
Hardware and Software
Support for Virtualization

Emmett Witchel

CS380L

Xen faux quiz (pick 2, 5 min)
• What is the difference between an API and an ABI?

• Why are fork and exec slow in Xen?

• What is page coloring?

• What is the difference between a hypercall and a system call?

• Does Xen require device drivers in the hypervisor? Why/why not?

• Does Xen trap guest system calls? Why/why not?

• What policy does Xen use to allocate memory across domains? What
advantages/disadvantages does this have?

• Why are HW physical->machine mappings readable by all VMs in Xen?

• What is the “double paging” problem?

• How does a memory balloon work? What happens when a guest OS writes to
memory owned by the balloon driver?

• How do Xen memory virtualization techniques differ from ESX?

• Compare and contrast interposition techniques in ESX, Xen, Arrakis

Box drawing Potpourri: OSes, VMs, Containers

Hardware

[Host OS]

Hypervisor

Guest
OS

Bins/Libs

App A

Guest
OS

Bins/Libs

App B

Hardware

Host OS

Bins/Libs

App A

Bins/Libs

App B

Hardware
Exokernel

LibOS

App A

LibOS

App B

Hardware

SPIN

Bins/Libs

App A

Bins/Libs

App B

Extensions

Hardware

Microkernel

Bins/Libs

App A

Bins/Libs

App B

OS Services

Microkernels Extensible OSes VMs Containers

Box drawing Potpourri: OSes, VMs, Containers

Hardware

[Host OS]

Hypervisor

Guest
OS

Bins/Libs

App A

Guest
OS

Bins/Libs

App B

Hardware

Host OS

Bins/Libs

App A

Bins/Libs

App B

Hardware
Exokernel

LibOS

App A

LibOS

App B

Hardware

SPIN

Bins/Libs

App A

Bins/Libs

App B

Extensions

Hardware

Microkernel

Bins/Libs

App A

Bins/Libs

App B

OS Services

Microkernels Extensible OSes VMs Containers

Next few papers are
about design tradeoffs
for these boxes

Why virtualize hardware?
• Programs for one OS difficult to run on another OS.

• Wine (winehq.org) [MLOC = millions of lines of code]

• started in 1993, beta in 2005 / v1.0 in 2008 at 1.4 MLOC / 2014 → 2.6 MLOC

• Ever try installing two different PostgreSQL versions?
• Shared libraries, configuration files, etc.

• But the hardware interface relatively stable.

• Virtualizing the hardware →run unmodified application with its OS.
• Run unmodified applications (same ABI) from different OSes.

• Performance isolation. OS don’t cut it (QoS cross-talk).

• Accounting: sell part of a physical machine (isolation).

• Compatibility: VMMs have always presented a very appealing platform for practical
deployment, [because they] [allow] users to securely share hardware on machines at a low
performance cost, [improve] machine utilization, and [don’t require] modifications to the
applications. —Steven Hand

• Multiplexing, aggregation, emulation

Precisely, what is ‘Virtualization?’
• Popek & Goldberg 1974: VMM properties

• Equivalence/Fidelity
A program running under the VMM should exhibit a behavior essentially identical to that
demonstrated when running on an equivalent machine directly.

• Resource Control / Safety
The VMM must be in complete control of the virtualized resources

• Efficiency / Performance
A statistically dominant fraction of machine instructions must be executed without VMM
intervention

• Bugnion, Tsafrir, Nieh 2017:
Virtualization is the encapsulation pattern used to present the same interface as the
encapsulated resource

• What is a VM vs VMM? VMM vs Hypervisor?

Types of virtual machines

• Virtual machine is an overloaded term. Know where you are.

Virtual Machine: a simulator mental model

What interface is
encapsulated here?

How?

Virtualization challenges

• Instructions (VT-x)
• Virtual machine control structure (VMCS)

• Unsafe instructions trap (VMExits expensive)

• Memory (extended page tables)
• Hypervisor does to OS what OS does to user

• Devices (VT-d)
• Software-defined devices

• IOMMU (page table for devices)

• Hardware support for virtualization (SR-IOV)

VMM Classification: Type 1 vs Type 2

• VMMs built
completely on top
of a host OS

• Host OS provides
resource allocation
and standard
execution
environment to
each “guest OS”

• KVM, User-mode
Linux (UML), ESX
Workstation

• VMM implemented

directly on physical

hardware

• VMM performs

scheduling and

allocation of system’s

resources

• E.g., IBM VM/370,

Disco, Xen, ESX Server

What makes hardware hard to virtualize?

