Hardware and Software
Support for Virtualization

Emmett Witchel
CS380L

Xen faux quiz (pick 2, 5 min)

 What is the difference between an APl and an ABI?

Why are fork and exec slow in Xen?

What is page coloring?

What is the difference between a hypercall and a system call?

e Does Xen require device drivers in the hypervisor? Why/why not?
* Does Xen trap guest system calls? Why/why not?

* What policy does Xen use to allocate memory across domains? What
advantages/disadvantages does this have?

 Why are HW physical->machine mappings readable by all VMs in Xen?
* What is the “double paging” problem?

 How does a memory balloon work? What happens when a guest OS writes to
memory owned by the balloon driver?

 How do Xen memory virtualization techniques differ from ESX?
 Compare and contrast interposition techniques in ESX, Xen, Arrakis

Box drawing Potpourri: OSes, VMSs, Containers

AppA | AppB | AppA | AppB
Bins/Libs | | Bins/Libs Bins/Libs | | Bins/Libs
OS Services

Microkernel SPIN
Hardware W Hardware

Microkernels

App A

LibOS

App B

LibOS

Exokernel
Hardware

Extensible OSes

App A

Bins/Libs

Guest
ON)

App B

Bins/Libs

Guest
ON)

Hypervisor

[Host OS]
Hardware

VMs

App A

Bins/Libs

App B

Bins/Libs

Host OS
] Hardware

Containers

Box drawing Potpourri: OSes, VMSs, Containers

AppA | AppB | AppA | AppB
Bins/Libs | | Bins/Libs Bins/Libs | | Bins/Libs
OS Services

Microkernel SPIN
Hardware W Hardware

Microkernels

App A

LibOS

App B

LibOS

App A

Bins/Libs

App B

Bins/Libs

t

OS

Exokernel
Hardware

Extensible OSes

Hypervisor

[Host OS]
Hardware

VMs

Next few papers are
about design tradeoffs
for these boxes

App A

Bins/Libs

App B

Bins/Libs

Host OS
] Hardware

Containers

Why virtualize hardware?

* Programs for one OS difficult to run on another OS.

* Wine (winehqg.org) [MLOC = millions of lines of code]
 started in 1993, beta in 2005 / v1.0 in 2008 at 1.4 MLOC / 2014 - 2.6 MLOC

e Ever try installing two different PostgreSQL versions?
* Shared libraries, configuration files, etc.

But the hardware interface relatively stable.

Virtualizing the hardware =2 run unmodified application with its OS.
* Run unmodified applications (same ABI/) from different OSes.
* Performance isolation. OS don’t cut it (QoS cross-talk).
* Accounting: sell part of a physical machine (isolation).

* Compatibility: VMMs have always presented a very appealing platform for practical
deployment, [because they] [allow] users to securely share hardware on machines at a low
performance cost, [improve] machine utilization, and [don’t require] modifications to the
applications. —Steven Hand

* Multiplexing, aggregation, emulation

Precisely, what is ‘Virtualization?’

* Popek & Goldberg 1974: VMM properties
* Equivalence/Fidelity

A program running under the VMM should exhibit a behavior essentially identical to that
demonstrated when running on an equivalent machine directly.

* Resource Control / Safety
The VMM must be in complete control of the virtualized resources

* Efficiency / Performance

A statistically dominant fraction of machine instructions must be executed without VMM
intervention

e Bugnion, Tsafrir, Nieh 2017:

Virtualization is the encapsulation pattern used to present the same interface as the
encapsulated resource

* Whatis a VM vs VMM? VMM vs Hypervisor?

Types of virtual machines

% Virtual Machine
g’ < Y
Z Language-based (system-level) > Lightweight
< Virtual Machine Virtual Machine Virtual Machine
.4 A
. ‘ ' - A Popek /
s Machine Simulator Hypervisor Goldberg Th.
‘-E - -
E ,/'/‘f x‘x
o S BN
Bare-metal Hypervisor (type-1) Hosted Hypervisor (type-2)

 Virtual machine is an overloaded term. Know where you are.

