
Tango

Emmett Witchel

CS380L

Faux Quiz Questions

• Compare/contrast Tango against LFS
• Compare/contrast Tango against TxOS
• Compare/contrast Tango against Spark/DryadLINQ
• How are streams used in Tango?
• Why do holes arise in a tango log? How does the

system deal with them?
• How do streams complicate cross-object transactions in

Tango?
• How does Tango’s commit protocol differ from a

traditional protocol like 2PC?
• Compare/contrast fault-tolerance techniques in Tango

and Spark

Tango: distributed data
structures over a shared log

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran
Michael Wei, John D. Davis, Sriram Rao, Tao Zou, Aviad Zuck

Microsoft Research

big metadata

• design pattern: distribute data, centralize metadata

• schedulers, allocators, coordinators, namespaces,
indices (e.g. HDFS namenode, SDN controller…)

big metadata

• design pattern: distribute data, centralize metadata

• schedulers, allocators, coordinators, namespaces,
indices (e.g. HDFS namenode, SDN controller…)

• usual plan: harden centralized service later

“Coordinator failures will be handled safely using the ZooKeeper

service [14].” Fast Crash Recovery in RAMCloud, Ongaro et al., SOSP 2011.

“However, adequate resilience can be achieved by applying
standard replication techniques to the decision element.” NOX: Towards an
Operating System for Networks, Gude et al., Sigcomm CCR 2008.

“Efforts are also underway to address high
availability of a YARN cluster by having passive/active
failover of RM to a standby node.” Apache Hadoop YARN: Yet Another
Resource Negotiator, Vavilapalli et al., SOCC 2013.

big metadata

• design pattern: distribute data, centralize metadata

• schedulers, allocators, coordinators, namespaces,
indices (e.g. HDFS namenode, SDN controller…)

• usual plan: harden centralized service later

• … but hardening is difficult!

“Coordinator failures will be handled safely using the ZooKeeper

service [14].” Fast Crash Recovery in RAMCloud, Ongaro et al., SOSP 2011.

“However, adequate resilience can be achieved by applying
standard replication techniques to the decision element.” NOX: Towards an
Operating System for Networks, Gude et al., Sigcomm CCR 2008.

“Efforts are also underway to address high
availability of a YARN cluster by having passive/active
failover of RM to a standby node.” Apache Hadoop YARN: Yet Another
Resource Negotiator, Vavilapalli et al., SOCC 2013.

the abstraction gap for metadata

centralized metadata services are built using in-memory
data structures (e.g. Java / C# Collections)

- state resides in maps, trees, queues, counters, graphs…
- transactional access to data structures

- example: a scheduler atomically moves a node from a free list
to an allocation map

the abstraction gap for metadata

centralized metadata services are built using in-memory
data structures (e.g. Java / C# Collections)

- state resides in maps, trees, queues, counters, graphs…
- transactional access to data structures

- example: a scheduler atomically moves a node from a free list
to an allocation map

adding high availability requires different abstractions
- move state to external service like ZooKeeper
- restructure code to use state machine replication
- implement custom replication protocols

the Tango abstraction

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

Tango runtime

application

the Tango abstraction

the shared log is the source of
- persistence

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

Tango runtime

application

the Tango abstraction

the shared log is the source of
- persistence
- availability

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

Tango runtime

application

Tango runtime

application

the Tango abstraction

the shared log is the source of
- persistence
- availability
- elasticity

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

Tango runtime

application

Tango runtime

application

the Tango abstraction

the shared log is the source of
- persistence
- availability
- elasticity
- atomicity and isolation

commit
record

uncommitted
data

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

Tango runtime

application

Tango runtime

application

the Tango abstraction

the shared log is the source of
- persistence
- availability
- elasticity
- atomicity and isolation

… across multiple objects
commit
record

uncommitted
data

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

Tango runtime

application

Tango runtime

application

the Tango abstraction

the shared log is the source of
- persistence
- availability
- elasticity
- atomicity and isolation

… across multiple objects
commit
record

uncommitted
data

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

no messages… only appends/reads on the shared log!

Tango runtime

application

Tango runtime

application

the Tango abstraction

the shared log is the source of
- persistence
- availability
- elasticity
- atomicity and isolation

… across multiple objects
commit
record

uncommitted
data

shared log

a Tango object

=
view
in-memory
data structure

+
history
ordered
updates in
shared log

no messages… only appends/reads on the shared log!