• Direct access to physical memory
• MIPS allows OS to access physical memory at a fixed virtual address

• Instructions that act differently at different privilege levels
• popf, iret

• Unprivileged instructions that access privileged state
• sgdt, sldt,

• Excessive exits to hypervisor due to difficult to virtualize instructions
• int 0x80, a software interrupt was x86’s syscall instruction

• x86-32 segment state

Challenges for x86
• How to virtualize an ISA?

• Generic challenges: instructions (VT-x), MMU (EPT), devices (VT-d).

• Classical virtualization (IBM 370) used hardware.

• Trap and emulate too slow for many architectures

• System calls and page faults are frequent

• Software emulation considered too slow.

• x86 challenges
• The EFLAGS register has the interrupt enable bit.

• If the kernel is being virtualized, it is not privileged to enable interrupts.

• The kernel calls pushf and popf all over the place, and no instance can enable interrupts.

• CR3 points to the base of the page table: VMM can’t trust OS to write page tables.

• Untagged TLB → frequent flushes.

• Solved by binary translating the kernel (Disco 1997), currently solved by VT-x

Xen conclusion: full
virtualization not a

good tradeoff

Virtualization: Techniques & Tradeoffs

API remoting
Forwards API calls to proxy

(e.g. dom0, proxy VM)

Paravirtualization
Adapt Guest OS or apps

Full virtualization
(Device emulation,

HW Virtualization)

Performance Fidelity Compatibility Interposition Complexity

Paravirtualization: goals

• Paravirtualization
• idealized machine, efficient to virtualize.

• More efficient than “full” virtualization

• Low cost of porting an OS (weak point).

• Still need safety
• hypervisor → portion of PA space that the guest OS cannot access

• top 64MB, use segmentation to avoid TLB flushes.

• “Typically only two types of exception occur frequently enough to affect
system performance: system calls (which are usually implemented via a
software exception), and page faults.”

Paravirtualization: techniques

• Small changes to the OS
• Explicit hypercalls into the hypervisor

• Replace privileged instructions with hypercalls
• Changed syscall instruction. (In 2000, int 0x80 was replaced by sysenter in hardware)

• Batch updates to page tables

• Shadow paging
• Guest: VA->Guest PA
• Hypervisor uses its own Guest PA->Host PA maps
• Installs VA->Host PA into TLB

• Use a “system VM” for complex functionality
• Keeps hypervisor simple
• Domain 0 (Dom0) does things like loads the real device drivers
• Guest OS loads a Xen-aware driver that talks to Dom0

Xen System Architecture

VM
APP

OS

VM
APP

OS

VM
APP

OS

Hypervisor

Hardware

Type I / bare metal organization

VT-x: Virtualizing the CPU

• Duplicate all architecturally visible state
• root mode (hypervisor), non-root mode (guest)

• Many kernel instructions (e.g., cli) work in non-root mode on non-root state

• Instructions to access global descriptor table are privileged in root mode

• vmcall enters root mode like sysenter enters the kernel

• Transitions atomic: require 1 instruction, includes TLB state
• This is expensive (~780 cycles)!

• Must minimize VMexits

• root mode is virtualizable! (why does that matter?)

• Virtual machine control structure (MVCS)
• State of VM held in memory

Virtualizing memory

• No hardware support
• Shadow page tables

• Guest page tables are read-only, so trap on write

• Hypervisor validates mappings, installs VA->Host PA

• Hardware support
• Extended page tables (EPT) Intel

• Nested page tables (NPT) AMD

• Tell processor about guest and host page tables, let it do the work
• Worst case 1 memory reference -> 24 memory references!

