Tango

Emmett Witchel
CS380L

Faux Quiz Questions

e Compare/contrast Tango against LFS

e Compare/contrast Tango against TxOS

e Compare/contrast Tango against Spark/DryadLINQ
* How are streams used in Tango?

* Why do holes arise in a tango log? How does the
system deal with them?

* How do streams complicate cross-object transactions in
Tango?

* How does Tango’s commit protocol differ from a
traditional protocol like 2PC?

* Compare/contrast fault-tolerance techniques in Tango
and Spark

Tango: distributed data
structures over a shared log

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran
Michael Wei, John D. Davis, Sriram Rao, Tao Zou, Aviad Zuck

Microsoft Research

big metadata

* design pattern: distribute data, centralize metadata

* schedulers, allocators, coordinators, namespaces,
indices (e.g. HDFS namenode, SDN controller...)

big metadata

* design pattern: distribute data, centralize metadata

e schedulers, allocators, coordinators, namespaces,
indices (e.g. HDFS namenode, SDN controller...)

* usual plan: harden centralized service later

“Coordinator failures will be handled safely using the ZooKeeper
service [14].” Fast Crash Recovery in RAMCloud, Ongaro et al., SOSP 2011.

“Efforts are also underway to address high

availability of a YARN cluster by having passive/active

failover of RM to a standby node.” Apache Hadoop YARN: Yet Another
Resource Negotiator, Vavilapalli et al., SOCC 2013.

“However, adequate resilience can be achieved by applying
standard replication techniques to the decision element.” NOX: Towards an
Operating System for Networks, Gude et al., Sigcomm CCR 2008.

big metadata

* design pattern: distribute data, centralize metadata

e schedulers, allocators, coordinators, namespaces,
indices (e.g. HDFS namenode, SDN controller...)

* usual plan: harden centralized service later

“Coordinator failures will be handled safely using the ZooKeeper
service [14].” Fast Crash Recovery in RAMCloud, Ongaro et al., SOSP 2011.

“Efforts are also underway to address high
availability of a YARN cluster by having passive/active
failover of RM to a standby node.” Apache Hadoop YARN: Yet Another

Resource Negotiator, Vavilapalli et al., SOCC 2013.

“However, adequate resilience can be achieved by applying
standard replication techniques to the decision element.” NOX: Towards an
Operating System for Networks, Gude et al., Sigcomm CCR 2008.

e ... but hardening is difficult!

the abstraction gap for metadata

centralized metadata services are built using in-memory
data structures (e.g. Java / C# Collections)

- state resides in maps, trees, queues, counters, graphs...

- transactional access to data structures

- example: a scheduler atomically moves a node from a free list
to an allocation map

the abstraction gap for metadata

adding high availability requires different abstractions
- move state to external service like ZooKeeper

- restructure code to use state machine replication

- implement custom replication protocols

the Tango abstraction

application

a Tango object

view
in-memory
data structure

<+

history
ordered
updates in

shared log

the Tango abstraction

application

a Tango object

view
in-memory
data structure

<+

history the shared log is the source of
ordered - persistence
updates in

shared log

the Tango abstraction

a Tango object

view
in-memory
data structure

+
history
ordered

updates in
shared log

application

application

the shared log is the source of
- persistence
- availability

the Tango abstraction

application application

a Tango object

view
in-memory
data structure

<+

history the shared log is the source of
ordered - persistence
updates in - availability

shared log - elasticity

the Tango abstraction

application application

a Tango object

view

in-memory] L] L
data structure L — = - — = |
:

the shared log is the source of
- persistence

- availability

- elasticity

- atomicity and isolation

shared log

history

ordered ----lf
updates in

shared log .

uncommitted
data

the Tango abstraction

application application
a Tango object e
= \\ CE
view - - -
in-memory

data structure L]

i
.

history the shared log is the source of
ordered ----lf """"" l 1‘ """" - persistence

updates in shared log - availability

shared log . - elasticity

- atomicity and isolation
... across multiple objects

A\

uncommitted
data

the Tango abstraction

application application
a Tango object e
= \\ CE
view - - -
in-memory

data structure L]

i
.

history the shared log is the source of
ordered ----lf """"" l 1‘ """" - persistence

updates in shared log - availability

shared log . - elasticity

- atomicity and isolation
... across multiple objects

A\

uncommitted commit
data record

no messages... only appends/reads on the shared log!

the Tango abstraction

application application
a Tango object A
) % 1. Tango objects are easy to use
Y'ew - - 2. Tango objects are easy to build
'n-memory 3. Tango objects are fast and scalable
data structure
+

history the shared log is the source of
ordered ----lf """"" l 1‘ """" - persistence
updates in shared log - availability

- elasticity

shared log .
20N

uncommitted commit
data record

- atomicity and isolation
... across multiple objects

no messages... only appends/reads on the shared log!

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

example:

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))
ledger.add(item);

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

under the hood:

example:

U

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))
ledger.add(item);

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

under the hood:

example:

U

| curowner = ownermap.get(“ledger”); |
if(curowner.equals(myname))
ledger.add(item);

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

under the hood:

N

example: %%
|_curowner = ownermap.get(“ledger”); |

if(curowner.equals(myname)) ﬁ
| ledger.add(item); i

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations
e serializable transactions

example:

TR.BeginTX();

curowner = ownermap.get(“ledger”);

if(curowner.equals(myname))
ledger.add(item);

status = TR.EndTX();

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

* serializable transactions under the hood:
example:
TR.BeginTX(); @
curowner = ownermap.get(“ledger”);]
if(curowner.equals(myname))

ledger.add(item);

status = TR.EndTX();

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

e serializable transactions under the hood:
example:

[TR.BeginTX(); | v
curowner = ownermap.get(“ledger”);]
if(curowner.equals(myname))

ledger.add(item);

status = TR.EndTX();

TX commit record:

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

e serializable transactions under the hood:
example:

[TR.BeginTX(); | v
curowner = ownermap.get(“ledger”);]
if(curowner.equals(myname))

ledger.add(item);

status = TR.EndTX();

TX commit record:

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

* serializable transactions under the hood:
example:
TR.BeginTX(); @
curowner = ownermap.get(“ledger”); |]
if(curowner.equals(myname))

ledger.add(item);

status = TR.EndTX();

TX commit record:

read-set: (ownermap, ver:2)

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

* serializable transactions under the hood:

example:

TR.BeginTX(); @

curowner = ownermap.get(“ledger”); []

if(curowner.equals(myname)) ﬁ
| ledger.add(item); | }

status = TR.EndTX();

TX commit record:
read-set: (ownermap, ver:2)

write-set: (ledger, ver:6)

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations

 serializable transactions under the hood:
example:

TR.BeginTX(); @

curowner = ownermap.get(“ledger”);] B
if(curowner.equals(myname)) ﬁ

ledger.add(item); |
| status = TR.EndTX(); #

TX commit record:

read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations
* serializable transactions under the hood: TX commits if read-

set (ownermap)

1 has not changed in
example: (| conflict window

TR.BeginTX();
curowner = ownermap.get(“ledger”); []
if(curowner.equals(myname)) ﬁ

ledger.add(item); |
| status = TR.EndTX(); #

TX commit record:

read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations
* serializable transactions under the hood: TX commits if read-

set (ownermap)
1 has not changed in
example: (| conflict window

TR.BeginTX();
curowner = ownermap.get(“ledger”); []
if(curowner.equals(myname)) ﬁ

ledger.add(item); |
| status = TR.EndTX(); #

TX commit record:
speculative commit records: each client read-set: (ownermap, ver:2)
decides if the TX commits or aborts write-set: (ledger, ver:6)
independently but deterministically
[similar to Hyder (Bernstein et al., CIDR 2011)]

Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {

int oid;

TangoRuntime *T;

int state;

void apply(void *X) {
state = *(int *)X;

}

void writeRegister (int newstate) {
T->update_helper(&newstate, sizeof (int), oid);

}

int readRegister () {
T->query_helper(oid);
return state;

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors

Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {
TangoRuntime *T;
| intstate;
void apply(void *X) {
state = *(int *)X;

}

void writeRegister (int newstate) {
T->update_helper(&newstate, sizeof (int), oid);
}
int readRegister () {
T->query_helper(oid);
return state;

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors

Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {
int oid;
TangoRuntime *T;

int state; : :

void apply(void =X) { invoked by Tango runtime
state = *(int *)X; on EndTX to change state

}

void writeRegister (int newstate) {
T->update_helper(&newstate, sizeof (int), oid);

}
int readRegister () {

T->query_helper(oid);
return state;

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors

Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {

int oid;

TangoRuntime *T;

int state;

void apply(void *X) {
state = *(int *)X;

}

void writeRegister (int newstate) {
T->update_helper(&newstate, sizeof (int), oid);

mutator: updates TX

write-set, appends

\ to shared log
int readRegister () {

T->query_helper(oid);

return state;

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors

Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {

int oid;

TangoRuntime *T;

int state;

void apply(void *X) {
state = *(int *)X;

}

void writeRegister (int newstate) {
T->update_helper(&newstate, sizeof (int), oid);

}

int readRegister () {
T->query_helper(oid);
return state;

accessor: updates

TX read-set,
} returns local state

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors

Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {

int oid;

TangoRuntime *T;

int state;

void apply(void *X) {
state = *(int *)X;

}

void writeRegister (int newstate) {
T->update_helper(&newstate, sizeof (int), oid);

}

int readRegister () {
T->query_helper(oid);

return state; Other examples:
Java ConcurrentMap: 350 LOC

Apache ZooKeeper: 1000 LOC
Apache BookKeeper: 300 LOC

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors

the secret sauce: a fast shared log

application

shared log API:
O = append(V)

V =read(0O)
trim(0) //GC

O = check() //tail

shared log
append to tail

read from anywhere

*+ 4+ 1
HEEEEEE.

¥

the secret sauce: a fast shared log

application
shared log API: '
O = append(V) EE
V =read(O) N —_
o "
trim(0) //GC 0 - :
0= check() //tail | AL

shared log
read from anywhere append to tail

%ﬁ%@%@%ﬁ%ﬁ% 2

the CORFU decentralized shared log [NSDI 2012]:
- reads scale linearly with number of flash drives

the secret sauce: a fast shared log

shared log API:
O = append(V)

V =read(0O)
trim(0) //GC

O = check() //tail

il ° 1

read from anywhere

T+ 4+ 4

application
N
o
- o

shared log

append to tail

¥

only a hint! helps

performance, not

required for safety
or liveness

~

sequencer

— 1

obtain tail #

SIS

the CORFU decentralized shared log [NSDI 2012]:
- reads scale linearly with number of flash drives
- 600K/s appends (limited by sequencer speed)

a fast shared log isn’t enough...

service 1 service 2

allocation
<|table

aggregation N 5
tree 2> A~~~ &

freelist 2 C C C C C C

a fast shared log isn’t enough...

service 1 service 2

allocation
<|table

aggregation N 5
tree 2> A~~~ &

freelist 2 C C C C C C

a fast shared log isn’t enough...

service 1 service 2

allocation
<|table

aggregation ‘ 5
tree 2> A~~~ &

the playback
bottleneck:
clients must read
all entries 2
inbound NICis a
bottleneck

a fast shared log isn’t enough...

service 1 service 2

allocation
aggregation . A &|table
tree 2 A~ A
A A
freelist > C C C C C C

solution: stream abstraction
- readnext(streamid)
- append(value, streamidl, ...)

- B = B B > each client only plays
entries of interest to it

a fast shared log isn’t enough...

service 1

service 2

allocation
aggregation ‘ A < table
tree 2 A~ A
A A
freelist 2 C C C C C
solution: stream abstraction
. - readnext(streamid)
11 1 11111 - append(value, streamidl, ...)
- B = B B > each client only plays
entries of interest to it
C C C =—t—>
- A A m—) —) ——

transactions over streams

service 1

beginTX

aggregation
read A

tree 2 A

A write C
endTX

freelist=2> ¢ » ¢ »

A skip C skip A C A skip C

AN

commit/abort?
has A changed?
yes, abort

A

transactions over streams

service 1

aggregation A beginTX
tree > A ' A read A
A A write C
e endTX
freelist 2> ¢ » € o C
skp C skip A C A skip C

commit/abort?
has A changed?

yes, abort

skip

B

C

service 2

allocation
' & table

ol » IEH » G

B

skip

C skip B C

PO

commit/abort?
has A changed?
don’t know!

transactions over streams

aggregatic
tree 2

free list =

service 1

beginTX
read A

write C
endTX

decision
record
with
commit/
abort bit

service 2

allocation
' & table

A skip C skip A C A skip C .

AN

commit/abort?
has A changed?
yes, abort

skip B C B skip C skip B C -

N

commit/abort?
has A changed?
don’t know!

Ks of Reads/Sec

evaluation: linearizable operations

200 -

150

100

wn
<

2

]

2-|Selrve|r Llog | i

a Tango object provides elasticity
for strongly consistent reads

4 6 8 1012141618
of Readers

constant write load (10K writes/sec), each client adds 10K reads/sec

Ks of Reads/Sec

evaluation: linearizable operations

200 -

150

100

wn
<

2

]

2-|Selrve|r Llog | i |

4 6 8 1012141618
of Readers

adding more clients = more reads/sec
... until shared log is saturated

a Tango object provides elasticity
for strongly consistent reads

constant write load (10K writes/sec), each client adds 10K reads/sec

Ks of Reads/Sec

evaluation: linearizable operations

200 -

150

100

wn
<

| 2-|Selrve|r Llogl_I l l_
18-Server Log = -<::I beefier shared log = scaling continues...

(latency = 1 ms) ultimate bottleneck: sequencer

adding more clients = more reads/sec
... until shared log is saturated

A\

a Tango object provides elasticity
for strongly consistent reads

2 4 6 81012141618

of Readers
ﬁconstant write load (10K writes/sec), each client adds 10K reads/sec

Ks of Txes/sec

evaluation: single object txes

250

200

150

100

50

| 6-|Ser|x--’er| Lolg é l_

| scales like conventional partitioning...
H H N but there’s a cap on aggregate throughput

2 4 6 81012141618
of Clients

each client does transactions over its own TangoMap

Ks of Txes/sec

evaluation: single object txes

250

200

150

100

50

o 6-|S€:r|x-’er| Lolg il g
] . adding more clients = more transactions
... until shared log is saturated
i | scales like conventional partitioning...
H H N but there’s a cap on aggregate throughput

2 4 6 81012141618
of Clients

each client does transactions over its own TangoMap

Ks of Txes/sec

evaluation: single object txes

250

200

150

100

50

| 6-|Serlver| Lolg —
18-Server Log mummmm <::| beefier shared log = scaling continues...

N~ ultimate bottleneck: sequencer

adding more clients = more transactions
... until shared log is saturated

AN,

scales like conventional partitioning...
but there’s a cap on aggregate throughput

2 4 6 81012141618
of Clients

each client does transactions over its own TangoMap

Ks of Txes/sec

evaluation: single object txes

250

200

150

100

50

| 6-|Serlver| Lolg i L
18-Server Log

[/\

::Ibeefier shared log = scaling continues...
ultimate bottleneck: sequencer

adding more clients = more transactions
... until shared log is saturated

scales like conventional partitioning...
but there’s a cap on aggregate throughput

o oI

2 4 6 8 101214 16|1
of Clients

each client does transactions over its own TangoMap

Ks of Txes/sec

evaluation: multi-object txes

250 Tlanlgo| ﬁ | Tango enables fast, distributed transactions
across multiple objects

200 - s
150 -] s
100 + | s

50 - .

0 I

9' I 2 4 8163264100

% of Cross-Partition Txes
18 clients, each client hosts its own TangoMap
ﬁ cross-partition tx: client moves element from its own TangoMap
to some other client’s TangoMap

Ks of Txes/sec

evaluation: multi-object txes

250

200

150

100

50

- Tlan'gol = Tango enables fast, distributed transactions
across multiple objects

< | over 100K txes/sec when 16% of txes are
- | -— cross-partition

I

9' I 2 4 8163264100

% of Cross-Partition Txes
18 clients, each client hosts its own TangoMap
ﬁ cross-partition tx: client moves element from its own TangoMap .
to some other client’s TangoMap

Ks of Txes/sec

evaluation: multi-object txes

250

200

150

100

50

Tlanlgo| i -
2PL mmm

<

-

|

I 2 4 8163264100

% of Cross-Partition Txes
18 clients, each client hosts its own TangoMap

cross-partition tx: client moves element from its own TangoMap -
to some other client’s TangoMap

)

Tango enables fast, distributed transactions
across multiple objects

over 100K txes/sec when 16% of txes are
cross-partition

similar scaling to 2PL...
without a complex distributed protocol

conclusion

Tango objects: data structures backed by a shared log

key idea: the shared log does all the heavy lifting

(persistence, consistency, atomicity, isolation, history,
elasticity...)

Tango objects are easy to use, easy to build, and fast!

Tango democratizes the construction of highly available
metadata services

thank youl!

the CORFU protocol: (chain) replication

0000
0000
0000

the CORFU protocol: (chain) replication

OO O

O O O

the CORFU protocol: (chain) replication

client C1

OO O

O O O

the CORFU protocol: (chain) replication

client C1

the CORFU protocol: (chain) replication

client C1

[

the CORFU protocol: (chain) replication

client C1

[

the CORFU protocol: (chain) replication

client C1

client C2

safety under contention:
if multiple clients try to write to same log
position concurrently, only one ‘wins’

the CORFU protocol: (chain) replication

client C1

client C3

safety under contention:
if multiple clients try to write to same log
position concurrently, only one ‘wins’

	Slide 1: Tango
	Slide 2: Faux Quiz Questions
	Slide 3: Tango: distributed data structures over a shared log
	Slide 4: big metadata
	Slide 5: big metadata
	Slide 6: big metadata
	Slide 7: the abstraction gap for metadata
	Slide 8: the abstraction gap for metadata
	Slide 9: the Tango abstraction
	Slide 10: the Tango abstraction
	Slide 11: the Tango abstraction
	Slide 12: the Tango abstraction
	Slide 13: the Tango abstraction
	Slide 14: the Tango abstraction
	Slide 15: the Tango abstraction
	Slide 16: the Tango abstraction
	Slide 17: Tango objects are easy to use
	Slide 18: Tango objects are easy to use
	Slide 19: Tango objects are easy to use
	Slide 20: Tango objects are easy to use
	Slide 21: Tango objects are easy to use
	Slide 22: Tango objects are easy to use
	Slide 23: Tango objects are easy to use
	Slide 24: Tango objects are easy to use
	Slide 25: Tango objects are easy to use
	Slide 26: Tango objects are easy to use
	Slide 27: Tango objects are easy to use
	Slide 28: Tango objects are easy to use
	Slide 29: Tango objects are easy to use
	Slide 30: Tango objects are easy to build
	Slide 31: Tango objects are easy to build
	Slide 32: Tango objects are easy to build
	Slide 33: Tango objects are easy to build
	Slide 34: Tango objects are easy to build
	Slide 35: Tango objects are easy to build
	Slide 36: the secret sauce: a fast shared log
	Slide 37: the secret sauce: a fast shared log
	Slide 38: the secret sauce: a fast shared log
	Slide 39: a fast shared log isn’t enough…
	Slide 40: a fast shared log isn’t enough…
	Slide 41: a fast shared log isn’t enough…
	Slide 42: a fast shared log isn’t enough…
	Slide 43: a fast shared log isn’t enough…
	Slide 44: transactions over streams
	Slide 45: transactions over streams
	Slide 46: transactions over streams
	Slide 47: evaluation: linearizable operations
	Slide 48: evaluation: linearizable operations
	Slide 49: evaluation: linearizable operations
	Slide 50: evaluation: single object txes
	Slide 51: evaluation: single object txes
	Slide 52: evaluation: single object txes
	Slide 53: evaluation: single object txes
	Slide 54: evaluation: multi-object txes
	Slide 55: evaluation: multi-object txes
	Slide 56: evaluation: multi-object txes
	Slide 57: conclusion
	Slide 58: thank you!
	Slide 59: the CORFU protocol: (chain) replication
	Slide 60: the CORFU protocol: (chain) replication
	Slide 61: the CORFU protocol: (chain) replication
	Slide 62: the CORFU protocol: (chain) replication
	Slide 63: the CORFU protocol: (chain) replication
	Slide 64: the CORFU protocol: (chain) replication
	Slide 65: the CORFU protocol: (chain) replication
	Slide 66: the CORFU protocol: (chain) replication

