleanup of
objects in the scopes left when throwing an exception. Cancellation of a thread
is similar to this, and it is reasonable to expect that cancellation also calls the
necessary object destructors.

The Native POSIX Thread Library for Linux 7

Design Decisions

Before starting the implementation, a number of basic decisions have to be
made. They affect the implementation fundamentally.

1-on-1 vs. M-on-N

The most basic design decision involves the relationship between the kernel
threads and the user-level threads. It need not be mentioned that kernel threads
are used; a pure user-level implementation could exist, but it would not be able
to take advantage of multi-processing, which was one of the primary goals listed
previously.

One valid possibility is the 1-on-1 model of the Linux Threads implementation
where each user-level thread has an underlying kernel thread. The whole thread
library could be a relatively thin layer on top of the kernel functions.

The most popular alternative is a library following the M-on-N model where the
number of kernel threads and user-level threads do not have to be in a fixed
correlation. Such an implementation schedules the user-level threads on the
available kernel threads. In this case we actually have two schedulers at work.
Since there is no default mechanism for explicit collaboration between the two
schedulers, the independent scheduling decisions can significantly reduce
performance. Various schemes to achieve collaboration have been proposed.
The most promising and most used is Scheduler Activations. Here the two
schedulers work closely together; the user-level scheduler can give the kernel
scheduler hints while the kernel scheduler notifies the user-level scheduler about
its decisions.

The consensus among the kernel developers was that an M-on-N
implementation would not fit into the Linux kernel concept. The necessary
coordinated scheduling infrastructure that must be added comes with a cost
which is too high. To allow context switching in the user-level scheduler it would
be often necessary to copy the contents of the registers from the kernel space.

Additionally many of the problems the user-level scheduling helps to prevent are
not real problems for the Linux kernel. Huge numbers of threads are not a
significant issue since the scheduler and all the other core routines have
constant execution time (O(1)) as opposed to linear time with respect to the
number of active processes and threads.

Finally, the costs of maintaining the additional code necessary for an M-on-N
implementation cannot be neglected. Especially for highly complicated code like
a thread library, there's a lot to be said for a clean and slim implementation.

The Native POSIX Thread Library for Linux 8

Signal Handling

Another reason for using an M-on-N model is to simplify the signal handling in
the kernel. Signal masks are maintained on a per-thread basis whereas the
registration of a signal handler, and therefore also the fact whether a signal is
ignored, is a process wide property. With large numbers of threads in a process
the kernel potentially must check every thread's signal mask to determine
whether a signal can be delivered. If the number of kernel threads would be kept
low by the M-on-N model the equivalent work would be done at the user level.

Handling the final signal delivery at the user-level has several drawbacks. A
thread which does not expect a certain signal must not be able to detect that it
received a signal. The signal would be noticeable if the thread's stack were used
for the signal delivery or if the thread received an interrupted by signal (EINTR)
error from a system call. The former situation can be avoided by using an
alternate stack to deliver signals but adds complexity since the use of an
alternate stack is also available to the user through the sigaltstack call. To
prevent unacceptable EINTR results from system calls, the system call wrappers
have to be extended which introduces additional overhead for normal operation.

There are two alternatives for the signal delivery scenario:

1. Signals are delivered to a dedicated thread which does not execute
any user code (or at least no code which is not willing to receive all
possible signals). The drawbacks include the costs for the additional
thread and, more importantly, the serialization of signals. The latter
means that, even if the dedicated signal thread distributes the handling
of signals to other threads all signals are funneled through the dedicated
signal thread. This is contrary to the intent (but not the words) of the
POSIX signal model which allows parallel handling of signals. If reaction
time on signals is an issue, an application might create a number of
threads with the sole purpose of handling signals. This would be
defeated by the use of a signal thread.

2. Signals could also be delivered to the user level by a different means.
Instead of the signal handler, a separate up call mechanism is used.
This is what would be used in a Scheduler Activation based
implementation. The costs are increased complexity in the kernel, which
would have to implement a second signal delivery mechanism, and the
required emulation of some signal functionality by the user level code.
For instance, if all threads block in a read call and a signal is expected to
wake one thread by returning with EINTR, this thread must receive the
return code and continue processing.

The Native POSIX Thread Library for Linux 9

In summary, it is certainly possible to implement the signal handling of a M-on-N
implementation at user-level, but it adds complexity, bulk, and unnecessary
delay.