Virtual Machine: a simulator mental model

struct machine_state{
uint64 pc;
uint64 Registers[16];
uint64 crl6]; // control registers crO-cr4 and EFER on AMD

} machine;

while(1) {
fetch_instruction(machine.pc);
decode_instruction(machine.pc);
execute_instruction(machine.pc);

What interface is

encapsulated here?
How?

}

void execute_instruction(i) {
switch(opcode) {
case add_rr:
machine.Registers[i.dst] += machine.Registers[i.src];
break;

Virtualization challenges

* Instructions (VT-x)
 Virtual machine control structure (VMCS)
* Unsafe instructions trap (VMEXits expensive)

 Memory (extended page tables)

* Hypervisor does to OS what OS does to user
e Devices (VT-d)

» Software-defined devices

 IOMMU (page table for devices)
* Hardware support for virtualization (SR-IOV)

VMM Classification: Type 1 vs Type 2

* VMM implemented
directly on physical
hardware

* VMM performs
scheduling and
allocation of system'’s
resources

e E.g., IBMVM/370,
Disco, Xen, ESX Server

|
1| Apps

|
1| App

- !
apps |1 | |t Apps |,

1 0s 1| os i[|ios i||! O !
VM VM || VM || VM
Hypervisor
Processors Memory
. Network
D Cards

Physical Hardware

Type 1

HHAPPS | Apg Apps A
1 OS i||1 OS i| |} OS 0S |
VM || VM || VM || VM
Hypervisor]
Host OS

Processors = Memory

Network

Disks ol

Physical Hardware

Type 2

 VMMs built
completely on top
of a host OS

* Host OS provides
resource allocation
and standard
execution
environment to
each “guest OS”

* KVM, User-mode

Linux (UML), ESX
Workstation

What makes hardware hard to virtualize?

 Direct access to physical memory
* MIPS allows OS to access physical memory at a fixed virtual address

* Instructions that act differently at different privilege levels
* popf, iret

e Unprivileged instructions that access privileged state
e sgdt, sldt,

* Excessive exits to hypervisor due to difficult to virtualize instructions
* int 0x80, a software interrupt was x86’s syscall instruction

* Xx86-32 segment state

Challenges for x86

 How to virtualize an ISA?
* Generic challenges: instructions (VT-x), MMU (EPT), devices (VT-d).
Classical virtualization (IBM 370) used hardware.

Trap and emulate too slow for many architectures

System calls and page faults are frequent

Software emulation considered too slow.

Xen conclusion: full

* x86 challenges virtualization not a
 The EFLAGS register has the interrupt enable bit. good tradeoff

* If the kernel is being virtualized, it is not privileged to enable interrupts.

* The kernel calls pushf and popf all over the place, and no instance can enable interrupts.
* CR3 points to the base of the page table: VMM can’t trust OS to write page tables.
* Untagged TLB - frequent flushes.
* Solved by binary translating the kernel (Disco 1997), currently solved by VT-x

Virtualization: Techniques & Tradeoffs

- Performance | Fidelity ECompatibility Interposition iCompleXity

Full virtualization
(Device emulation,

API remoting |
Forwards API calls to proxy |
(e.g. dom0, proxy VM)

Paravirtualization
Adapt Guest OS or apps

Paravirtualization: goals

* Paravirtualization
* idealized machine, efficient to virtualize.
* More efficient than “full” virtualization
* Low cost of porting an OS (weak point).

e Still need safety

* hypervisor = portion of PA space that the guest OS cannot access
* top 64MB, use segmentation to avoid TLB flushes.

» “Typically only two types of exception occur frequently enough to affect
system performance: system calls (which are usually implemented via a
software exception), and page faults.”

Paravirtualization: technigues

* Small changes to the OS

* Explicit hypercalls into the hypervisor
* Replace privileged instructions with hypercalls
* Changed syscall instruction. (In 2000, int 0x80 was replaced by sysenter in hardware)

e Batch updates to page tables

* Shadow paging
* Guest: VA->Guest PA
* Hypervisor uses its own Guest PA->Host PA maps
* Installs VA->Host PA into TLB

* Use a “system VM” for complex functionality
» Keeps hypervisor simple
 Domain 0 (DomO0) does things like loads the real device drivers
* Guest OS loads a Xen-aware driver that talks to DomO

