
iOS Mobile Development

Today
UITextView
Scrollable, editable/selectable view of a mutable attributed
string.
View Controller Lifecycle
Finding out what’s happening as a VC is created, hooked up to the View, appears/disappears, etc.
NSNotification
The “radio station” communication mechanism of
MVC. Today we’ll just talk about “tuning in.”

Demo
UITextView
NSAttributedString, NSMutableAttributedString,
NSTextStorage UIFont, UIColor
NSNotification
View Controller Lifecycle

UITextView
UITextView
Like UILabel, but multi-line, selectable/editable, scrollable,
etc.
Set its text and attributes via its NSMutableAttributedString
Obtain the NSMutableAttributedString representing the text in the UITextView using ...
@property (nonatomic, readonly) NSTextStorage *textStorage;
NSTextStorage is a subclass of NSMutableAttributedString.
You can simply modify it and the UITextView will automatically update. New in iOS 7.

Setting the font
Fonts can, of course, vary from character to character in UITextView.
But there is also a property that applies a font to the entire
UITextView ...
@property (nonatomic, strong) UIFont *font;

Changing the font of every character will not reset other attributes (e.g. color, underline,
etc.). However, you will lose your symbolic traits!

UITextView
Advanced layout in UITextView with TextKit
This property defines “where text can be” in the UITextView ...
@property (readonly) NSTextContainer *textContainer;

This object will read characters from textStorage and lays down glyphs into textContainer ...
@property (readonly) NSLayoutManager *layoutManager;

These objects are quite powerful.
For example, textContainer can have “exclusion zones” specified in it (flowing around
images). Check them out if you’re interested in typography.

Demo
Attributor
UITextView
NSAttributedString, NSMutableAttributedString,
NSTextStorage UIFont, UIColor

View Controller Lifecycle
View Controllers have a “Lifecycle”
A sequence of messages is sent to them as they progress through it.

Why does this matter?
You very commonly override these methods to do certain work.

The start of the lifecycle ...
Creation.
MVCs are most often instantiated out of a storyboard (as you’ve seen).
There are ways to do it in code (rare) as well which we may cover later in the
quarter.
What then?
Outlet setting.
Appearing and disappearing.
Geometry changes.
Low-memory situations.
At each stage, iOS invokes method(s) on the
Controller ...

View Controller Lifecycle
After instantiation and outlet-setting, viewDidLoad is called
This is an exceptionally good place to put a lot of setup code.
- (void)viewDidLoad
{

 [super viewDidLoad]; // always let super have a chance in lifecycle methods
// do some setup of my MVC

}

But be careful because the geometry of your view (its bounds) is not set yet!
At this point, you can’t be sure you’re on an iPhone 5-sized screen or an iPad
or ???. So do not initialize things that are geometry-dependent here.

View Controller Lifecycle
Just before the view appears on screen, you get notified
(argument is just whether you are appearing instantly or over time via animation)
- (void)viewWillAppear:(BOOL)animated;

Your view will only get “loaded” once, but it might appear and disappear a lot.
So don’t put something in this method that really wants to be in
viewDidLoad. Otherwise, you might be doing something over and over
unnecessarily.
Do something here if things you display are changing while your MVC is off-screen.

Later we will use this to optimize performance by waiting until this method
 (as opposed to viewDidLoad) to kick off an expensive operation (probably in another thread).

View’s geometry is set here, but there are other (better?) places to react to geometry.

View Controller Lifecycle
And you get notified when you will disappear off screen too
This is where you put “remember what’s going on” and cleanup code.
- (void)viewWillDisappear:(BOOL)animated
{

[super viewWillDisappear:animated]; // call super in all the viewWill/Did... methods
// let’s be nice to the user and remember the scroll position they were at ...

[self rememberScrollPosition]; // we’ll have to implement this, of course
 // do some other clean up now that we’ve been removed from the screen
[self saveDataToPermanentStore]; // maybe do in did instead?
 // but be careful not to do anything time-consuming here, or app will be sluggish
 // maybe even kick off a thread to do what needs doing here (again, we’ll cover threads later)
}

There are “did” versions of both of the appearance methods
- (void)viewDidAppear:(BOOL)animated;
- (void)viewDidDisappear:(BOOL)animated;

View Controller Lifecycle
Geometry changed?
Most of the time this will be automatically handled with Autolayout (next week).
- (void)view{Will,Did}LayoutSubviews;
Called any time a view’s frame changed and its subviews were thus re-layed out.
For example, autorotation.
You can reset the frames of your subviews here or set other geometry-affecting
properties. Between “will” and “did”, autolayout will happen (we’ll talk about that next
week).