Alternatively all POSIX signal handling can be implemented in the kernel. In this
case the kernel must resolve the multitude of signal masks, but the
implementation is otherwise straightforward. Since the signal will only be sent to
a thread if it is unblocked, no unnecessary interruptions through signals occur.
The kernel is also in a much better situation to determine the best thread to
receive the signal. Obviously this helps only if the1-on-1 model is used.

Helper/Manager Thread or Not

In the current Linux Threads library a so-called manager thread is used to
handle a variety of internal work. The manager thread never executes user
program code. Instead all the other threads send requests like 'create a new
thread' which are centrally and sequentially executed by the manager thread.
This is necessary to help implement the correct semantics for a number of
problems:� To be able to react to fatal signals and kill the entire process, the creator of a

thread constantly has to watch all the children. This is not possible except in
a dedicated thread if the kernel does not take over the job.� Deallocation of the memory used as stacks has to happen after the thread is
finished; therefore the thread cannot deallocate it's own stack.� Terminating threads have to be waited on to avoid turning them into zombies.� If the main thread calls pthread_exit the process is not terminated; the
main thread goes to sleep and it is the job of the manager to wake it once the
process terminates.� In some situations threads need help to handle semaphore operations.� The deallocation of thread-local data requires iterating over all threads which
has to be done by the manager.

None of these problems necessarily implies that a manager thread must be
used. With some support in the kernel the manager thread is not necessary at
all. With a correct implementation of the POSIX signal handling in the kernel the
first item is solved. The second problem can be solved by letting the kernel
perform the deallocation (whatever this actually might mean in an

The Native POSIX Thread Library for Linux 10

implementation). The third item can be solved by the kernel's automatically
reaping terminated threads. The other items also have solutions, either in the
kernel or in the thread library.

Not being forced to serialize important and frequently performed requests like
creating a thread can be a significant performance benefit. The manager thread
can only run on one of the CPUs, so any synchronization done can cause
serious scalability problems on SMP systems, and even worse scalability
problems on NUMA systems. Frequent reliance on the manager thread also
causes a significantly increased rate of context-switching. Having no manager
thread in any case simplifies the design. The goal for the new implementation
therefore should be to avoid a manager thread.

List of all Threads

The Linux Threads implementation keeps a list of all running threads which is
occasionally traversed to perform operations involving all threads. The most
important operation is killing all threads at process termination. This could be
avoided if the kernel were responsible for killing the threads when the process
exits.

The thread list is also used to implement the pthread key delete function. If a key
is deleted by a call to pthread_key_delete and later reused when a following
call to pthread_key_create returns the same key, the implementation must
make sure that the value associated with the key for all threads is NULL. The
Linux Threads implementation achieves this by walking the list to actively clear
the slots of the thread-specific memory data structures at the time the key is
deleted.

This is a cumbersome implementation of pthread_key_delete. If a thread list
(or walking it) has to be avoided, it must be possible to determine whether a
destructor must be called. One possible implementation involves generation
counters. Each key for thread-local storage and the associated memory in the
thread's data structures would have such a counter. Upon allocation the key's
generation counter would be incremented and the new value assigned to the
counter in the thread data structure for the key. Deleting a key also causes the
key's generation counter to be incremented. On exit it is only necessary to
execute the destructors for which the generation counter of the key matches the
counter in the thread's data structure are executed. The deletion of a key
therefore becomes a simple increment operation.

Maintaining the list of threads can not be entirely avoided. Implementation of the
fork function without memory leaks requires reclaiming the memory used for
stacks and other internal information of all threads except the thread calling
fork. The kernel can not help in this situation.

The Native POSIX Thread Library for Linux 11

Synchronization Primitives

The implementation of the synchronization primitives such as mutexes, read-
write locks, condition variables, semaphores, and barriers requires some form of
kernel support. Busy waiting is inefficient and fails to account for differences in
thread priorities. The same arguments rule out the exclusive use of sched yield.
Signals were the only viable solution for the Linux Threads implementation.
Threads block in the kernel until woken by a signal. This method has severe
drawbacks in terms of speed and reliability caused by spurious wakeups and
degradation of the quality of the signal handling in the application.

Fortunately some new functionality was added to the kernel to implement all
kinds of synchronization primitives in the form of futexes [Futex]. The underlying
principle is simple but powerful enough to adapt to all kinds of uses. Callers can
block in the kernel and be woken either explicitly as a result of an interrupt or
after a timeout.

