
The Design and Implementation of a Log-Structured
File System

CS380L: Emmett Witchel

Treat disks like tape.

J. Ousterhout

File system design is governed by two general forces: technology, which provides a
set of basic building blocks, and workload, which determines a set of operations that
must be carried out efficiently.

Rosenblum and Ousterhout

1 Preliminaries

1.1 Outline
• Introduction

• 2 hard problems

– Finding data in log

– Cleaning

• 2 key ideas

– logging and transactions: log your writes

– indexing: inode → data can live anywhere → no need to “write back”

2 Introduction

2.1 Why this is “good” research
• Driven by keen awareness of technology trend

• Willing to radically depart from conventional practice

• Yet keep sufficient compatibility to keep things simple and limit grunge work

• 3-level analysis:

1



– Provide insight with simplified math – “science”

– Simulation to evaluate and validate ideas that are beyond math

– Solid real implementation and measurements/experience

• Extreme research – take idea to logical conclusion (e.g., optimize file system for writes since
“reads will all come from the cache”)

2.2 Technology trends
• Memory will grow, all reads will come from disk cache

– Is this true today? Why or why not?

• Transfer bandwidth and access time. Where has this gone?

• RAIDs and network RAIDs

• File system design is governed by two general forces: technology, which provides a set
of basic building blocks, and workload, which determines a set of operations that must be
carried out efficiently.

2.3 Implications
• Reads taken care of (?)

• Writes not, because paranoid of failure

• Most disk traffic is writes

• Can’t afford small writes

– RAID5 makes small writes worse

• Simplify and make FS less “device-aware”

– No tracks, cylinders, etc

– Just “big writes fast” + temporal locality between write and read patterns

2.4 Problems with UNIX FFS
• (Because most files are small)

• Too many small writes

• (Because of recovery concerns)

• Too many synchronous writes

2



• It takes at least five separate disk 1/0s, each preceded by a seek, to create a new file in Unix
FFS: two different accesses to the file’s attributes plus one access each for the file’s data, the
directory’s data, and the directory’s attributes. When writing small files in such a system,
less than 5% of the disk’s potential bandwidth is used for new data; the rest of the time is
spent seeking.

2.5 Approaches
• Replace synchronous writes with asynchronous ones (dribble latest updates to disk)

• Replace many small writes with a few large ones

• So buffer in memory and write to disk using large “segment-sized” chunks

• Log-append only, no overwrite in place

2.6 Key difference between LFS and other log-based systems:
• The log is the only and entire truth, there’s nothing else

2.7 Challenges
• Two hard problems

– Metadata design

– Free space management

• No update-in-place,

– (almost) nothing has a permanent home,

– So how do we find things?

• Free space gets fragmented,

– So how to ensure large extents of free space?

2.8 The poetry of LFS
• Overall, Sprite LFS permits about 65-75% of a disk’s raw bandwidth to be used for writing

new data (the rest is used for cleaning).

• For comparison, Unix systems can only utilize 5-10% of a disk’s raw bandwidth for writing
new data; the rest of the time is spent seeking.

• The fundamental idea of a log-structured file system is to improve write performance by
buffering a sequence of file system changes in the file cache and then writing all the changes
to disk sequentially in a single disk write operation.

• Basic operation, page 7

3



3 Index structures

3.1 Index structures in FFS

3.2 Index structures in LFS

4



• Step 1 – move inodes to log

• Step 2 – find mobile inodes with fixed imap

• Not obvious this is better

– Why is this better?

– Don’t have to write imap after every write – just at checkpoints; otherwise roll forward

– Couldn’t you do this with original inode array?

– Would there be any advantages to making imap mobile by adding another level of
indirection?

• Compare different checkpoint organizations: entire disk, inodes, imap, imap map, ...

– Assume 100 bytes/inode, 4 bytes per disk pointer. 50 MB/s bandwidth.

– Assume 512MB main memory

disk data inode array imap imap map
size 100 GB 1GB 40MB 320 KB
time to write checkpoint 2000 sec 20 sec 1 sec 10ms + seek + rot
Fraction of main memory 200x 2x 5% .05%

3.3 Example of LFS update

• Read “/foo”

5



• Write “/foo”

• Read “/foo” using in-memory imap

• What if we crash?

