
iOS Mobile Design

Agenda
Core Data!
Storing your Model permanently in an object-oriented database.!

Next Week!
Multitasking!
Advanced Segueing!
Map Kit?

Core Data
Database!
Sometimes you need to store large amounts of data or query it in a sophisticated manner.!
But we still want it to be object-oriented objects!!

Enter Core Data!
Object-oriented database.!
Very, very powerful framework in iOS (we will only be covering the absolute basics).!

It’s a way of creating an object graph backed by a database!
Usually backed by SQL (but also can do XML or just in memory).!

How does it work?!
Create a visual mapping (using Xcode tool) between database and objects.
Create and query for objects using object-oriented API.
Access the “columns in the database table” using @propertys on those objects.!
Let’s get started by creating that visual map …

Get started with Core Data!
by creating a Data Model!

using New File …

This
template.

This section. Don’t accidentally pick this one.

Name of the Data Model!
(the visual map between classes

and database Entities).

The Data Model file.!
Sort of like a storyboard for databases.

Attributes

Entities

The Data Model consists of ...

… and Fetched Properties!
(but we’re not going to talk about them).

Relationships

Click here to add an Entity.

Then type its name here.!
We’ll call this first Entity “Photo”.!
It will represent a database entry

about a photo.

An Entity will appear in our code as an
NSManagedObject (or subclass thereof).

Entities are analogous to “classes”.

Now we will add some Attributes.!
We’ll start with the photo’s title.!
Click here to add an Attribute.

Notice that we have an error.!
That’s because our Attribute needs a type.

We’ll call this Attribute “title”.

Then edit the name of the Attribute here.

Attributes are analogous to “properties”.

Set the type of the title Attribute.!
All Attributes are objects.!

Numeric ones are NSNumber.!
Boolean is also NSNumber.!
Binary Data is NSData.!

Date is NSDate.!
String is NSString.!

Don’t worry about Transformable.
Attributes are accessed on our

NSManagedObjects via the methods
valueForKey: and setValue:forKey:.!
Or we’ll also see how we can access

Attributes as @propertys.

No more error!

Here are a whole bunch
more Attributes.

You can see your Entities and Attributes in
graphical form by clicking here.

This is the same thing we were just
looking at, but in a graphical view.

Let’s add another Entity.

These can be dragged around
and positioned around the

center of the graph.

And set its name.

A graphical version will appear.

Attributes can be added in
the graphical editor too.

We can edit the name of an
attribute directly in this box …

… or by bringing up the!
Attributes Inspector …

There are a number of
advanced features you can

set on an Attribute …

… but we’re just going
to set its type.

Similar to outlets and actions,
we can ctrl-drag to create

Relationships between Entities.

A Relationship is analogous to a !
pointer to another object”!
(or NSSet of other objects).

From a Photo’s perspective,!
this Relationship to a Photographer is

“who took” the Photo …

… so we’ll call the Relationship
“whoTook” on the Photo side.

A Photographer can take many
Photos, so we’ll call this Relationship
“photos” on the Photographer side.

See how Xcode notes the inverse
relationship between photos and whoTook.

We also need to note that there can
be many Photos per Photographer.

The type of this Relationship in our
Objective-C code will be NSSet

(since it is a “to many” Relationship).

The type of this Relationship in our
Objective-C code will be an

NSManagedObject (or a subclass thereof).

The double arrow here means!
a “to many” Relationship!

(but only in this direction).

The Delete Rule says
what happens to the

pointed to Photos if we
delete this Photographer.

Nullify means “set the
whoTook pointer to nil”.

Core Data
There are lots of other things you can do!
But we are going to focus on creating Entities, Attributes and Relationships.!

So how do you access all of this stuff in your code?!
You need an NSManagedObjectContext.!
It is the hub around which all Core Data activity turns.!

How do I get one?!
There are two ways ...!
1. Create a UIManagedDocument and ask for its managedObjectContext (a @property).!
2. Click the “Use Core Data” button when you create a project (only works with certain templates)!

(then your AppDelegate will have a managedObjectContext @property).!
If you study what the template (e.g. Master-Detail template) does, you’ll get an idea how it works.!
We’re going to focus on doing the first one.

UIManagedDocument
 UIManagedDocument !

It inherits from UIDocument which provides a lot of mechanism for the management of storage.!
If you use UIManagedDocument, you’ll be on the fast-track to iCloud support.!
Think of a UIManagedDocument as simply a container for your Core Data database.!