View Controller Lifecycle
Autorotation
When the device is rotated, the top level view controller will have its bounds reoriented iff ...
The view controller returns YES from shouldAutorotate.
The view controller returns the new orientation in supportedInterfaceOrientations.
The application allows rotation to that orientation (defined in Info.plist file).
Generally it is a good idea to try to support rotation in MVCs. We’ll talk about that next
week.Specific notification that rotation will/did happen
- (void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)anOrientation

duration:(NSTimeInterval)seconds;
- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOriention)orient

duration:(NSTimeInterval)seconds;
- (void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)anOrientation;

This property will have the current orientation when each of the above is called ...
@property UIInterfaceOrientation interfaceOrientation;
It’s pretty rare to implement these. Autolayout and viewWillLayoutSubviews usually suffice.

View Controller Lifecycle
In low-memory situations, didReceiveMemoryWarning gets called ...
This rarely happens, but well-designed code with big-ticket memory uses might anticipate it.
Examples: images and sounds.
Anything “big” that can be recreated should probably be released (i.e. set strong pointer to
nil).

View Controller Lifecycle
awakeFromNib
This method is sent to all objects that come out of a storyboard (including your
Controller). Happens before outlets are set! (i.e. before the MVC is “loaded”)
Put code somewhere else if at all possible (e.g. viewDidLoad or viewWillAppear:).

Anything that would go in your Controller’s init method would have to go in awakeFromNib too
 (because init methods are not called on objects that come out of a storyboard).
- (void)setup { }; // do something which can’t wait until viewDidLoad
- (void)awakeFromNib { [self setup]; }
// UIViewController’s designated initializer is initWithNibName:bundle: (ugh!)
- (instancetype)initWithNibName:(NSString *)name bundle:(NSBundle
*)bundle {
 self = [super initWithNibName:name
 bundle:bundle]; [self setup];

 return self;
}
It is unlikely you will ever need to use awakeFromNib in this course.

View Controller Lifecycle
Summary
Instantiated (from storyboard - many ways for this to happen which we’ll cover
later) awakeFromNib
outlets get set
viewDidLoad
(when geometry is determined)
 viewWillLayoutSubviews: and viewDidLayoutSubviews:
(next group can happen repeatedly as your MVC appears and disappears from the
screen ...)

 viewWillAppear: and viewDidAppear:
 (whenever geometry changes again while visible, e.g. device rotation)
viewWillLayoutSubviews: and viewDidLayoutSubviews:
 (if it is autorotation, then you also get will/didRotateTo/From messages--rare to use
these)
 viewWillDisappear: and viewDidDisappear:
(possibly if memory gets low ...)

didReceiveMemoryWarning
(there is no “unload” anymore, so that’s all there is)

Demo
Attributor
View Controller Lifecycle
How (and when in the VCL) would we “outline” the text on the Outline
button?

NSNotification
Notifications
The “radio station” from the MVC slides.

NSNotificationCenter
Get the default “notification center” via [NSNotificationCenter defaultCenter]
Then send it the following message if you want to “listen to a radio station”:
- (void)addObserver:(id)observer // you (the object to get notified)

selector:(SEL)methodToInvokeIfSomethingHappens
name:(NSString *)name // name of station (a constant somewhere)

object:(id)sender; // whose changes you’re interested in (nil is anyone’s)

You will then be notified when there are broadcasts
- (void)methodToInvokeIfSomethingHappens:(NSNotification *)notification
{

notification.name // the name passed above
notification.object // the object sending you the notification
notification.userInfo // notification-specific information about what happened

}

NSNotification
Be sure to “tune out” when done listening
[center removeObserver:self];
or
[center removeObserver:self name:UIContentSizeCategoryDidChangeNotification object:nil];
Failure to remove yourself can sometimes result in crashers.
This is because the NSNotificationCenter keeps an “unsafe retained” pointer to
you.
A good place to remove yourself is when your MVC’s View goes off
screen. We’ll see how to find out about that later in this lecture.

Or you can remove yourself in a method called dealloc (called when you leave the heap).
- (void)dealloc
{

// be careful in this method! can’t access properties! you are almost gone from heap!
 [[NSNotificationCenter defaultCenter] removeObserver:self];

}

NSNotification
Example
Watching for changes in the size of preferred fonts (user can change this in Settings) ...
NSNotificationCenter *center = [NSNotificationCenter
defaultCenter]; [center addObserver:self

selector:@selector(preferredFontsSizeChanged:)
name:UIContentSizeCategoryDidChangeNotification

object:nil]; // this station’s broadcasts aren’t object-specific

- (void)preferredFontsSizeChanged:(NSNotification *)notification
{

// re-set the fonts of objects using preferred fonts
}

Demo
Attributor
NSNotification
More View Controller Lifecycle

Next Time

Multiple MVCs in one application
UITabBarController
UINavigationController

