
Therac-25
Emmett Witchel

CS380L

OK…quiz time

• Please go to canvas.

• 10 minutes.

Therac-25: Why did we read this paper??!!

• Good testable material?

• Scare people?

• Make OS research seem important?

• Illustrate a variety of problems?

Therac-25 is a system trying to satisfy a number of properties without ever formally stating
what those properties are.

Systems research is building systems with properties.

• How do we state those properties?

• How do we verify that they inhere?

• How do we measure properties in the face of (inevitable) compromise?

Therac-25:
What is it? What happened?

• medical linear accelerator: treat cancer, remove tumors
• AECL + CGR collaborate in early 70s to build Therac-6 and -20
• 1976: AECL develops “double pass” tech. enabling Therac-25

• Various horrifying accidents between 1985-87

Do not lay down here.

❑ Shallow tissue treated with accelerated electrons

▪Scanning magnets placed in the way of the beam; the
spread of the beam (and thus power) controlled by
magnetic fields

❑ Deeper tissue treated with X-ray photons

▪ X-ray beam flattened by a device in the machine to
direct the appropriate intensity to the patient.

Anatomy of the accidents
At Texas facility

• Operator selects x-rays by mistake

• …used cursor keys to change to electrons

• Machine tripped with “Malfunction 54”
• – Documentation explains this is “dose input 2” error

• Operator sees “beam ready” proceeds; go to 1

At Washington facility

• Operator puts table in field-light position to check alignment

• Operator sets machine but forgets to remove film

• Operator turns beam on, machine says no dose (+fleeting message)

• Operator proceeds from pause; After another pause, operator
reenters room

What were the root causes?

Therac tasks & subroutines

RaceyOverflow + race

Pseudo-code
Datent {

if(mode/energy specified) {

calculate table index

do {

fetch parameter

output parameter

point to next parameter

} until (all parameters set)

call Magnet

if(mode/energy changed)

return

}

if(data-entry-complete) Tphase = 3

else if(reset-command) Tphase = 0

}

Magnet {

Set bending magnet flag

do {

set next magnet

call Ptime

if(mode/energy changed)

exit

} until (all magnets set)

}

Ptime {

do {

if (bending magnet flag)

if (editing)

if (mode/energy changed) exit

} until hystereis delay expired

clear bending magnet flag

}

Pseudo-code
Datent {

if(mode/energy specified) {

calculate table index

do {

fetch parameter

output parameter

point to next parameter

} until (all parameters set)

call Magnet

if(mode/energy changed)

return

}

if(data-entry-complete) Tphase = 3

else if(reset-command) Tphase = 0

}

Magnet {

Set bending magnet flag

do {

set next magnet

call Ptime

if(mode/energy changed)

exit

} until (all magnets set)

}

Ptime {

do {

if (bending magnet flag)

if (editing)

if (mode/energy changed) exit

} until hystereis delay expired

clear bending magnet flag

}

Called multiple times, but
bending magnet cleared after
first call, so changes after first
Ptime *not* recognized:
Shown on screen, but parameters
not changed

Only checks whether
cursor has been to
command line, not

whether it’s still there

Overflow bug

• Setup test checks F$mal
• Class3 == 0 → all good
• Class3 is 8 bits, inc on every setup test
• Every 256th time, rollover → skip collimiter check

Hit set button coincides with rollover:
* 25MeV turned on in field light (wrong) position

What were the “fixes”?

• Datent: another shared variable: “cursor not on command line”

• Overflow: Class3 set to fixed non-zero value instead of increment

• A handful of additional hardware interlocks

• (2+ years to get to this?)

Later extended to include:

• Better error messages

• Limited editing keys

How would you have fixed it?

What would you do differently?

Ostensible Causes

• Overconfidence in Software

• Confusing Reliability with Safety

• No Defensive Design

• Failure to eliminate root causes
• (piecemeal focus on individual errors)

• Complacency

• Unrealistic Risk Assessments

• Inadequate Investigation, Followup

• Poor software engineering

• Software Reuse

• Safe vs Friendly Interfaces

• Lack of Oversight / Standards

Poor software engineering
• Docs != afterthought
• Rigorous QA needed
• Avoid Hazardous coding idioms
• Audit trails designed in from beginning
• Need testing + formal analysis
• BetterUI/Manuals

The important memes for this class

• Reliability != Safety
• How to precisely state your reliability / safety requirement?
• How to state properties and requirements in general?
• Risk assessment: super-important, super-sensitive

• Redundancy is critical: FT / defense in depth
• Many Ambient / Implicit Tradeoffs at work

• Usability v. other properties (safety)
• Programmability v. Performance
• Should be surfaced, stated precisely, rendered quantifiable

• General guidance
• Don’t mix an OS with your application
• Use a high-level language: there are tradeoffs though, right?

Therac-25 is a system trying to
satisfy a number of properties
without ever formally stating

what those properties are.

In subsequent readings:
What properties are pursued?

Are they implicit/explicit?
How are they achieved?

	Slide 1: Therac-25
	Slide 2: OK…quiz time
	Slide 3: Therac-25: Why did we read this paper??!!
	Slide 4: Therac-25: What is it? What happened?
	Slide 5: Anatomy of the accidents
	Slide 6: What were the root causes?
	Slide 7: Therac tasks & subroutines
	Slide 8: Pseudo-code
	Slide 9: Pseudo-code
	Slide 10: Overflow bug
	Slide 11: What were the “fixes”?
	Slide 12: How would you have fixed it?
	Slide 13: Ostensible Causes
	Slide 14: The important memes for this class