Creating a UIManagedDocument
NSFileManager *fileManager = [NSFileManager defaultManager];
NSURL *documentsDirectory = [[fileManager URLsForDirectory:NSDocumentDirectory

inDomains:NSUserDomainMask] firstObject];!
NSString *documentName = @“MyDocument”;
NSURL *url = [documentsDirectory URLByAppendingPathComponent:documentName];
UIManagedDocument *document = [[UIManagedDocument alloc] initWithFileURL:url];
This creates the UIManagedDocument instance, but does not open nor create the underlying file.

UIManagedDocument
How to open or create a UIManagedDocument!
First, check to see if the UIManagedDocument’s underlying file exists on disk …!
BOOL fileExists = [[NSFileManager defaultManager] fileExistsAtPath:[url path]];!

… if it does, open the document using ...!
[document openWithCompletionHandler:^(BOOL success) { /* block to execute when open */ }]; !
… if it does not, create the document using ...!
[document saveToURL:url // could (should?) use document.fileURL property here
 forSaveOperation:UIDocumentSaveForCreating

competionHandler:^(BOOL success) { /* block to execute when create is done */ }];

What is that completionHander?!
Just a block of code to execute when the open/save completes.!
That’s needed because the open/save is asynchronous (i.e. happens on its own queue).!
Do not ignore this fact!

UIManagedDocument
Example!
self.document = [[UIManagedDocument alloc] initWithFileURL:(URL *)url];
if ([[NSFileManager defaultManager] fileExistsAtPath:[url path]]) {
 [document openWithCompletionHandler:^(BOOL success) {

if (success) [self documentIsReady];
if (!success) NSLog(@“couldn’t open document at %@”, url);

 }];
} else {
 [document saveToURL:url forSaveOperation:UIDocumentSaveForCreating
 completionHandler:^(BOOL success) {

if (success) [self documentIsReady];
if (!success) NSLog(@“couldn’t create document at %@”, url);

 }];
}
// can’t do anything with the document yet (do it in documentIsReady).

UIManagedDocument
Once document is open/created, you can start using it!
But you might want to check the documentState when you do ...!
- (void)documentIsReady
{
 if (self.document.documentState == UIDocumentStateNormal) {

// start using document
 }
}

Other documentStates!
UIDocumentStateClosed (you haven’t done the open or create yet)!
UIDocumentStateSavingError (success will be NO in completion handler)!
UIDocumentStateEditingDisabled (temporary situation, try again)!
UIDocumentStateInConflict (e.g., because some other device changed it via iCloud)!
We don’t have time to address these (you can ignore in homework), but know that they exist.

UIManagedDocument
Okay, document is ready to use, now what?!
Now you can get a managedObjectContext from it and use it to do Core Data stuff!!
- (void)documentIsReady
{

if (self.document.documentState == UIDocumentStateNormal) { !
 NSManagedObjectContext *context = self.document.managedObjectContext;

// start doing Core Data stuff with context
 }
} !
Okay, just a couple of more UIManagedDocument things before we start using that context …

UIManagedDocument
Saving the document!
UIManagedDocuments AUTOSAVE themselves!!
However, if, for some reason you wanted to manually save (asynchronous!) …!
[document saveToURL:document.fileURL
 forSaveOperation:UIDocumentSaveForOverwriting

competionHandler:^(BOOL success) { /* block to execute when save is done */ }];
Note that this is almost identical to creation (just UIDocumentSaveForOverwriting is different).!
This is a UIKit class and so this method must be called on the main queue.

Closing the document!
Will automatically close if there are no strong pointers left to it.!
But you can explicitly close with (asynchronous!) …!
[self.document closeWithCompletionHandler:^(BOOL success) {
 if (!success) NSLog(@“failed to close document %@”, self.document.localizedName);
}]; !
UIManagedDocument’s localizedName method …
@property (strong) NSString *localizedName; // suitable for UI (but only valid once saved)

UIManagedDocument
Multiple instances of UIManagedDocument on the same document!
This is perfectly legal, but understand that they will not share an NSManagedObjectContext.!
Thus, changes in one will not automatically be reflected in the other.!
!
You’ll have to refetch in other UIManagedDocuments after you make a change in one.!
!
Conflicting changes in two different UIManagedDocuments would have to be resolved by you!!
It’s exceedingly rare to have two “writing” instances of UIManagedDocument on the same file.!
But a single writer and multiple readers? Less rare. But you need to know when to refetch.!
!
You can watch (via “radio station”) other documents’ managedObjectContexts (then refetch).!
Or you can use a single UIManagedDocument instance (per actually document) throughout.