Xen System Architecture

Control
plane Application Application Application
software
Guest OS Guest OS Guest OS Guest OS VM VM VM
oran) | |) || (e || (s ApP il APP il APP
device drivers device drivers device drivers device drivers m m m
Xen :
, Hypervisor
DomainQ control Virtual x86 Virtual physical | |,.. « | | Virtual block
interface CPU memory il devices
Hardware

X86 hardware

Type | / bare metal organization

VT-x: Virtualizing the CPU

* Duplicate all architecturally visible state

* root mode (hypervisor), non-root mode (guest)

e Many kernel instructions (e.g., cli) work in non-root mode on non-root state
* Instructions to access global descriptor table are privileged in root mode
* vmcall enters root mode like sysenter enters the kernel

* Transitions atomic: require 1 instruction, includes TLB state

* This is expensive (~780 cycles)!
* Must minimize VMexits

* root mode is virtualizable! (why does that matter?)

* VVirtual machine control structure (MVCS) X

e State of VM held in memory

N
non-root

root

#vmexit |

cpi3 | [N v

cpl 2

cpl 1

cpl 0 ‘ Guest OS |/
\#ﬁmlaunch

|
#vmresume

vmread Hypervisor

vmwrite

root

Host VM 1 VM2
T N =\
| opl3 _ ' _| opl3 _
5 cpl 2 § cpl 2
é cpl 1 é cpl 1
= epl0 ‘ Guest OS ‘ . = cepl 0 | Guest OS ‘
~ Ny =/
i3 |
cpl 2
cpl 1
cpl 0

Hypervisor and/or Host Operating System

Virtualizing memory

* No hardware support
* Shadow page tables
* Guest page tables are read-only, so trap on write
* Hypervisor validates mappings, installs VA->Host PA

* Hardware support
» Extended page tables (EPT) Intel
* Nested page tables (NPT) AMD

* Tell processor about guest and host page tables, let it do the work
* Worst case 1 memory reference -> 24 memory references!

Virtualizing Virtual Memory
Shadow Page Tables

VM1

VM 2

Process 1

Process 2

Process 1

o Shadow page tables

* Guest: VA->GPA
Guest page table Host page table
* Xen: GPA->HPA GVA = GPA \ GPA = HPA

* TLB: VA->HPA

s © tables
/

i

W

\ }

Shadow page table

| GVA > HPA
: (]

Combined mapping
constructed by VMM

Virtual address translation

Guest Guest Guest

* Guest page tables 3 = R
write protected Suest

* Guest PT updates —l 1 “ e
cause VMexits i ‘ -

write-protected writg-protected wr tte-prﬂtected‘-. | '

* VMexits are bad ;

for perform ance (level, :access, gfn......) GFN.,._I_:TG P-:,EN
Load to CR3

l Shadow

Shadow Shadow
L3 L2 L1 7

Shadow page tables

4 N

05
Guest Physical

Primary Page Tahles

Hypervisor

_ Shadow Page Tables J

Is this fundamentally slow?

Why? / Why not?

Guest: ref unmapped

HW: TRAP! Jump to VMM handler

VMM: find guest OS, check shadow, setup trap regs
for guest

Guest: read cr2

HW TRAP! Jump to VMM handler

VMM: read cr2, write faulting address to OS reg
Guest: alloc phys frame, write PTE

HW: TRAP! (RO mem): 2 VMM handler

VMM: alloc mem, record PA->MA, set shadow PTEs
Guest: thinks all good, clear privilege bit, reti

HW: TRAP! (privilege) 2 VMM handler

VMM: reti to guest

Why is shadow paging slow?

*Guest page-table writes cause traps (shadow) vs. run-through
(NPT/EPT).

*Shadow paging must write-protect the guest’s page tables.
*Every guest PTE write triggers a fault — VM exit — hypervisor updates the corresponding shadow PTE(s) — resume.

*With NPT/EPT the guest updates its own page tables without exits; the CPU later resolves
translations using the nested tables.

Shadow coherence maintenance is expensive.
*The hypervisor must keep multiple shadow page tables consistent with the guest’s view (per
address space / per vCPU variants, global pages, split large pages, etc.).
*Any change (CR3 load, INVLPG, context switch, page reclaim) can force shadow rebuilds,
shootdowns, and extra TLB flushes—each a VM exit and cross-CPU IPI.

