
Basic concurrency

Emmett Witchel

CS380L

Concurrency Quiz
If two threads execute this program concurrently, how

many different final values of X are there?

Initially, X == 0
void increment() {

 int temp = X;

 temp = temp + 1;

 X = temp;

}

void increment() {

 int temp = X;

 temp = temp + 1;

 X = temp;

}

Thread 1 Thread 2

Answer:

A. 0

B. 1

C. 2

D. More than 2

Schedules/Interleavings
• Model of concurrent execution

• Interleave statements from each thread into a single thread

• If any interleaving yields incorrect results, some
synchronization is needed

tmp1 = X;

tmp1 = tmp1 + 1;

X = tmp1;

tmp2 = X;

tmp2 = tmp2 + 1;

X = tmp2;

Thread 1 Thread 2

tmp1 = X;

tmp2 = X;

tmp2 = tmp2 + 1;

tmp1 = tmp1 + 1;

X = tmp1;

X = tmp2;

If X==0 initially, X == 1 at the end. WRONG result!

Locks fix this with Mutual Exclusion

• Mutual exclusion ensures only safe interleavings
• But it limits concurrency, and hence

scalability/performance

void increment() {

 lock.acquire();

 int temp = X;

 temp = temp + 1;

 X = temp;

 lock.release();

}

• Fine-grain locks
• Greater concurrency

• Greater code complexity

• Potential deadlocks
• Not composable

• Potential data races
• Which lock to lock?

Why Locks are Hard

// WITH FINE-GRAIN LOCKS

void move(T s, T d, Obj key){

 LOCK(s);

 LOCK(d);

 tmp = s.remove(key);

 d.insert(key, tmp);

 UNLOCK(d);

 UNLOCK(s);

}

DEADLOCK!

move(a, b, key1);

move(b, a, key2);

Thread 0 Thread 1

• Coarse-grain locks
• Simple to develop

• Easy to avoid deadlock

• Few data races

• Limited concurrency

The correctness conditions
• Safety

• Only one thread in the critical region

• Liveness
• Some thread that enters the entry section eventually enters the critical region

• Even if other thread takes forever in non-critical region

• Bounded waiting
• A thread that enters the entry section enters the critical section within some

bounded number of operations.

• Failure atomicity
• It is OK for a thread to die in the critical region

• Many techniques do not provide failure atomicity
while(1) {

 Entry section

 Critical section

 Exit section

 Non-critical section

}

Read-Modify-Write (RMW)
• Implement locks using read-modify-write instructions

• As an atomic and isolated action

• read a memory location into a register, AND

• write a new value to the location

• Implementing RMW is tricky in multi-processors

• Requires cache coherence hardware. Caches snoop the memory bus.

• Examples:
• LOCK prefix makes an instruction (e.g., add) atomic with respect to all cores by forcing exclusive

ownership of the cache line and providing strong ordering

• Compare and Exchange (atomic by nature, does not require lock prefix)
• Compares the value in EAX with the first operand (destination operand)

• If the two values are equal, the second operand (source operand) is loaded into the destination operand

• Otherwise, the destination operand is loaded into EAX

• Load linked/store conditional (PowerPC,Alpha, MIPS)

Background: Read-Modify-Write (RMW)
Implementing locks requires read-modify-write operations

Required effect is:
• An atomic and isolated action

1. read memory location AND

2. write a new value to the location

• RMW is very tricky in multi-processors

• Cache coherence alone doesn’t solve it

// (straw-person lock impl)
// Initially, lock == 0 (unheld)
lock() {
try: load lock, R0
 test R0
 bnz try
 store lock, 1
}

Make this into a single
(atomic hardware instruction)
OR
A set of instructions with
well-defined protocol

MODIFIED

EXCLUSIVE

SHARED

INVALID

Test & Set CAS Exchange, locked
increment/decrement,

LLSC: load-linked store-conditional

Most architectures Many architectures x86 PPC, Alpha, MIPS

Background: HW Support for RMW

bool cas(addr, old, new) {
 atomic {
 if(*addr == old) {
 *addr = new;
 return true;
 }
 return false;
 }
}

int TST(addr) {
 atomic {
 ret = *addr;
 if(!*addr)
 *addr = 1;
 return ret;
 }
}

int XCHG(addr, val) {
 atomic {
 ret = *addr;
 *addr = val;
 return ret;
 }
}

bool LLSC(addr, val) {
 ret = *addr;
 atomic {
 if(*addr == ret) {
 *addr = val;
 return true;
 }
 return false;
}

void lock(lock) {
 while(CAS(&lock, 0, 1) != true);
}

Implementing Locks with Test&set
int lock_value = 0;
int* lock = &lock_value;

Lock::Acquire() {
while (test&set(lock) == 1)
 ; //spin
}

Lock::Release() {
 *lock = 0;
}

What is the problem with this?
➢ A. CPU usage B. Memory usage C. Lock::Acquire() latency

➢ D. Memory bus usage E. Does not work

Test & Set with Memory Hierarchies

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
while(test&set(lock));

// in critical region

L1

L2

Main Memory

…

…

L1

L2

CPU B
while(test&set(lock));

What happens to lock variable’s cache line when different cpu’s contend for the
same lock?