NSNotification
How would you watch a document’s managedObjectContext?!
- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
 [center addObserver:self

selector:@selector(contextChanged:)
name:NSManagedObjectContextDidSaveNotification

object:document.managedObjectContext]; // don’t pass nil here!
}
- (void)viewWillDisappear:(BOOL)animated
{
 [center removeObserver:self

name:NSManagedObjectContextDidSaveNotification
object:document.managedObjectContext];

 [super viewWillDisappear:animated];
}

NSNotification
 NSManagedObjectContextDidSaveNotification !

- (void)contextChanged:(NSNotification *)notification
{

// The notification.userInfo object is an NSDictionary with the following keys:
NSInsertedObjectsKey // an array of objects which were inserted
NSUpdatedObjectsKey // an array of objects whose attributes changed
NSDeletedObjectsKey // an array of objects which were deleted

} !
Merging changes!
If you get notified that another NSManagedObjectContext has changed your database …!
… you can just refetch (if you haven’t changed anything in your NSMOC, for example).!
… or you can use the NSManagedObjectContext method:!
- (void)mergeChangesFromContextDidSaveNotification:(NSNotification *)notification;

Core Data
Okay, we have an NSManagedObjectContext, now what?!
We grabbed it from an open UIManagedDocument’s managedObjectContext @property.!
Now we use it to insert/delete objects in the database and query for objects in the database.

Core Data
Inserting objects into the database!
NSManagedObjectContext *context = aDocument.managedObjectContext;
NSManagedObject *photo =
 [NSEntityDescription insertNewObjectForEntityForName:@“Photo”

inManagedObjectContext:context];
!
Note that this NSEntityDescription class method returns an NSManagedObject instance.
All objects in the database are represented by NSManagedObjects or subclasses thereof.!
!
An instance of NSManagedObject is a manifestation of an Entity in our Core Data Model*.!
Attributes of a newly-inserted object will start out nil (unless you specify a default in Xcode).!
!
* i.e., the Data Model that we just graphically built in Xcode!!

Core Data
How to access Attributes in an NSManagedObject instance!
You can access them using the following two NSKeyValueCoding protocol methods ...!
- (id)valueForKey:(NSString *)key; !
- (void)setValue:(id)value forKey:(NSString *)key; !
You can also use valueForKeyPath:/setValue:forKeyPath: and it will follow your Relationships!!

The key is an Attribute name in your data mapping!
For example, @“thumbnailURL” or @“title”.!

The value is whatever is stored (or to be stored) in the database!
It’ll be nil if nothing has been stored yet (unless Attribute has a default value in Xcode).!
Note that all values are objects (numbers and booleans are NSNumber objects).!
Binary data values are NSData objects.!
Date values are NSDate objects.!
“To-many” mapped relationships are NSSet objects (or NSOrderedSet if ordered).!
Non-“to-many” relationships are NSManagedObjects.

Core Data
Changes (writes) only happen in memory, until you save !
Remember, UIManagedDocument autosaves.!
When the document is saved, the context is saved and your changes get written to the database.!
UIManagedDocumentDidSaveNotification will be “broadcast” at that point.!
!
Be careful during development where you press “Stop” in Xcode (sometimes autosave is pending).

Core Data
But calling valueForKey:/setValue:forKey: is pretty ugly!
There’s no type-checking.
And you have a lot of literal strings in your code (e.g. @“thumbnailURL”)!

What we really want is to set/get using @propertys!!
No problem ... we just create a subclass of NSManagedObject!
The subclass will have @propertys for each attribute in the database.
We name our subclass the same name as the Entity it matches (not strictly required, but do it).
!
And, as you might imagine, we can get Xcode to generate both the header file @property entries,
 and the corresponding implementation code (which is not @synthesize, so watch out!).

Select both Entities.!
We’re going to have Xcode
generate NSManagedObject
subclasses for them for us.

Ask Xcode to generate
NSManagedObject
subclasses for our

Entities.

Which Data Models to!
generate subclasses for!

(we only have one Data Model).

Which Entities to!
generate subclasses for!

(usually we choose all of them).

Pick which group you want your
new classes to be stored!

(default is often one directory
level higher, so watch out).

This will make your @propertys be scalars!
(e.g. int instead of NSNumber *) where possible.!

Be careful if one of your Attributes is an NSDate, you’ll
end up with an NSTimeInterval @property.

