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Xen faux quiz (pick 2, 5 min)

 What is the difference between an APl and an ABI?

Why are fork and exec slow in Xen?

What is page coloring?

What is the difference between a hypercall and a system call?

e Does Xen require device drivers in the hypervisor? Why/why not?
* Does Xen trap guest system calls? Why/why not?

* What policy does Xen use to allocate memory across domains? What
advantages/disadvantages does this have?

 Why are HW physical->machine mappings readable by all VMs in Xen?
* What is the “double paging” problem?

 How does a memory balloon work? What happens when a guest OS writes to
memory owned by the balloon driver?

 How do Xen memory virtualization techniques differ from ESX?
 Compare and contrast interposition techniques in ESX, Xen, Arrakis
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Why virtualize hardware?

* Programs for one OS difficult to run on another OS.

* Wine (winehqg.org) [MLOC = millions of lines of code]
 started in 1993, beta in 2005 / v1.0 in 2008 at 1.4 MLOC / 2014 - 2.6 MLOC

e Ever try installing two different PostgreSQL versions?
* Shared libraries, configuration files, etc.

But the hardware interface relatively stable.

Virtualizing the hardware =2 run unmodified application with its OS.
* Run unmodified applications (same ABI/) from different OSes.
* Performance isolation. OS don’t cut it (QoS cross-talk).
* Accounting: sell part of a physical machine (isolation).

* Compatibility: VMMs have always presented a very appealing platform for practical
deployment, [because they] [allow] users to securely share hardware on machines at a low
performance cost, [improve] machine utilization, and [don’t require] modifications to the
applications. —Steven Hand

* Multiplexing, aggregation, emulation



Precisely, what is ‘Virtualization?’

* Popek & Goldberg 1974: VMM properties
* Equivalence/Fidelity

A program running under the VMM should exhibit a behavior essentially identical to that
demonstrated when running on an equivalent machine directly.

* Resource Control / Safety
The VMM must be in complete control of the virtualized resources

* Efficiency / Performance

A statistically dominant fraction of machine instructions must be executed without VMM
intervention

e Bugnion, Tsafrir, Nieh 2017:

Virtualization is the encapsulation pattern used to present the same interface as the
encapsulated resource

* Whatis a VM vs VMM? VMM vs Hypervisor?



Types of virtual machines
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 Virtual machine is an overloaded term. Know where you are.



Virtual Machine: a simulator mental model

struct machine_state{
uint64 pc;
uint64 Registers[16];
uint64 crl6]; // control registers crO-cr4 and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

What interface is

encapsulated here?
How?

}

void execute_instruction(i) {
switch(opcode) {
case add_rr:
machine.Registers[i.dst] += machine.Registers[i.src];
break;



Virtualization challenges

* Instructions (VT-x)
 Virtual machine control structure (VMCS)
* Unsafe instructions trap (VMEXits expensive)

 Memory (extended page tables)

* Hypervisor does to OS what OS does to user
e Devices (VT-d)

» Software-defined devices

 IOMMU (page table for devices)
* Hardware support for virtualization (SR-IOV)



VMM Classification: Type 1 vs Type 2

* VMM implemented
directly on physical
hardware

* VMM performs
scheduling and
allocation of system'’s
resources

e E.g., IBMVM/370,
Disco, Xen, ESX Server
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What makes hardware hard to virtualize?

 Direct access to physical memory
* MIPS allows OS to access physical memory at a fixed virtual address

* Instructions that act differently at different privilege levels
* popf, iret

e Unprivileged instructions that access privileged state
e sgdt, sldt,

* Excessive exits to hypervisor due to difficult to virtualize instructions
* int 0x80, a software interrupt was x86’s syscall instruction

* Xx86-32 segment state



Challenges for x86

 How to virtualize an ISA?
* Generic challenges: instructions (VT-x), MMU (EPT), devices (VT-d).
Classical virtualization (IBM 370) used hardware.

Trap and emulate too slow for many architectures

System calls and page faults are frequent

Software emulation considered too slow.

Xen conclusion: full

* x86 challenges virtualization not a
 The EFLAGS register has the interrupt enable bit. good tradeoff

* If the kernel is being virtualized, it is not privileged to enable interrupts.