• Update checkpoint (eventually)

6



4 Cleaning
How to get back free disk space

4.1 Option 1: threading
• Put new blocks wherever holes are

• Each block written has points to next block in sequential log

• Advantage: Don’t waste time reading/writing live data

• Law of storage system entropy: left to itself, free space gets fragmented to the point of
approaching your minimum allocation size

4.2 Option 2: Compact the log
• Compact live blocks in log to smaller log

• Advantage: Creates large extents of free space

• Problem: Read/write same data over and over again

4.3 Option 3: Segments: Combine threading + compaction
• Want benefits of both:

– Compaction: big free space

– Threading: leave long living things in place so I don’t copy them again and again

– Easily detect dead blocks by having a version number with inode. If old version, no
need to chase down inode pointers or indirect blocks.

– The version number combined with the inode number form a unique identifier (uid) for
the contents of the file.

– if the uid of a block does not match the uid currently stored in the inode map when
the segment is cleaned, the block can be discarded immediately without examining the
file’s inode.

• Solution: “segmented log”

– Chop disk into a bunch of large segments

– Compaction within segments

– Threading among segments

– Always write to the “current” “clean” segment, before moving onto next one

– Segment cleaner: pick some segments and collect their live data together (compaction)

7



– Segment summary information

* It must also be possible to identify the file to which each block belongs and the
position of the block within the file; this information is needed in order to update
the file’s inode to point to the new location of the block.

* Sprite LFS also uses the segment summary information to distinguish live blocks
from those that have been overwritten or deleted.

• Many similarities with generational garbage collection

5 Policies, evaluation

5.1 Is cleaning going to hurt?
• Write cost = total IO / new writes = read segs + write live + write new / write new = [1+u+(1-

u)]/(1-u) = 2/(1-u)

– where u is utilization of segments cleaned

• A write cost of 10 means that only one-tenth of the disk’s maximum bandwidth is actually
used for writing new data; the rest of the disk time is spent in seeks, rotational latency, or
cleaning.

• Conclusion: u better be small or it’s going to hurt bad.

• Aha: u doesn’t have to be overall utilization, just utilization of cleaned segments.

8



• FFS has a write cost of 10-20, corresponding to 5-10% disk bandwidth between seeks. (Fig-
ure 3, page 11)

5.2 How to lower cost under utilization?

• Want bimodal distribution

– clean low-utilization segments, easy

– leave high-utilization segs untouched

• Workloads

– random writes: still can do better than average u

– typical file system has locality, can do even better

9



5.3 Greedy cleaner

• Greedy cleaner: pick the lowest u to clean

• Works fine for random workload

• For “hot-cold” workload: 90% writes to 10% blocks

– 1st mistake: not segregating hot from cold

– Did that and it didn’t help

– Figure 4 shows the surprising result that locality and “better” grouping result in worse
performance than a system with no locality!

10



5.4 What’s wrong?

• Segments are like fish, swimming to the left

• Cleaner spends all its time repeatedly slinging a few hot fish back

• Cold fish hide lots of free space on the cliff but the cleaner can’t get at them, and most fish
are cold

11



5.5 Answer

• Cold free space more valuable: if you throw back cold fish, takes them longer to come back

• Hot free space is less valuable: might as well wait a bit longer

5.6 “Cost benefit cleaner”

12



• Optimize for benefit/cost = age*(1-u)/(1+u)

• Favors cold segments. Coldness of segment approximated by age of of the youngest block
in the segment.

• Hot segments cleaned at 15% utilization, cold segments at 75%. Result is similar to genera-
tional garbage collection

• Segment usage table has the number of live bytes and the most recent modified time of any
block.

5.7 Segment size?
An Example Followup Question

• What’s the best segment size?

• Big: can amortize seek more effectively

• Small: even better chance to find segments that have low utilization, or even zero utilization

• Find the optimal compromise

5.8 Crash recovery
• Last sector written in checkpoint is the timestamp (giving atomic commit). Two checkpoint

regions allow for a crash during a checkpoint.

• Checkpoint every 30 seconds

– Checkpoint has addresses of all the blocks in the inode map and segment usage table,
plus the current time and a pointer to the last segment written.

• Roll forward tracks changes to inodes, ignores new data blocks (why?)

• Directory operation log ensures consistency between inodes and directory entries. Directory
operation entry is written before inode or directory entry.