Here are the two subclasses of!
NSManagedObject that were generated:!
Photo.[mh] and Photographer.[mh]

@propertys generated for all of our Attributes!!
Now we can use dot notation to access these in code.

Depending on the order Xcode generated Photo and
Photographer, it might not have gotten whoTook’s type

(Photographer *) right (it might say NSManagedObject *).!
If that happens, just generate again.

Photographer also got some
convenient methods for!

adding/removing photos that this
Photographer has taken.

Inherits from NSManagedObject.

What the heck is @dynamic?!!
!

It says “I do not implement the setter or getter for this
property, but send me the message anyway and I’ll use the

Objective-C runtime to figure out what to do.”!
!

There is a mechanism in the Objective-C runtime to “trap”
a message sent to you that you don’t implement.!

!
NSManagedObject does this and calls!

valueForKey: or setValue:forKey:. Pretty cool.

Now let’s look at Photo.m (the implementation).

These are really here
just to suppress

compiler warnings.

Core Data
So how do I access my Entities’ Attributes with dot notation?!
// let’s create an instance of the Photo Entity in the database …!
NSManagedObjectContext *context = document.managedObjectContext; !
Photo *photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo” !

inManagedObjectContext:context];

// then set the attributes in our Photo using, say, an NSDictionary we got from Flickr …!
e.g. photo.title = [flickrData objectForKey:FLICKR_PHOTO_TITLE];!
// the information will automatically be saved (i.e. autosaved) into our document by Core Data

// now here’s some other things we could do too …!
NSString *myThumbnail = photo.thumbnailURL; !
photo.lastViewedDate = [NSDate date]; !
photo.whoTook = ...; // a Photographer object we created or got by querying!
photo.whoTook.name = @“CS193p Instructor”; // yes, multiple dots will follow relationships!

Core Data
What if I want to add code to my NSManagedObject subclass?!
For example, we might want to add a method or two (to the @propertys added by Xcode).!
!
!
!
It would be especially nice to add class methods to create and set up an object in the database!
 (e.g. set all the properties of a Photo or Photographer using an NSDictionary from Flickr).!
Or maybe to derive new @propertys based on ones in the database!
 (e.g. a UIImage based on a URL in the database).

But that could be a problem if we edited Photo.m or Photographer.m ...
Because you might want to modify your schema and re-generate those .h and .m files from Xcode!

To get around this, we need to use an Objective-C feature called “categories”.!
So let’s take a moment to learn about that ...

Categories
Categories are an Objective-C syntax for adding to a class ...!
Without subclassing it.
Without even having to have access to the code of the class (e.g. you don’t need its .m).!

Examples!
NSAttributedString’s drawAtPoint: method.
- Added by UIKit (since it’s a UI method) even though NSAttributedString is in Foundation.
NSIndexPath’s row and section properties (used in UITableView-related code).
- Added by UIKit too, even though NSIndexPath is also in Foundation.!

Syntax!
@interface Photo (AddOn)
- (UIImage *)image;
@property (readonly) BOOL isOld;
@end
Categories have their own .h and .m files (usually ClassName+PurposeOfExtension.[mh]).!
Categories cannot have instance variables!

Categories
Implementation!
@implementation Photo (AddOn)
- (UIImage *)image // image is not an attribute in the database, but photoURL is
{
 NSURL *imageURL = [NSURL URLWithString:self.photoURL];
 NSData *imageData = [NSData dataWithContentsOfURL:imageURL];
 return [UIImage imageWithData:imageData];
}
- (BOOL)isOld // whether this Photo was uploaded more than a day ago
{
 return [self.uploadDate timeIntervalSinceNow] > -24*60*60;
}
@end
Other examples ... sometimes we add @propertys to an NSManagedObject subclass via categories!
 to make accessing BOOL attributes (which are NSNumbers) more cleanly.
Or we add @propertys to convert NSDatas to whatever the bits represent.
Any class can have a category added to it, but don’t overuse/abuse this mechanism.

Categories
Most common category on an NSManagedObject subclass?!
Creation …!
@implementation Photo (Create)
+ (Photo *)photoWithFlickrData:(NSDictionary *)flickrData

inManagedObjectContext:(NSManagedObjectContext *)context
{

Photo *photo = ...; // see if a Photo for that Flickr data is already in the database
 if (!photo) {

photo = [NSEntityDescription insertNewObjectForEntityForName:@“Photo”
inManagedObjectContext:context];

// initialize the photo from the Flickr data
// perhaps even create other database objects (like the Photographer)

 }
 return photo;
}
@end

Choose New File …then pick
“Objective-C category” from

the Cocoa Touch section.

How do we create a category?

Enter the name of the category, as well as!
the name of the class the category’s methods will be added to.

Xcode will create both the .h and the .m for the category.!
Remember, you cannot use instance variables in this .m!

We’ll see an example of adding a method to the Photo
class using this category in the demo next lecture.

Deletion
Deletion!
Deleting objects from the database is easy (sometimes too easy!)!
[aDocument.managedObjectContext deleteObject:photo]; !
Make sure that the rest of your objects in the database are in a sensible state after this.!
Relationships will be updated for you (if you set Delete Rule for relationship attributes properly).!
And don’t keep any strong pointers to photo after you delete it!!

 prepareForDeletion !
This is another method we sometimes put in a category of an NSManagedObject subclass ...!
@implementation Photo (Deletion)
- (void)prepareForDeletion
{
 // we don’t need to set our whoTook to nil or anything here (that will happen automatically)!
 // but if Photographer had, for example, a “number of photos taken” attribute,!
 // we might adjust it down by one here (e.g. self.whoTook.photoCount--).
}
@end

Querying
So far you can ...!
Create objects in the database with insertNewObjectForEntityForName:inManagedObjectContext:.
Get/set properties with valueForKey:/setValue:forKey: or @propertys in a custom subclass.!
Delete objects using the NSManagedObjectContext deleteObject: method.!

One very important thing left to know how to do: QUERY!
Basically you need to be able to retrieve objects from the database, not just create new ones
You do this by executing an NSFetchRequest in your NSManagedObjectContext!

Four important things involved in creating an NSFetchRequest
1. Entity to fetch (required)

4. NSPredicate specifying which of those Entities to fetch (optional, default is all of them)
3. NSSortDescriptors to specify the order in which the array of fetched objects are returned
2. How many objects to fetch at a time and/or maximum to fetch (optional, default: all)

Querying
Creating an NSFetchRequest!
We’ll consider each of these lines of code one by one ...
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photo”];
request.fetchBatchSize = 20;
request.fetchLimit = 100;
request.sortDescriptors = @[sortDescriptor];
request.predicate = ...;

Specifying the kind of Entity we want to fetch!
A given fetch returns objects all of the same Entity.!
You can’t have a fetch that returns some Photos and some Photographers (it’s one or the other).!

Setting fetch sizes/limits!
If you created a fetch that would match 1000 objects, the request above faults 20 at a time.
And it would stop fetching after it had fetched 100 of the 1000.

Querying
 NSSortDescriptor!

When we execute a fetch request, it’s going to return an NSArray of NSManagedObjects.!
NSArrays are “ordered,” so we should specify the order when we fetch.

We do that by giving the fetch request a list of “sort descriptors” that describe what to sort by.
NSSortDescriptor *sortDescriptor =
 [NSSortDescriptor sortDescriptorWithKey:@“title”

ascending:YES
selector:@selector(localizedStandardCompare:)];

The selector: argument is just a method (conceptually) sent to each object to compare it to others.
Some of these “methods” might be smart (i.e. they can happen on the database side).!
localizedStandardCompare: is for ordering strings like the Finder on the Mac does (very common).

We give an array of these NSSortDescriptors to the NSFetchRequest because sometimes!
 we want to sort first by one key (e.g. last name), then, within that sort, by another (e.g. first name).!
Examples: @[sortDescriptor] or @[lastNameSortDescriptor, firstNameSortDescriptor]

Querying
 NSPredicate !

This is the guts of how we specify exactly which objects we want from the database.!
Predicate formats!
Creating one looks a lot like creating an NSString, but the contents have semantic meaning.
NSString *serverName = @“flickr-5”;
NSPredicate *predicate =
 [NSPredicate predicateWithFormat:@“thumbnailURL contains %@”, serverName];

Examples!
@“uniqueId = %@”, [flickrInfo objectForKey:@“id”] // unique a photo in the database
@“name contains[c] %@”, (NSString *) // matches name case insensitively!
@“viewed > %@”, (NSDate *) // viewed is a Date attribute in the data mapping!
@“whoTook.name = %@”, (NSString *) // Photo search (by photographer’s name)!
@“any photos.title contains %@”, (NSString *) // Photographer search (not a Photo search)!
Many more options. Look at the class documentation for NSPredicate.

Querying
NSCompoundPredicate !
You can use AND and OR inside a predicate string, e.g. @“(name = %@) OR (title = %@)”!
Or you can combine NSPredicate objects with special NSCompoundPredicates.
NSArray *array = @[predicate1, predicate2];
NSPredicate *predicate = [NSCompoundPredicate andPredicateWithSubpredicates:array];
This predicate is “predicate1 AND predicate2”. Or available too, of course.

Advanced Querying
Key Value Coding!
Can actually do predicates like @“photos.@count > 5” (Photographers with more than 5 photos).!
@count is a function (there are others) executed in the database itself.!
https://developer.apple.com/library/ios/documentation/cocoa/conceptual/KeyValueCoding/Articles/CollectionOperators.html.!
By the way, all this stuff (and more) works on dictionaries, arrays and sets too …!
e.g. [propertyListResults valueForKeyPath:@“photos.photo.@avg.latitude”] on Flickr results!
 returns the average latitude of all of the photos in the results (yes, really)!
e.g. @“photos.photo.title.length" would return an array of the lengths of the titles of the photos!

 NSExpression!
Advanced topic. Can do sophisticated data gathering from the database.
No time to cover it now, unfortunately.!
!
If interested, for both NSExpression and Key Value Coding queries, investigate …!
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“…”]; !
[request setResultType:NSDictionaryResultType]; // fetch returns array of dicts instead of NSMO’s!
[request setPropertiesToFetch:@[@“name”, expression, etc.]];

https://developer.apple.com/library/ios/documentation/cocoa/conceptual/KeyValueCoding/Articles/CollectionOperators.html

Querying
Putting it all together!
Let’s say we want to query for all Photographers ...!
NSFetchRequest *request = [NSFetchRequest fetchRequestWithEntityName:@“Photographer”];
... who have taken a photo in the last 24 hours ...!
NSDate *yesterday = [NSDate dateWithTimeIntervalSinceNow:-24*60*60]; !
request.predicate = [NSPredicate predicateWithFormat:@“any photos.uploadDate > %@”, yesterday]; !
... sorted by the Photographer’s name ...
request.sortDescriptors = @[[NSSortDescriptor sortDescriptorWithKey:@“name” ascending:YES]];

Querying
Executing the fetch!
NSManagedObjectContext *context = aDocument.managedObjectContext; !
NSError *error; !
NSArray *photographers = [context executeFetchRequest:request error:&error]; !
!
Returns nil if there is an error (check the NSError for details).!
Returns an empty array (not nil) if there are no matches in the database.!
Returns an NSArray of NSManagedObjects (or subclasses thereof) if there were any matches.!
You can pass NULL for error: if you don’t care why it fails.!
!
That’s it. Very simple really.

Query Results
Faulting!
The above fetch does not necessarily fetch any actual data.!
It could be an array of “as yet unfaulted” objects, waiting for you to access their attributes.!
Core Data is very smart about “faulting” the data in as it is actually accessed.!
For example, if you did something like this ...!
for (Photographer *photographer in photographers) {
 NSLog(@“fetched photographer %@”, photographer);
}
You may or may not see the names of the photographers in the output!
 (you might just see “unfaulted object”, depending on whether it prefetched them)!
But if you did this ...!
for (Photographer *photographer in photographers) {
 NSLog(@“fetched photographer named %@”, photographer.name);
}
... then you would definitely fault all the Photographers in from the database.!
That’s because in the second case, you actually access the NSManagedObject’s data.

Core Data Thread Safety
 NSManagedObjectContext is not thread safe !

Luckily, Core Data access is usually very fast, so multithreading is only rarely needed.!
Usually we create NSManagedObjectContext using a queue-based concurrency model.!
This means that you can only touch a context and its NSMO’s in the queue it was created on.!

Thread-Safe Access to an NSManagedObjectContext!
[context performBlock:^{ // or performBlockAndWait:!
 // do stuff with context in its safe queue (the queue it was created on)!
}]; !
Note that the Q might well be the main Q, so you’re not necessarily getting “multithreaded.”!

Parent Context (advanced)!
Some contexts (including UIManagedDocument ones) have a parentContext (a @property on NSMOC).!
This parentContext will almost always be on a separate queue, but access the same database.!
This means you can performBlock: on it to access the database off the main queue (e.g.).!
But it is still a different context, so you’ll have to refetch in the child context to see any changes.

Core Data
There is so much more (that we don’t have time to talk about)!!
Optimistic locking (deleteConflictsForObject:)
Rolling back unsaved changes
Undo/Redo
Staleness (how long after a fetch until a refetch of an object is required?)

Coming Up

Next Week!
Multitasking!
Advanced Segueing!
Map Kit?