* The kernel calls pushf and popf all over the place, and no instance can enable interrupts.
* CR3 points to the base of the page table: VMM can’t trust OS to write page tables.
* Untagged TLB - frequent flushes.
* Solved by binary translating the kernel (Disco 1997), currently solved by VT-x



Virtualization: Techniques & Tradeoffs
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Paravirtualization: goals

* Paravirtualization
* idealized machine, efficient to virtualize.
* More efficient than “full” virtualization
* Low cost of porting an OS (weak point).

e Still need safety

* hypervisor = portion of PA space that the guest OS cannot access
* top 64MB, use segmentation to avoid TLB flushes.

» “Typically only two types of exception occur frequently enough to affect
system performance: system calls (which are usually implemented via a
software exception), and page faults.”



Paravirtualization: technigues

* Small changes to the OS

* Explicit hypercalls into the hypervisor
* Replace privileged instructions with hypercalls
* Changed syscall instruction. (In 2000, int 0x80 was replaced by sysenter in hardware)

e Batch updates to page tables

* Shadow paging
* Guest: VA->Guest PA
* Hypervisor uses its own Guest PA->Host PA maps
* Installs VA->Host PA into TLB

* Use a “system VM” for complex functionality
» Keeps hypervisor simple
 Domain 0 (DomO0) does things like loads the real device drivers
* Guest OS loads a Xen-aware driver that talks to DomO
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VT-x: Virtualizing the CPU

* Duplicate all architecturally visible state

* root mode (hypervisor), non-root mode (guest)

e Many kernel instructions (e.g., cli) work in non-root mode on non-root state
* Instructions to access global descriptor table are privileged in root mode
* vmcall enters root mode like sysenter enters the kernel

* Transitions atomic: require 1 instruction, includes TLB state

* This is expensive (~780 cycles)!
* Must minimize VMexits

* root mode is virtualizable! (why does that matter?)

* VVirtual machine control structure (MVCS) X

e State of VM held in memory
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Virtualizing memory

* No hardware support
* Shadow page tables
* Guest page tables are read-only, so trap on write
* Hypervisor validates mappings, installs VA->Host PA

* Hardware support
» Extended page tables (EPT) Intel
* Nested page tables (NPT) AMD

* Tell processor about guest and host page tables, let it do the work
* Worst case 1 memory reference -> 24 memory references!



Virtualizing Virtual Memory
Shadow Page Tables
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Virtual address translation
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Shadow page tables
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Is this fundamentally slow?

Why? / Why not?

Guest: ref unmapped

HW: TRAP! Jump to VMM handler

VMM: find guest OS, check shadow, setup trap regs
for guest

Guest: read cr2

HW TRAP! Jump to VMM handler

VMM: read cr2, write faulting address to OS reg
Guest: alloc phys frame, write PTE

HW: TRAP! (RO mem): 2 VMM handler

VMM: alloc mem, record PA->MA, set shadow PTEs
Guest: thinks all good, clear privilege bit, reti

HW: TRAP! (privilege) 2 VMM handler

VMM: reti to guest



Why is shadow paging slow?

*Guest page-table writes cause traps (shadow) vs. run-through
(NPT/EPT).

*Shadow paging must write-protect the guest’s page tables.
*Every guest PTE write triggers a fault — VM exit — hypervisor updates the corresponding shadow PTE(s) — resume.

*With NPT/EPT the guest updates its own page tables without exits; the CPU later resolves
translations using the nested tables.

Shadow coherence maintenance is expensive.
*The hypervisor must keep multiple shadow page tables consistent with the guest’s view (per
address space / per vCPU variants, global pages, split large pages, etc.).
*Any change (CR3 load, INVLPG, context switch, page reclaim) can force shadow rebuilds,
shootdowns, and extra TLB flushes—each a VM exit and cross-CPU IPI.

Accessed/Dirty (A/D) and permissions emulation.
*In shadow mode the CPU sets A/D bits in the shadow PTEs, not the guest’s. Synchronizing
those bits back to the guest view (or emulating them) requires extra exits and bookkeeping.
*‘NPT/EPT expose hardware A/D and fine-grained permissions in the nested tables; no emulation
round-trips are needed.



Nested page tables

Hardware Support
Nested/Extended Page Tables

Future Extensions: EPT
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Nested page tables

* Worst case: 24 memory
references to translate
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* Pages larger than 4KB are
important
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Device drivers in Xen and KVM
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Performance of Xen (2003)

* Why does the

first set of bars

have the least

slowdown?
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Modern Perspective

* Hardware support for virtualization is dominant
 KVM is distributed as part of Linux
* Memory overheads still an issue
» Device virtualization current frontier

* But Xen lives on!
* Current Linux kernel supports DomO and user domains
e Performance & security
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