Accessed/Dirty (A/D) and permissions emulation.
*In shadow mode the CPU sets A/D bits in the shadow PTEs, not the guest’s. Synchronizing
those bits back to the guest view (or emulating them) requires extra exits and bookkeeping.
*‘NPT/EPT expose hardware A/D and fine-grained permissions in the nested tables; no emulation
round-trips are needed.

Nested page tables

Hardware Support
Nested/Extended Page Tables

Future Extensions: EPT

VA—PA mapping EPT: Overview

]
7y

=

]

CE H
TLB
VA

Guest ¥ Host

Linear i Physical
guest Address Address
VMM

« Intel® 64 page tables
- Map g inear to guest-physical (translated again)
- Can be read and written by guest

« New EPT page tables under VMM control

PA—MA mapping - Map guest-phy | to host-physical (accesses memory)
- Referenced by new EPT base pointe
* NO VM EXIt for gUESt PT ertes » No VM exits due to page faults, INVLPG, or CR3 accesses

Nested page tables

* Worst case: 24 memory
references to translate
virtual page

* Pages larger than 4KB are
important

* gemu allocates host
memory in 1 chunk

* Host OS in control
* gemu devices can access _

* Host swapping gemu
memory is complicated

non-root mode

usermode

kernel mode

(o) 7 12 17 2)
3) 8 13 18 (23)
(a) 9 14 19 24)
: 5 10 15 X \ 20 | LB
) o T ntry
‘ dx 4 dx 3 d idx 1 offset |
guest PTE = host PTE
A cr3
PP o H non-root
Guest-physical GOS A =
memory N\]
IO \ 7—
gemu
|l|||||.\|||||||
cr3 ‘ ; ept }
root Linux |
— kvm.ko *.
. // mEm

Host-physical memory oo oo

O

-

‘Do o oo o

Device drivers in Xen and KVM

Xen
dom0 domU
@ O P’“"Yj Process
Kernel \ GK
v v
Native Back-end Front-end
Driver Driver Driver

| Guest OS

@0 Prmqa

Process

GKv

Driver

\

Host OS

=

+

Native

Host Kernel Driver

\

v

Hardware

\

Hardware *

Performance of Xen (2003)

* Why does the

first set of bars

have the least

slowdown?

Aelative score o Lin

L = L u

SPEC INT2000 (score) Linwe build vime (=) OSDE-A fupky OSDEOLTF fup's) cbench (o) SPEC WEESS (score)

Modern Perspective

* Hardware support for virtualization is dominant
 KVM is distributed as part of Linux
* Memory overheads still an issue
» Device virtualization current frontier

* But Xen lives on!
* Current Linux kernel supports DomO and user domains
e Performance & security

	Slide 1: Hardware and Software Support for Virtualization
	Slide 2: Xen faux quiz (pick 2, 5 min)
	Slide 3: Box drawing Potpourri: OSes, VMs, Containers
	Slide 4: Box drawing Potpourri: OSes, VMs, Containers
	Slide 5: Why virtualize hardware?
	Slide 6: Precisely, what is ‘Virtualization?’
	Slide 7: Types of virtual machines
	Slide 9: Virtual Machine: a simulator mental model
	Slide 10: Virtualization challenges
	Slide 11: VMM Classification: Type 1 vs Type 2
	Slide 12: What makes hardware hard to virtualize?
	Slide 13: Challenges for x86
	Slide 14: Virtualization: Techniques & Tradeoffs
	Slide 15: Paravirtualization: goals
	Slide 16: Paravirtualization: techniques
	Slide 17: Xen System Architecture
	Slide 18: VT-x: Virtualizing the CPU
	Slide 19: Virtualizing memory
	Slide 20: Shadow page tables
	Slide 21: Virtual address translation
	Slide 22: Shadow page tables
	Slide 23: Why is shadow paging slow?
	Slide 24: Nested page tables
	Slide 25: Nested page tables
	Slide 26: Device drivers in Xen and KVM
	Slide 27: Performance of Xen (2003)
	Slide 28: Modern Perspective

