Basic concurrency

Emmett Witchel
CS380L

Concurrency Quiz

If two threads execute this program concurrently, how

many different final values of X are there?

Thread 1

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

ol

nswer:
0
1
2

Initially, X==0 Thread 2

void increment () {
int temp = X;
temp = temp + 1;
X = temp;

More than 2

Schedules/Interleavings

* Model of concurrent execution

* Interleave statements from each thread into a single thread

* If any interleaving yields incorrect results, some
synchronization is needed
Thread 1 | Thread 2
tmpl;%ttzpi - i'. X;
tmpl pl + | B2 = & — 2 + 1;
X = tmol: tmp2=tmp2+1;p2.;
Pl o Jtmpl = tmpl + 1;
/

—> X = tmpl;
X = tmp2;/

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

void increment () {
lock.acquire() ;
int temp = X;
temp = temp + 1;
X = temp;
lock.release() ;

* Mutual exclusion ensures only safe interleavings

* But it limits concurrency, and hence
scalability/performance

Why Locks are Hard

* Coarse-grain locks * Fine-grain locks
« Simple to develop * Greater concurrency
e Easy to avoid deadlock ’ Greate.r CzdegrmkpleXity
° FeW data races ® POtentIa| eadloCKsS
e Limited concurrency * Not composable

* Potential data races
* Which lock to lock?
// WITH FINE-GRAIN LOCKS
void move (T s, T d, Obj key) {
LOCK (s) ; Thread 0 Thread 1
LOCK (d) ; move (a, b, keyl);
tmp = s.remove (key) ;
d.insert (key, tmp);
UNLOCK (d) ;

UNLOCK (s) ; DEADLOCK!

move (b, a, key2);

The correctness conditions
e Safety

* Only one thread in the critical region

* Liveness
* Some thread that enters the entry section eventually enters the critical region
* Even if other thread takes forever in non-critical region

* Bounded waiting

* Athread that enters the entry section enters the critical section within some
bounded number of operations.

* Failure atomicity
e Itis OK for a thread to die in the critical region

* Many techniques do not provide failure atomicity ,
while (1) {

Entry section
Critical section
Exit section
Non-critical section

Read-Modify-Write (RMW)

* Implement locks using read-modify-write instructions

* Asan atomic and isolated action
* read a memory location into a register, AND
e write a new value to the location
* Implementing RMW is tricky in multi-processors
* Requires cache coherence hardware. Caches snoop the memory bus.

* Examples:
* LOCK prefix makes an instruction (e.g., add) atomic with respect to all cores by forcing exclusive
ownership of the cache line and providing strong ordering

 Compare and Exchange (atomic by nature, does not require lock prefix)

* Compares the value in EAX with the first operand (destination operand)
* If the two values are equal, the second operand (source operand) is loaded into the destination operand

* Otherwise, the destination operand is loaded into EAX

* Load linked/store conditional (PowerPC,Alpha, MIPS)

Background: Read-Mod

*

Required effect is:

An atomic and isolated action
1.
2. write a new value to the location

RMW is very tricky in multi-processors

read memory location AND

Cache coherence alone doesn’t solve it

// (straw-person lock impl)
// Initially, lock == @ (unheld)

lock() {
try: (1oad lock, RO)
test RO
bnz try
store lock, 1
} _

ify-Write (RMW)

@

Tag State Data

Implementing locks requires read-modify-write operations

@

Data

@

Tag State Data

Tag State

Memory 'O devices

Make this into a single U
(atomic hardware instruction) 1 \
R S EXCLUSIVE
A set of instructions with @h}m\ o
well-defined protocol M \ ’
J\ SHARED
I !}.

dldEE] mnm’mn,’ /

~INVALID

Background: HW Support for RMW

Test & Set Exchange, locked LLSC: load-linked store-conditional
mcrement/decrement

Most architectures Many architectures PPC, Alpha, MIPS
int TST(addr) { bool cas(addr, old, new) { int XCHG(addr, val) { bool LLSC(addr, val) {
atomic { atomic { atomic { ret = *addr;
ret = *addr; if(*addr == old) { ret = *addr; atomic {
if(!*addr) *addr = new; *addr = val; if(*addr == ret) {
*addr = 1; return true; return ret; *addr = val;
return ret; } } return true;
} return false; } }
} } return false;
} }

void lock(lock) {
while(CAS(&lock, @, 1) != true);
}

Implementing Locks with Test&set

int lock_value = O;
int* lock = &lock_value;

