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Faux Quiz Questions

• Compare/contrast Tango against LFS
• Compare/contrast Tango against TxOS
• Compare/contrast Tango against Spark/DryadLINQ
• How are streams used in Tango?
• Why do holes arise in a tango log? How does the 

system deal with them?
• How do streams complicate cross-object transactions in 

Tango?
• How does Tango’s commit protocol differ from a 

traditional protocol like 2PC?
• Compare/contrast fault-tolerance techniques in Tango 

and Spark
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• design pattern: distribute data, centralize metadata

• schedulers, allocators, coordinators, namespaces, 
indices (e.g. HDFS namenode, SDN controller…)

• usual plan: harden centralized service later

• … but hardening is difficult!

“Coordinator failures will be handled safely using the ZooKeeper

service [14].” Fast Crash Recovery in RAMCloud, Ongaro et al., SOSP 2011.

“However, adequate resilience can be achieved by applying
standard replication techniques to the decision element.” NOX: Towards an 
Operating System for Networks, Gude et al., Sigcomm CCR 2008.

“Efforts are also underway to address high
availability of a YARN cluster by having passive/active
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centralized metadata services are built using in-memory 
data structures (e.g. Java / C# Collections)

- state resides in maps, trees, queues, counters, graphs…
- transactional access to data structures

- example: a scheduler atomically moves a node from a free list 
to an allocation map



the abstraction gap for metadata

centralized metadata services are built using in-memory 
data structures (e.g. Java / C# Collections)

- state resides in maps, trees, queues, counters, graphs…
- transactional access to data structures

- example: a scheduler atomically moves a node from a free list 
to an allocation map

adding high availability requires different abstractions
- move state to external service like ZooKeeper
- restructure code to use state machine replication
- implement custom replication protocols
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the Tango abstraction

the shared log is the source of
- persistence
- availability
- elasticity
- atomicity and isolation

… across multiple objects
commit 
record

uncommitted 
data

shared log

a Tango object

=
view
in-memory 
data structure

+
history
ordered 
updates in 
shared log

no messages… only appends/reads on the shared log!

1. Tango objects are easy to use
2. Tango objects are easy to build
3. Tango objects are fast and scalable
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under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commits if read-
set (ownermap) 
has not changed in 
conflict window

TX commit record:
read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

speculative commit records: each client 
decides if the TX commits or aborts
independently but deterministically
[similar to Hyder (Bernstein et al., CIDR 2011)]
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arbitrary API exposed by object to application: mutators and accessors



Tango objects are easy to build

class TangoRegister { 
int oid; 
TangoRuntime ∗T; 
int state; 
void apply(void ∗X) { 

state = ∗(int ∗)X; 
} 
void writeRegister (int newstate) { 

T−>update_helper(&newstate , sizeof (int) , oid); 
} 
int readRegister () { 

T−>query_helper(oid); 
return state; 

}
}

object-specific state

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors



Tango objects are easy to build

class TangoRegister { 
int oid; 
TangoRuntime ∗T; 
int state; 
void apply(void ∗X) { 

state = ∗(int ∗)X; 
} 
void writeRegister (int newstate) { 

T−>update_helper(&newstate , sizeof (int) , oid); 
} 
int readRegister () { 

T−>query_helper(oid); 
return state; 

}
}

invoked by Tango runtime 
on EndTX to change state

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors



Tango objects are easy to build

class TangoRegister { 
int oid; 
TangoRuntime ∗T; 
int state; 
void apply(void ∗X) { 

state = ∗(int ∗)X; 
} 
void writeRegister (int newstate) { 

T−>update_helper(&newstate , sizeof (int) , oid); 
} 
int readRegister () { 

T−>query_helper(oid); 
return state; 

}
}

mutator: updates TX 
write-set, appends 

to shared log

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors



Tango objects are easy to build

class TangoRegister { 
int oid; 
TangoRuntime ∗T; 
int state; 
void apply(void ∗X) { 

state = ∗(int ∗)X; 
} 
void writeRegister (int newstate) { 

T−>update_helper(&newstate , sizeof (int) , oid); 
} 
int readRegister () { 

T−>query_helper(oid); 
return state; 

}
}

accessor: updates 
TX read-set, 

returns local state

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors



Tango objects are easy to build

class TangoRegister { 
int oid; 
TangoRuntime ∗T; 
int state; 
void apply(void ∗X) { 

state = ∗(int ∗)X; 
} 
void writeRegister (int newstate) { 

T−>update_helper(&newstate , sizeof (int) , oid); 
} 
int readRegister () { 

T−>query_helper(oid); 
return state; 

}
}

15 LOC == persistent, highly available, transactional register

Other examples: 
Java ConcurrentMap: 350 LOC
Apache ZooKeeper: 1000 LOC
Apache BookKeeper: 300 LOC

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors
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the secret sauce: a fast shared log

shared log

Tango runtime

shared log API:
O = append(V)
V = read(O)
trim(O) //GC
O = check() //tail

application

append to tailread from anywhere

flash 
cluster

obtain tail #

sequencer

the CORFU decentralized shared log [NSDI 2012]:
- reads scale linearly with number of flash drives
- 600K/s appends (limited by sequencer speed)

only a hint! helps  
performance, not 
required for safety 

or liveness
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adding more clients →more reads/sec
… until shared log is saturated

beefier shared log → scaling continues…
ultimate bottleneck: sequencer

a Tango object provides elasticity 
for strongly consistent reads

constant write load (10K writes/sec), each client adds 10K reads/sec

(latency = 1 ms)
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evaluation: multi-object txes

56

18 clients, each client hosts its own TangoMap
cross-partition tx: client moves element from its own TangoMap
to some other client’s TangoMap

similar scaling to 2PL…
without a complex distributed protocol

over 100K txes/sec when 16% of txes are 
cross-partition

Tango enables fast, distributed transactions 
across multiple objects



conclusion

Tango objects: data structures backed by a shared log

key idea: the shared log does all the heavy lifting

(persistence, consistency, atomicity, isolation, history, 
elasticity…)

Tango objects are easy to use, easy to build, and fast!

Tango democratizes the construction of highly available 
metadata services



thank you!
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the CORFU protocol: (chain) replication

client C1

client C2

safety under contention:
if multiple clients try to write to same log 
position concurrently, only one ‘wins’

client C3

durability:
data is only visible to reads if 
entire chain has seen it
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