1. Tango objects are easy to use
2. Tango objects are easy to build
3. Tango objects are fast and scalable

Tango runtime

application

Tango runtime

application

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

Tango objects are easy to use

example:

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

Tango objects are easy to use

example:

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

Tango objects are easy to use

example:

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

Tango objects are easy to use

example:

curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commit record:

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commit record:

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commit record:
read-set: (ownermap, ver:2)

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commit record:
read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commit record:
read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commits if read-
set (ownermap)
has not changed in
conflict window

TX commit record:
read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

under the hood:

• implement standard interfaces (Java/C# Collections)

• linearizability for single operations

• serializable transactions

Tango objects are easy to use

example:

TR.BeginTX();
curowner = ownermap.get(“ledger”);
if(curowner.equals(myname))

ledger.add(item);
status = TR.EndTX();

TX commits if read-
set (ownermap)
has not changed in
conflict window

TX commit record:
read-set: (ownermap, ver:2)
write-set: (ledger, ver:6)

speculative commit records: each client
decides if the TX commits or aborts
independently but deterministically
[similar to Hyder (Bernstein et al., CIDR 2011)]

Tango objects are easy to build

class TangoRegister {
int oid;
TangoRuntime ∗T;
int state;
void apply(void ∗X) {

state = ∗(int ∗)X;
}
void writeRegister (int newstate) {

T−>update_helper(&newstate , sizeof (int) , oid);
}
int readRegister () {

T−>query_helper(oid);
return state;

}
}

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

Tango objects are easy to build

class TangoRegister {
int oid;
TangoRuntime ∗T;
int state;
void apply(void ∗X) {

state = ∗(int ∗)X;
}
void writeRegister (int newstate) {

T−>update_helper(&newstate , sizeof (int) , oid);
}
int readRegister () {

T−>query_helper(oid);
return state;

}
}

object-specific state

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

Tango objects are easy to build

class TangoRegister {
int oid;
TangoRuntime ∗T;
int state;
void apply(void ∗X) {

state = ∗(int ∗)X;
}
void writeRegister (int newstate) {

T−>update_helper(&newstate , sizeof (int) , oid);
}
int readRegister () {

T−>query_helper(oid);
return state;

}
}

invoked by Tango runtime
on EndTX to change state

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

Tango objects are easy to build

class TangoRegister {
int oid;
TangoRuntime ∗T;
int state;
void apply(void ∗X) {

state = ∗(int ∗)X;
}
void writeRegister (int newstate) {

T−>update_helper(&newstate , sizeof (int) , oid);
}
int readRegister () {

T−>query_helper(oid);
return state;

}
}

mutator: updates TX
write-set, appends

to shared log

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

Tango objects are easy to build

class TangoRegister {
int oid;
TangoRuntime ∗T;
int state;
void apply(void ∗X) {

state = ∗(int ∗)X;
}
void writeRegister (int newstate) {

T−>update_helper(&newstate , sizeof (int) , oid);
}
int readRegister () {

T−>query_helper(oid);
return state;

}
}

accessor: updates
TX read-set,

returns local state

15 LOC == persistent, highly available, transactional register

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

Tango objects are easy to build

class TangoRegister {
int oid;
TangoRuntime ∗T;
int state;
void apply(void ∗X) {

state = ∗(int ∗)X;
}
void writeRegister (int newstate) {

T−>update_helper(&newstate , sizeof (int) , oid);
}
int readRegister () {

T−>query_helper(oid);
return state;

}
}

15 LOC == persistent, highly available, transactional register

Other examples:
Java ConcurrentMap: 350 LOC
Apache ZooKeeper: 1000 LOC
Apache BookKeeper: 300 LOC

simple API exposed by runtime to object: 1 upcall + two helper methods
arbitrary API exposed by object to application: mutators and accessors

the secret sauce: a fast shared log

shared log

Tango runtime

shared log API:
O = append(V)
V = read(O)
trim(O) //GC
O = check() //tail

application

append to tailread from anywhere

the secret sauce: a fast shared log

shared log

Tango runtime

shared log API:
O = append(V)
V = read(O)
trim(O) //GC
O = check() //tail

application

append to tailread from anywhere

flash
cluster

the CORFU decentralized shared log [NSDI 2012]:
- reads scale linearly with number of flash drives

the secret sauce: a fast shared log

shared log

Tango runtime

shared log API:
O = append(V)
V = read(O)
trim(O) //GC
O = check() //tail

application

append to tailread from anywhere

flash
cluster

obtain tail #

sequencer

the CORFU decentralized shared log [NSDI 2012]:
- reads scale linearly with number of flash drives
- 600K/s appends (limited by sequencer speed)