Lock::Acquire() {

while (test&set(lock) == 1)
; //spin

}

Lock::Release() {
*lock = O;
}
¢+ What is the problem with this?
» A. CPU usage B. Memory usage C. Lock::Acquire() latency
» D. Memory bus usage E. Does not work

Test & Set with Memory Hierarchies

What happens to lock variable’s cache line when different cpu’s contend for the
same lock?

Load
can
stall
lock: 1 /
|
1.2 L2

OxFO Tock: 1
Main Memory | 0xF4..

Cheaper Locks with Cheap busy waiting

Using Test&Test&Set

Lock::Acquire() {
while(1) {
while (*lock == 1) ; // spin just reading
. if (test&set(lock) == 0) break;
Lock::Acquire() {)
while (test&set(lock) == 1);

}

. . Busy-wait on cached copy
Busy-wait on in-memory copy

Lock::Release() { Lock::Release() {
*lock = O; *lock = O;
} }

* What is the problem with this?

* A. CPU usage B. Memory usage C. Lock::Acquire() latency
* D. Memory bus usage E. Does not work

Test & Set with Memory Hierarchies

What happens to lock variable’s cache line when different cpu’s contend for the
same lock?

L1 lock: 1

. OxFO lock: 1 ¥
Main Memory | 0xF4..

Test & Set with Memory Hierarchies

What happens to lock variable’s cache line when different cpu’s contend for the
same lock?

L1 lock: O

L2

. OxFO lock: 1
Main Memory | 0xF4 ...

typedef struct { Atomic int v; } spinlock t; // 0 = unlocked, 1 = locked

static inline void lock(spinlock t *1) ({
// Fast path: test first to avoid locked bus cycles when already taken
for (;;) {
// atomic_exchange implemented as an x86 xchg
if ('atomic load explicit(&l->v, memory order relaxed) &&
'latomic_exchange explicit(&l->v, 1, memory order acquire)) ({
return; // acquired

}

// Polite spin while the lock looks held, reducing contention
while (atomic_load explicit(&l->v, memory order relaxed)) mm pause();

}

static inline void unlock(spinlock t *1) ({
// On x86, a plain store has release semantics; use a release
// store for the compiler too
atomic store explicit(&l->v, 0, memory order release);

; int lock(spinlock t *1) ; returns with lock held
; 1->v 1is a 32-bit int: 0 = unlocked, 1 = locked

lock:
.spin_check:
mov eax, dword ptr [rdi] ; read 1->v (relaxed)
test eax, eax
jne .spin wait ; 1f held, go spin politely
.try xchg:
mov eax, 1
xchg eax, dword ptr [rdi] ; atomic RMW: eax <- old, [l1->Vv] <- 1
test eax, eax
jne .spin wait ; someone else had it; keep spinning
ret ; acquired

.spin wait:

pause ; polite spin (reduces contention)
.wait loop:

mov eax, dword ptr [rdi]

test eax, eax

jne .wait loop ; wait while it still looks held

Jmp .try xchg ; try to acquire again

; void unlock(spinlock t *1)

unlock:
mov dword ptr [rdi], O ; x86 TSO gives release on stores
ret

	Slide 1: Basic concurrency
	Slide 2: Concurrency Quiz
	Slide 3: Schedules/Interleavings
	Slide 4: Locks fix this with Mutual Exclusion
	Slide 5: Why Locks are Hard
	Slide 6: The correctness conditions
	Slide 7: Read-Modify-Write (RMW)
	Slide 8: Background: Read-Modify-Write (RMW)
	Slide 9: Background: HW Support for RMW
	Slide 10: Implementing Locks with Test&set
	Slide 11: Test & Set with Memory Hierarchies
	Slide 12: Cheaper Locks with Cheap busy waiting Using Test&Test&Set
	Slide 13: Test & Set with Memory Hierarchies
	Slide 14: Test & Set with Memory Hierarchies
	Slide 15
	Slide 16
	Slide 17