For example, a mutex can be implemented in half a dozen instructions with the
fast path being entirely at user-level. The wait queue is maintained by the kernel.
There are no further user-level data structures needed which have to be
maintained and cleaned up in case of cancellation. The other three
synchronization primitives can be equally well implemented using futexes.

Another benefit of the futex approach is that it works on shared memory regions
and can therefore be shared by processes having access to the same piece of
shared memory. This, together with the wait queues being entirely handled by
the kernel, is exactly the requirement the inter-process POSIX synchronization
primitives have. It now becomes possible to implement the desired
PTHREAD_PROCESS_SHARED option.

Memory Allocation

One of the goals for the library is to have minimal startup costs for threads. The
biggest time consuming operation outside the kernel is allocating the memory
needed for the thread data structures, thread-local storage, and the stack.
Optimizing this memory allocation is done in two steps:� The necessary memory blocks are merged, i.e., the thread data structures

and the thread-local storage are placed on the stack. The usable stack array
starts just below (or above in case of an upward growing stack) the memory
needed for the two.

The Native POSIX Thread Library for Linux 12

In the thread-local storage, ABI defined in the ELF gABI requires only one ad-
ditional data structure, the DTV (Dynamic Thread Vector). The memory
needed for it might vary and therefore cannot be allocated statically at thread
start time.� Since the memory handling, especially the de-allocation, is slow, major
improvements can be achieved by avoiding unnecessary allocation and
deallocation. An munmap of the stack frame causes expensive translation
look-aside buffer (TLB) operations, e.g., on IA-32 it causes a global TLB
flush, which must also be broadcast to other CPUs on SMP systems. If
memory blocks are kept for reuse and not freed directly when the thread
terminates, the number of allocation/deallocation cycles is reduced. Hence
the caching of stack frames is a key step toward good thread-create and
thread-exit performance.

A by-product advantage is that at the time a thread terminates some of the
information in the thread descriptor is in a useful state and does not have to
be re-initialized when the descriptor gets reused.

It is not possible to keep unlimited memory around for reuse, especially on
32-bit machines due to their restricted address space. A maximum size for
the memory cache is needed. This is a tuning variable which on 64-bit
machines might as well have a value large enough to never be exceeded.

This scheme works fine most of the time since the threads in one process often
have only a very limited number of different stack sizes.

One potential drawback of this scheme is that the thread handle is simply the
pointer to the thread descriptor, so successively created threads will get the
same handle. This might hide bugs and lead to strange results. If this became a
significant problem, the thread descriptor allocation routine could have a debug
mode in which it would avoid producing the same thread handles again. This is
nothing the standard runtime environment should be troubled with.

Kernel Improvements

The early 2.5.x development version of the Linux kernel provided only a portion
of the functionality needed for a good thread implementation. Additional changes
to the official kernel were made in August and September 2002 by Ingo Molnar
as part of this project. The design of the kernel functionality and thread library
went hand in hand to ensure optimal interfaces between the two components.
Changes to the kernel include:

The Native POSIX Thread Library for Linux 13

� Support for an arbitrary number of thread-specific data areas on IA-32 and
x86-64 through the introduction of the TLS system call. This system call
allocates one or more GDT (Global Descriptor Table, a CPU data structure)
entries which can be used to access memory with a selected offset. This is
an effective replacement for a thread register. The GDT data structure is per-
CPU and the GDT entries per-thread are kept current by the scheduler.

The TLS patch enabled the implementation of the 1-on-1 threading model
without limitation on the number of threads. The previously used method (via
the LDT, local descriptor table, CPU data structure) had limited the number of
threads per process to 8192. To achieve maximal scalability without this new
system call, an M-on-N implementation would have been necessary.� The clone system call was extended to optimize the creation of new threads
and to facilitate the termination of threads without the help of another thread.
The manager thread fulfilled this role in the Linux Threads implementation. In
the new implementation the kernel stores the thread ID of the new thread in a
given memory location if the CLONE_PARENT_SETTID flag is set. This
implementation also clears this memory location once the thread is
terminated if the CLONE_CLEARTID flag is set. This can be used by user-
level memory management functionality to recognize an unused memory
block. This helps enable implementation of user-level memory management
without kernel intervention.

Furthermore the kernel does a futex wakeup on the thread ID. This feature is
used by the pthread_join implementation.