Shadow page tables

• Guest: VA->GPA

• Xen: GPA->HPA

• TLB: VA->HPA

Virtual address translation

• Guest page tables
write protected

• Guest PT updates
cause VMexits

• VMexits are bad
for performance

Shadow page tables

• Guest: ref unmapped
• HW: TRAP! Jump to VMM handler
• VMM: find guest OS, check shadow, setup trap regs

for guest
• Guest: read cr2
• HW TRAP! Jump to VMM handler
• VMM: read cr2, write faulting address to OS reg
• Guest: alloc phys frame, write PTE
• HW: TRAP! (RO mem): → VMM handler
• VMM: alloc mem, record PA->MA, set shadow PTEs
• Guest: thinks all good, clear privilege bit, reti
• HW: TRAP! (privilege) → VMM handler
• VMM: reti to guest

Is this fundamentally slow?
Why? / Why not?

Why is shadow paging slow?

•Guest page-table writes cause traps (shadow) vs. run-through

(NPT/EPT).
•Shadow paging must write-protect the guest’s page tables.

•Every guest PTE write triggers a fault → VM exit → hypervisor updates the corresponding shadow PTE(s) → resume.

•With NPT/EPT the guest updates its own page tables without exits; the CPU later resolves

translations using the nested tables.

•Shadow coherence maintenance is expensive.
•The hypervisor must keep multiple shadow page tables consistent with the guest’s view (per

address space / per vCPU variants, global pages, split large pages, etc.).

•Any change (CR3 load, INVLPG, context switch, page reclaim) can force shadow rebuilds,

shootdowns, and extra TLB flushes—each a VM exit and cross-CPU IPI.

•Accessed/Dirty (A/D) and permissions emulation.
•In shadow mode the CPU sets A/D bits in the shadow PTEs, not the guest’s. Synchronizing

those bits back to the guest view (or emulating them) requires extra exits and bookkeeping.

•NPT/EPT expose hardware A/D and fine-grained permissions in the nested tables; no emulation

round-trips are needed.

Nested page tables

• No VMExit for guest PT writes

Nested page tables

• Worst case: 24 memory
references to translate
virtual page

• Pages larger than 4KB are
important

• qemu allocates host
memory in 1 chunk

• Host OS in control
• qemu devices can access

• Host swapping qemu
memory is complicated

Device drivers in Xen and KVM

Performance of Xen (2003)

• Why does the
first set of bars
have the least
slowdown?

Modern Perspective

• Hardware support for virtualization is dominant
• KVM is distributed as part of Linux

• Memory overheads still an issue

• Device virtualization current frontier

• But Xen lives on!
• Current Linux kernel supports Dom0 and user domains

• Performance & security • 2003: Initial release of Xen

• 2005 was a significant year for Virtualization
• Intel introduces VT-x, quickly utilized by Xen

• Narrows performance gap between HVM and PVM

• 2006: Amazon opens up public beta of EC2

• 2007: Live migration for HVM guests

• 2008: PCI pass-through (VT-d) and ACPI S3 support

• 2011: Xen support for Dom0 and DomU is added to the
Linux kernel

	Slide 1: Hardware and Software Support for Virtualization
	Slide 2: Xen faux quiz (pick 2, 5 min)
	Slide 3: Box drawing Potpourri: OSes, VMs, Containers
	Slide 4: Box drawing Potpourri: OSes, VMs, Containers
	Slide 5: Why virtualize hardware?
	Slide 6: Precisely, what is ‘Virtualization?’
	Slide 7: Types of virtual machines
	Slide 9: Virtual Machine: a simulator mental model
	Slide 10: Virtualization challenges
	Slide 11: VMM Classification: Type 1 vs Type 2
	Slide 12: What makes hardware hard to virtualize?
	Slide 13: Challenges for x86
	Slide 14: Virtualization: Techniques & Tradeoffs
	Slide 15: Paravirtualization: goals
	Slide 16: Paravirtualization: techniques
	Slide 17: Xen System Architecture
	Slide 18: VT-x: Virtualizing the CPU
	Slide 19: Virtualizing memory
	Slide 20: Shadow page tables
	Slide 21: Virtual address translation
	Slide 22: Shadow page tables
	Slide 23: Why is shadow paging slow?
	Slide 24: Nested page tables
	Slide 25: Nested page tables
	Slide 26: Device drivers in Xen and KVM
	Slide 27: Performance of Xen (2003)
	Slide 28: Modern Perspective