only a hint! helps
performance, not
required for safety

or liveness

service 2service 1

C C C C C C

B B

B B

B B
A

A
A

A

A A

free list →

aggregation
tree →

allocation
 table

a fast shared log isn’t enough…

service 2service 1

C C C C C C

B B

B B

B B
A

A
A

A

A A

A B C B A C A B
C

… …

free list →

aggregation
tree →

allocation
 table

C

a fast shared log isn’t enough…

service 2service 1

C C C C C C

B B

B B

B B
A

A
A

A

A A

A B C B A C A B
C

… …

the playback
bottleneck:
clients must read
all entries →
inbound NIC is a
bottleneck

free list →

aggregation
tree →

allocation
 table

C

a fast shared log isn’t enough…

service 2service 1

C C C C C C

B B

B B

B B
A

A
A

A

A A

A B C B A C A B
C

… …

the playback
bottleneck:
clients must read
all entries →
inbound NIC is a
bottleneck

B B B

C C C

A A A

solution: stream abstraction
- readnext(streamid)
- append(value, streamid1, …)

free list →

aggregation
tree →

allocation
 table

each client only plays
entries of interest to it

C

a fast shared log isn’t enough…

service 2service 1

C C C C C C

B B

B B

B B
A

A
A

A

A A

A B C B A C A B
C

… …

the playback
bottleneck:
clients must read
all entries →
inbound NIC is a
bottleneck

B B B

C C C

A A A

solution: stream abstraction
- readnext(streamid)
- append(value, streamid1, …)

free list →

aggregation
tree →

allocation
 table

each client only plays
entries of interest to it

A

A

a fast shared log isn’t enough…

A skip C skip A C A skip C

service 1

C C C

A
A

A

A

A A

beginTX
read A
write C
endTX

commit/abort?
has A changed?

yes, abort

transactions over streams

free list →

aggregation
tree →

skip B C B skip C skip B CA skip C skip A C A skip C

service 2service 1

C C C C C C

B B

B B

B B
A

A
A

A

A A

beginTX
read A
write C
endTX

commit/abort?
has A changed?

don’t know!

commit/abort?
has A changed?

yes, abort

transactions over streams

free list →

aggregation
tree →

allocation
 table

skip B C B skip C skip B CA skip C skip A C A skip C skip B C B skip C skip B CA skip C skip A C A skip C

service 2service 1

C C C C C C

B B

B B

B B
A

A
A

A

A A

beginTX
read A
write C
endTX

decision
record
with

commit/
abort bit

commit/abort?
has A changed?

don’t know!

commit/abort?
has A changed?

yes, abort

transactions over streams

free list →

aggregation
tree →

allocation
 table

evaluation: linearizable operations

a Tango object provides elasticity
for strongly consistent reads

constant write load (10K writes/sec), each client adds 10K reads/sec

evaluation: linearizable operations

adding more clients →more reads/sec
… until shared log is saturated

a Tango object provides elasticity
for strongly consistent reads

constant write load (10K writes/sec), each client adds 10K reads/sec

evaluation: linearizable operations

adding more clients →more reads/sec
… until shared log is saturated

beefier shared log → scaling continues…
ultimate bottleneck: sequencer

a Tango object provides elasticity
for strongly consistent reads

constant write load (10K writes/sec), each client adds 10K reads/sec

(latency = 1 ms)

evaluation: single object txes

each client does transactions over its own TangoMap

scales like conventional partitioning…
but there’s a cap on aggregate throughput

evaluation: single object txes

each client does transactions over its own TangoMap

adding more clients →more transactions
… until shared log is saturated

scales like conventional partitioning…
but there’s a cap on aggregate throughput

evaluation: single object txes

each client does transactions over its own TangoMap

adding more clients →more transactions
… until shared log is saturated

beefier shared log → scaling continues…
ultimate bottleneck: sequencer

scales like conventional partitioning…
but there’s a cap on aggregate throughput

evaluation: single object txes

each client does transactions over its own TangoMap

adding more clients →more transactions
… until shared log is saturated

beefier shared log → scaling continues…
ultimate bottleneck: sequencer

scales like conventional partitioning…
but there’s a cap on aggregate throughput

evaluation: multi-object txes

54

18 clients, each client hosts its own TangoMap
cross-partition tx: client moves element from its own TangoMap
to some other client’s TangoMap

Tango enables fast, distributed transactions
across multiple objects

evaluation: multi-object txes

55

18 clients, each client hosts its own TangoMap
cross-partition tx: client moves element from its own TangoMap
to some other client’s TangoMap

over 100K txes/sec when 16% of txes are
cross-partition

Tango enables fast, distributed transactions
across multiple objects

evaluation: multi-object txes

56

18 clients, each client hosts its own TangoMap
cross-partition tx: client moves element from its own TangoMap
to some other client’s TangoMap

similar scaling to 2PL…
without a complex distributed protocol

over 100K txes/sec when 16% of txes are
cross-partition

Tango enables fast, distributed transactions
across multiple objects

conclusion

Tango objects: data structures backed by a shared log

key idea: the shared log does all the heavy lifting

(persistence, consistency, atomicity, isolation, history,
elasticity…)

Tango objects are easy to use, easy to build, and fast!

Tango democratizes the construction of highly available
metadata services

thank you!

the CORFU protocol: (chain) replication

the CORFU protocol: (chain) replication

the CORFU protocol: (chain) replication

client C1

the CORFU protocol: (chain) replication

client C1

the CORFU protocol: (chain) replication

client C1

the CORFU protocol: (chain) replication

client C1

the CORFU protocol: (chain) replication

client C1

client C2

safety under contention:
if multiple clients try to write to same log
position concurrently, only one ‘wins’

the CORFU protocol: (chain) replication

client C1

client C2

safety under contention:
if multiple clients try to write to same log
position concurrently, only one ‘wins’

client C3

durability:
data is only visible to reads if
entire chain has seen it

	Slide 1: Tango
	Slide 2: Faux Quiz Questions
	Slide 3: Tango: distributed data structures over a shared log
	Slide 4: big metadata
	Slide 5: big metadata
	Slide 6: big metadata
	Slide 7: the abstraction gap for metadata
	Slide 8: the abstraction gap for metadata
	Slide 9: the Tango abstraction
	Slide 10: the Tango abstraction
	Slide 11: the Tango abstraction
	Slide 12: the Tango abstraction
	Slide 13: the Tango abstraction
	Slide 14: the Tango abstraction
	Slide 15: the Tango abstraction
	Slide 16: the Tango abstraction
	Slide 17: Tango objects are easy to use
	Slide 18: Tango objects are easy to use
	Slide 19: Tango objects are easy to use
	Slide 20: Tango objects are easy to use
	Slide 21: Tango objects are easy to use
	Slide 22: Tango objects are easy to use
	Slide 23: Tango objects are easy to use
	Slide 24: Tango objects are easy to use
	Slide 25: Tango objects are easy to use
	Slide 26: Tango objects are easy to use
	Slide 27: Tango objects are easy to use
	Slide 28: Tango objects are easy to use
	Slide 29: Tango objects are easy to use
	Slide 30: Tango objects are easy to build
	Slide 31: Tango objects are easy to build
	Slide 32: Tango objects are easy to build
	Slide 33: Tango objects are easy to build
	Slide 34: Tango objects are easy to build
	Slide 35: Tango objects are easy to build
	Slide 36: the secret sauce: a fast shared log
	Slide 37: the secret sauce: a fast shared log
	Slide 38: the secret sauce: a fast shared log
	Slide 39: a fast shared log isn’t enough…
	Slide 40: a fast shared log isn’t enough…
	Slide 41: a fast shared log isn’t enough…
	Slide 42: a fast shared log isn’t enough…
	Slide 43: a fast shared log isn’t enough…
	Slide 44: transactions over streams
	Slide 45: transactions over streams
	Slide 46: transactions over streams
	Slide 47: evaluation: linearizable operations
	Slide 48: evaluation: linearizable operations
	Slide 49: evaluation: linearizable operations
	Slide 50: evaluation: single object txes
	Slide 51: evaluation: single object txes
	Slide 52: evaluation: single object txes
	Slide 53: evaluation: single object txes
	Slide 54: evaluation: multi-object txes
	Slide 55: evaluation: multi-object txes
	Slide 56: evaluation: multi-object txes
	Slide 57: conclusion
	Slide 58: thank you!
	Slide 59: the CORFU protocol: (chain) replication
	Slide 60: the CORFU protocol: (chain) replication
	Slide 61: the CORFU protocol: (chain) replication
	Slide 62: the CORFU protocol: (chain) replication
	Slide 63: the CORFU protocol: (chain) replication
	Slide 64: the CORFU protocol: (chain) replication
	Slide 65: the CORFU protocol: (chain) replication
	Slide 66: the CORFU protocol: (chain) replication