Another important change is adding support for a signal safe loading of the
thread register. Since signals can arrive at any time they either have to be
disabled for the duration of the clone call, or the new thread must be started
with the thread register already loaded. The latter is what another extension
to clone implements, via the CLONE_TLS flag. The exact form of the
parameter passed to the kernel is architecture specific.� The POSIX signal handling for multi-threaded processes is now implemented
in the kernel. Signals sent to the process are now delivered to one of the
available threads of the process. Fatal signals terminate the entire process.
Stop and continue signals affect the entire process, enabling job control for
multi-threaded processes, a desirable feature missing in the Linux Threads
implementation. Shared pending signals are also supported.� A second variant of the exit system call was introduced: exit_group. The
old system call kept the meaning of terminating the current thread. The new
system call terminates the entire process.

The Native POSIX Thread Library for Linux 14

	 Simultaneously the implementation of the exit handling was significantly
improved. The time to stop a process with many threads now takes only a
fraction of what it used to. In one instance starting and stopping 100,000
threads formerly took 15 minutes compared to the 2 seconds it now takes.
 The exec system call now provides the newly created process with the
process ID of the original process. All other threads in the process are
terminated before the new process image gets control.� Resource usage reported to the parent (CPU time, wall time, page faults,
etc.) are reported for the entire process and not just the initial thread.� The /proc directory implementation was improved to cope with the
potentially thousands of entries resulting from the threads in all the
processes. Each thread has its own subdirectory but all names, except those
of the main thread, start with a dot and are therefore not visible in the normal
output of ls. The overall implementation of the /proc filesystem has been
improved and optimized to handle huge amounts of data Support for detached threads, for which no wait has to be performed by the
joining thread. This join is now implemented via a futex wakeup in the kernel
upon thread exit.� The kernel maintains the initial thread until every thread has exited. This
ensures the visibility of the process in /proc, and ensures signal delivery as
well.� The kernel has been extended to handle an arbitrary number of threads. The
PID space has been extended to a maximum of 2 billion threads on IA-32,
and the scalability of massively-threaded workloads has been improved
significantly. The /proc file system can now support more than 64k
processes.� The way the kernel signals termination of a thread makes it possible for
pthread_join to return after the child is really dead, i.e., all TSD
destructors ran, and therefore stack memory can be reused, which is
important if the stack was allocated by the user.

Results

This section presents the results of two completely different measurements. The
first set is a measurement of the time needed for thread creation and
destruction. The second measurement concerns itself with measuring the
handling of lock contention.

The Native POSIX Thread Library for Linux 15

Thread Creation and Destruction Timing

What is measured is simply the time to create and destroy threads under various
conditions. The first variable in this test is the number of threads which exist at
one time. If the maximum number of parallel threads is reached, the program
waits for a thread to terminate before creating a new one. This keeps resource
requirements at a manageable level. New threads are created by possibly more
than one thread; the exact number is the second variable in the test series.

The tests performed were:

for 1 to 20 top level threads creating new threads

create for each top level thread up to 1 to 10 children

The number of times we repeated the thread creation operation is 100,000 - this
was only done to get a measurable test time and should not be confused with
earlier tests that tended to start up 100,000 parallel threads at once.The result is
a table measuring 200 execution times. Each time is indexed with the number of
top level threads and the maximum number of threads each top level thread can
create before having to wait for one to finish. The created threads do no work at
all, they just finish.

The results of the benchmark runs are summarized in two tables. In both cases
we flatten one dimension of the measurement result matrix with a minimal
function. Figure 1 (see page 18) shows the result for the different number of top
level threads creating the actual threads we count. The value used is the
minimal time required of all the runs with different numbers of threads which can
run in parallel. What we can see is that NGPT is indeed a significant
improvement over Linux Threads; NGPT is twice as fast. The thread creation
process of Linux Threads was really complicated and slow, so it is surprising
that a difference to NPTL is so large (a factor of four).The second summary
looks similar. Figure 2 (see page19) shows the minimum time needed based on
the number of top level threads. The optimal number of threads which are used
by each top level thread determines the time.

In Figure 2 we see the scalability effects. If too many threads in parallel try to
create even more threads all implementations are impacted, some more, some
less.

The Native POSIX Thread Library for Linux 16

Contention Handling

Figure 3 (see page 20) shows timings of a program which creates 32 threads
and a variable number of critical regions which the threads try to enter, a total of
50,000 times [csfast]. The fewer critical regions that exist, the higher the
probability of contention.

