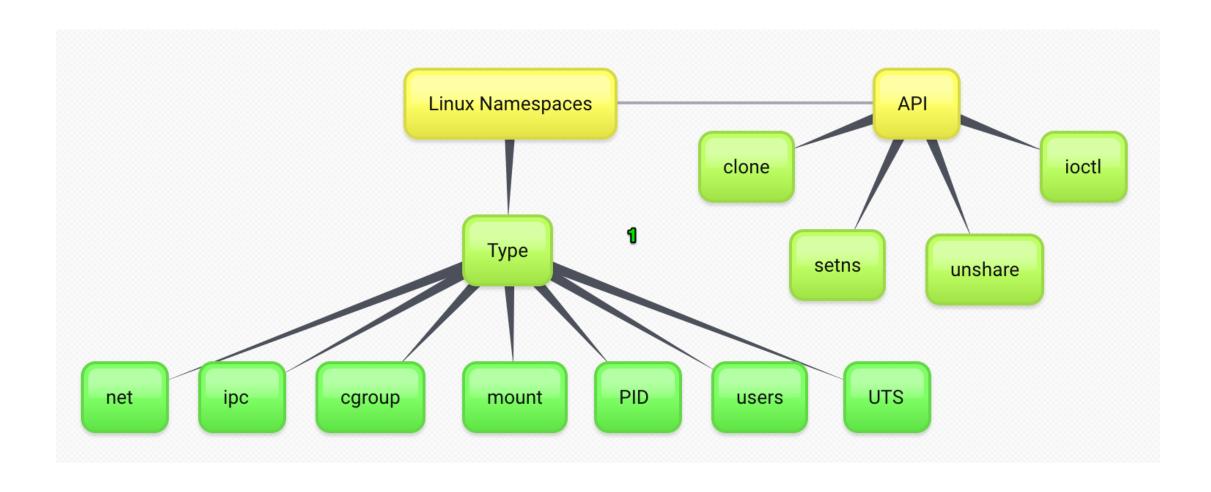
Containers

LWN articles

The failure of operating systems

- OSes manage physical memory!
 - But LRU means one process' use causes another to slow down
- OSes manage the CPU
 - But applications have many processes
 - More processes == more CPU
- OSes provide performance isolation
 - Global denial of service attacks are easy
 - Directory bomb, fork bomb
- Difficult to get accurate application statistics
- Difficult to have to applications use the same port


Containers to the rescue

- cgroups control group
 - Hard limit on CPU
 - Schedule hierarchically cgroups first, then subgroups, then processes
 - Hard limit on physical memory
- Namespaces allow security & multiplexing
 - If you can't name a resource, you can't control it
 - Network namespace
 - Cgroups have a network device, independent port numbers
 - mount namespace
 - Different containers see different file system namespace
 - User IDs, group ID namespace
 - Includes init process

Namespaces

- The purpose of each namespace is to wrap a particular global system resource in an abstraction that makes it appear to the processes within the namespace that they have their own isolated instance of the global resource
- UTS nodename and domainname
- IPC semaphores, pipes, POSIX message queues
- Network IP address, routing

Namespace figure

 Why is container 	start time so m	nuch faster than	VM boot?