Load

can

stall

Cheaper Locks with Cheap busy waiting
 Using Test&Test&Set

Lock::Acquire() {
while (test&set(lock) == 1);
}

Lock::Release() {
 *lock = 0;
}

Busy-wait on in-memory copy

Lock::Acquire() {
while(1) {
 while (*lock == 1) ; // spin just reading
 if (test&set(lock) == 0) break;
}

Busy-wait on cached copy

Lock::Release() {
*lock = 0;
}

• What is the problem with this?
• A. CPU usage B. Memory usage C. Lock::Acquire() latency
• D. Memory bus usage E. Does not work

Test & Set with Memory Hierarchies

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…

CPU A
// in critical region

L1

L2

Main Memory

lock: 1
…

lock: 1
…

L1

L2

CPU B
while(*lock);

if(test&set(lock))brk;

What happens to lock variable’s cache line when different cpu’s contend for the
same lock?

Test & Set with Memory Hierarchies

0xF0 lock: 0
0xF4 …

lock: 0
…

lock: 0
…

CPU A
// in critical region

*lock = 0

L1

L2

Main Memory

L1

L2

CPU B
while(*lock);

if(test&set(lock))brk;

What happens to lock variable’s cache line when different cpu’s contend for the
same lock?

0xF0 lock: 1
0xF4 …

lock: 1
…

lock: 1
…
lock: 0
…

lock: 0
…

static inline void lock(spinlock_t *l) {

 // Fast path: test first to avoid locked bus cycles when already taken

 for (;;) {

 // atomic_exchange implemented as an x86 xchg

 if (!atomic_load_explicit(&l->v, memory_order_relaxed) &&

 !atomic_exchange_explicit(&l->v, 1, memory_order_acquire)) {

 return; // acquired

 }

 // Polite spin while the lock looks held, reducing contention

 while (atomic_load_explicit(&l->v, memory_order_relaxed)) _mm_pause();

 }

}

static inline void unlock(spinlock_t *l) {

 // On x86, a plain store has release semantics; use a release

 // store for the compiler too

 atomic_store_explicit(&l->v, 0, memory_order_release);

}

typedef struct { _Atomic int v; } spinlock_t; // 0 = unlocked, 1 = locked

; int lock(spinlock_t *l) ; returns with lock held

; l->v is a 32-bit int: 0 = unlocked, 1 = locked

lock:

.spin_check:

 mov eax, dword ptr [rdi] ; read l->v (relaxed)

 test eax, eax

 jne .spin_wait ; if held, go spin politely

.try_xchg:

 mov eax, 1

 xchg eax, dword ptr [rdi] ; atomic RMW: eax <- old, [l->v] <- 1

 test eax, eax

 jne .spin_wait ; someone else had it; keep spinning

 ret ; acquired

.spin_wait:

 pause ; polite spin (reduces contention)

.wait_loop:

 mov eax, dword ptr [rdi]

 test eax, eax

 jne .wait_loop ; wait while it still looks held

 jmp .try_xchg ; try to acquire again

; void unlock(spinlock_t *l)

unlock:

 mov dword ptr [rdi], 0 ; x86 TSO gives release on stores

 ret

	Slide 1: Basic concurrency
	Slide 2: Concurrency Quiz
	Slide 3: Schedules/Interleavings
	Slide 4: Locks fix this with Mutual Exclusion
	Slide 5: Why Locks are Hard
	Slide 6: The correctness conditions
	Slide 7: Read-Modify-Write (RMW)
	Slide 8: Background: Read-Modify-Write (RMW)
	Slide 9: Background: HW Support for RMW
	Slide 10: Implementing Locks with Test&set
	Slide 11: Test & Set with Memory Hierarchies
	Slide 12: Cheaper Locks with Cheap busy waiting Using Test&Test&Set
	Slide 13: Test & Set with Memory Hierarchies
	Slide 14: Test & Set with Memory Hierarchies
	Slide 15
	Slide 16
	Slide 17