Figure 3 shows significant variations even though the numbers are averages
over 6 runs. These differences are caused by scheduling effects which affect all
programs. These threads are not responsible for real work and instead spend all
of their execution time creating scheduling situations (like blocking on a mutex).
The results for the two kernel versions show that:� the times for NPTL are significantly lower than those for Linux Threads.� the 2.4.20-2.21 kernel has a scheduler which was changed to handle new

situations that frequent use of futexes create. Similar changes will be made
for the 2.5 development kernel. The message from this development is that
tuning of the kernel scheduler is necessary and provides significant gains.
There is no reason to believe the code in 2.4.20-2.21 is in any way optimal.� the expected asymptotic behavior is visible.

Remaining Challenges

A few challenges remain before 100% POSIX compliance can be achieved. The
selection of a remedy path will depend on how well a solution fits into the Linux
kernel implementation. The setuid and setgid families of system calls must affect
the entire process and not just the initial thread.

The nice level is a process-wide property. After adjusting it, all threads in the
process must be affected. The CPU usage limit, which can be selected with
setrlimit, limits the time spent by all threads in the process together. Real time
support is mostly missing from the library implementation. The system calls to
select scheduling parameters are available but they have no guaranteed effect
as large parts of the kernel do not follow the rules for real time scheduling. For
instance, waking one of the threads that is waiting for a futex is done without
looking at the priorities of the threads in the queue. There are additional places
where the kernel misses appropriate real time support. For this reason the NPTL
does not attempt to support something which cannot be achieved at the kernel
level.

The library implementation contains a number of places with tunable variables.
In real world situations reasonable default values must be determined.

The Native POSIX Thread Library for Linux 17

Figure 1: Varying number of Top level Threads

The Native POSIX Thread Library for Linux 18

� � � � � � � � � ���
� �!�"��#�$�%�"�� �&�!�"�� �&�!�"�� �$�%�"�� �&�%�'�� �&�!�"�� �$�%�"��(�&�%�'�� �&�!�"����"�$�%�"��(�)�&�%�'�� � �&�!�"�� � �$�%�"�� � �&�%�'�� � �&�!�"�� � �&�!�"�� � �&�!�"�

*,+.-0/.132546-0/.1879/:1<;=2?><@BA%7DCE/<-GF0HI-KJL1M;ONP/

QSR(TVU QXWOR"T UZY\[^]`_`Tbadcfe(gih^j

klmn

Figure 2: Varying number of Concurrent Children

The Native POSIX Thread Library for Linux 19

o p q r s t u v w oxo o q o s o u o w
y

p y
r y
t y
v yo�y"yo p y

o r y
o t y
o v y
p y"y
z,{3|0}�~3���6|0}�~8�9}:~M�O���I�B�%�D�D}I|����<|Z��~<�=�P}

�S� �X� �X�3��� �d�\�i�K�K�b�^�f�(� �x¡

¢£¤¥

Figure 3: Lock Contention Handling

The Native POSIX Thread Library for Linux 20

¦¦ ¦ § ¦¨ ¦© ¦ ª ¦« ¦¬ § §® §¯ §¦ §§ §¨ §© §ª §« §¬ ¨ ¨ ® ¨ ¯ ¨¦ ¨ § ¨¨ ¨© ¨ ª ¨« ¨¬ © © ® © ¯ ©¦ © §° ±
² ³
´ µ
¶ ·
¸¹
±9°±d±
±º²±�³
± ´± µ
±9¶
»?¼�½8¾ ¼L¿ÁÀ ¾ Â ÃÄ½ÆÅ ÃMÇ ¾ È »�Â

ÉºÊ�ËÍÌdÎÐÏ Ñ�Ï ÎÓÒÕÔ\ÎÐÏ Î�Ö Ì×Ë'ÎÕÏ Ñ�Ï ÎÓÒÕÔ\ÎÐÏ Î0Ö É`ÊØËÍÌiÎÐÏ ÙÚÏ ÙÜÛ Ì×Ë'ÎÐÏ ÙÚÏ ÙÝÛ
Þàßâá ãEäæåèçéå(ê×ëxêÕìîíðïDñòäðóôêÕõ÷öEø

ùÝúû
üý×þÿ

�
�ÿ
�

�

