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Faux Quiz Questions

e Compare/contrast Tango against LFS

e Compare/contrast Tango against TxOS

e Compare/contrast Tango against Spark/DryadLINQ
* How are streams used in Tango?

* Why do holes arise in a tango log? How does the
system deal with them?

* How do streams complicate cross-object transactions in
Tango?

* How does Tango’s commit protocol differ from a
traditional protocol like 2PC?

* Compare/contrast fault-tolerance techniques in Tango
and Spark
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* design pattern: distribute data, centralize metadata

e schedulers, allocators, coordinators, namespaces,
indices (e.g. HDFS namenode, SDN controller...)

* usual plan: harden centralized service later

“Coordinator failures will be handled safely using the ZooKeeper
service [14].” Fast Crash Recovery in RAMCloud, Ongaro et al., SOSP 2011.

“Efforts are also underway to address high
availability of a YARN cluster by having passive/active
failover of RM to a standby node.” Apache Hadoop YARN: Yet Another

Resource Negotiator, Vavilapalli et al., SOCC 2013.

“However, adequate resilience can be achieved by applying
standard replication techniques to the decision element.” NOX: Towards an
Operating System for Networks, Gude et al., Sigcomm CCR 2008.

e ... but hardening is difficult!



the abstraction gap for metadata

centralized metadata services are built using in-memory
data structures (e.g. Java / C# Collections)

- state resides in maps, trees, queues, counters, graphs...

- transactional access to data structures

- example: a scheduler atomically moves a node from a free list
to an allocation map



the abstraction gap for metadata

adding high availability requires different abstractions
- move state to external service like ZooKeeper

- restructure code to use state machine replication

- implement custom replication protocols



the Tango abstraction

application

a Tango object

view
in-memory
data structure

<+

history
ordered
updates in

shared log ......




the Tango abstraction

application

a Tango object

view
in-memory
data structure

<+

history the shared log is the source of
ordered - persistence
updates in

shared log ......



the Tango abstraction

a Tango object

view
in-memory
data structure

+
history
ordered

updates in
shared log

application

application

the shared log is the source of
- persistence
- availability



the Tango abstraction

application application

a Tango object

view
in-memory
data structure

<+

history the shared log is the source of
ordered - persistence
updates in - availability

shared log . . . . . . - elasticity



the Tango abstraction

application application

a Tango object

view

in-memory ] L ] L
data structure L — = - — = |
:

the shared log is the source of
- persistence

- availability

- elasticity

- atomicity and isolation

shared log

history

ordered ----lf
updates in

shared log .

uncommitted
data




the Tango abstraction

application application
a Tango object e
= \\ CE
view - - -
in-memory

data structure L]

i
.

history the shared log is the source of
ordered ----lf """"" l 1‘ """" - persistence

updates in shared log - availability

shared log . - elasticity

- atomicity and isolation
... across multiple objects

A\

uncommitted
data




the Tango abstraction

application application
a Tango object e
= \\ CE
view - - -
in-memory

data structure L]

i
.

history the shared log is the source of
ordered ----lf """"" l 1‘ """" - persistence

updates in shared log - availability

shared log . - elasticity

- atomicity and isolation
... across multiple objects

A\

uncommitted commit
data record

no messages... only appends/reads on the shared log!



the Tango abstraction
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Tango objects are easy to use

* implement standard interfaces (Java/C# Collections)
* linearizability for single operations
* serializable transactions under the hood: TX commits if read-

set (ownermap)
1 has not changed in
example: ( | conflict window

TR.BeginTX();
curowner = ownermap.get(“ledger”); [ ]
if(curowner.equals(myname)) ﬁ

ledger.add(item); |
| status = TR.EndTX(); #

TX commit record:
speculative commit records: each client read-set: (ownermap, ver:2)
decides if the TX commits or aborts write-set: (ledger, ver:6)
independently but deterministically
[similar to Hyder (Bernstein et al., CIDR 2011)]
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class TangoRegister {

int oid;
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void apply(void *X) {
state = *(int *)X;
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}

int readRegister () {
T->query_helper(oid);
return state;

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors
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void apply(void *X) {
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}

void writeRegister (int newstate) {
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Tango objects are easy to build

15 LOC == persistent, highly available, transactional register

class TangoRegister {

int oid;

TangoRuntime *T;

int state;

void apply(void *X) {
state = *(int *)X;

}

void writeRegister (int newstate) {
T->update_helper(&newstate, sizeof (int), oid);

}

int readRegister () {
T->query_helper(oid);

return state; Other examples:
Java ConcurrentMap: 350 LOC

Apache ZooKeeper: 1000 LOC
Apache BookKeeper: 300 LOC

simple APl exposed by runtime to object: 1 upcall + two helper methods
arbitrary APl exposed by object to application: mutators and accessors
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the secret sauce: a fast shared log

shared log API:
O = append(V)

V =read(0O)
trim(0) //GC

O = check() //tail

il ° 1

read from anywhere

T+ 4+ 4

application
N
o
- o

shared log

append to tail

¥

only a hint! helps

performance, not

required for safety
or liveness

~

sequencer

— 1

obtain tail #

SIS

the CORFU decentralized shared log [NSDI 2012]:
- reads scale linearly with number of flash drives
- 600K/s appends (limited by sequencer speed)
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bottleneck
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transactions over streams
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Tango enables fast, distributed transactions
across multiple objects

over 100K txes/sec when 16% of txes are
cross-partition

similar scaling to 2PL...
without a complex distributed protocol




conclusion

Tango objects: data structures backed by a shared log

key idea: the shared log does all the heavy lifting

(persistence, consistency, atomicity, isolation, history,
elasticity...)

Tango objects are easy to use, easy to build, and fast!

Tango democratizes the construction of highly available
metadata services



thank youl!
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the CORFU protocol: (chain) replication

client C1

client C2

safety under contention:
if multiple clients try to write to same log
position concurrently, only one ‘wins’



the CORFU protocol: (chain) replication

client C1

client C3

safety under contention:
if multiple clients try to write to same log
position concurrently, only one ‘wins’
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