• Directory operation log makes atomic rename easy. Why?

– Directory entries cannot be modified while checkpoint is written.

13



6 Evaluation

6.1 Paper’s conclusions
• Disk parameters

– WREN IV disk – 1.3MB/s max BW, 17.5 avg seek, 300MB

– LFS: 4KB block size, 1MB segment size

• Results

– 10x performance for small writes

– Similar large I/O performance

– Terrible sequential read after random write. Temporal locality does not match logical
locality.

– Note:

* 1990 disk Wren IV: 1.3MB/s BW, 17.5ms avg seek, 300MB storage

* 2002 disk : 50MB/s BW (40x), 5ms avg seek (3x), 100GB storage (300x)

* How change results?

* How change design/parameters (segment size, checkpoint strategy, ...)

• Questions

– Is LFS really as simple as FFS? Segment cleaning isn’t.

– Microbenchmark only? (Andrew benchmark 80% CPU)

– How much is attributed to asynchrony? (Later work on delayed writes for metadata)

– Story of impact of cleaning is simplistic?

– I argued at start of discussion that this is example of good science. Still not perfect.
What questions doesn’t it answer?

– How does read cost compare with FFS in practice? Is it OK to give up careful disk-
physical-property-based placement and hope that read and write temporal locality will
match?

• Other advantages

– Fast recovery

– Support of transactional semantics

– Not necessarily an LFS monopoly though

6.2 Experimental evaluation
Note: I actually think they do a really good job overall. Still, let’s see if we understand what they
did and if there are any improvements...

14



6.2.1 Graph-by-graph analysis/critique

• Figure 3, 4, and 7 – Analytic model and simultion of write cost v. disk capacity utilization

– Basic story –

* 3: cleaning cost depends on utilization,

* 4: cleaning cost depends on minimum segment utilization not avg

* 4: But greedy cleaning does worse when there is locality (surprise!)

* 7: Delay cleaning hot segments

– Sanity check: Where does “FFS today = 10” come from? What about “FFS improved
= 4”?
X:

* Write = seek + rot + metadata write + seek + rot + data write + seek + rot + free
space write

* BW 1MB/s → write 1K in 1ms

* Worst case – No locality: seek + rot = 15ms

* Best case – locality: seek + rot = 0 (amortize across many writes to huge numbers
of writes to nearby files...)

* Range from 1/48 to 1/1 depending on workload

* Paper uses microbenchmark experiment for “current case” – figure 8 “small file
create” – 10:1 to 50:1 advantage

* (Should have used small file overwrite? Create may overstate benefits? Overwrite
may be less advantageous b/c fewer seeks)

* (Methodology question: Did Figure 8 use a single blocking thread? Could FFS
get more throughput with multiple concurrent threads (allowing disk to schedule
multiple outstanding requests?)

* Paper extrapolates from Seltzer, Chen, and Ousterout “Disk scheduling revisted”
to argue that best FFS could do is write cost of 4

– Figure 8: Small file performance

* Basic story: LFS 10x faster for create/delete (and uses only 17% of disk BW)

* What limitations, if any, from these experiments? How improve/expand on exper-
iments? X:

· no cleaning → keep running long enough to get steady state performance with
cleaning (vary free space)

· create more expensive than overwrite → also run experiment with “overwrite”
phase

· Read performance is “best case” for LFS (same order as write) → try reads
in random order

– Figure 9: Large file performance

15



* Basic story: LFS modestly faster on sequantial or random writes; LFS similar
for sequential read after sequential write or random read after random write; FFS
faster for sequential read after random write

– Table II – production file system measurements of cleaning costs

* Basic story: avg write cost 1.4 to 1.6 in production file system

* (and this may be pessimistic – cleaning can be done in background?)

6.2.2 Higher level critique

Did they do the right experiments?
In what ways are experiments too generous to LFS? What is worst-case workload for LFS?
X:

• Microbenchmarks run with no cleaner

• Small file microbenchmarks have no concurrency; FFS might improve scheduling of writes
with more concurrency

• Should have shown small writes not just small creates

• Worst case performance: random overwrite of small chunks of large file (e.g., transaction
processing)

In what ways are experiments too conservative about LFS’s advantages? X:

• “real world” cleaning costs may overstate cost; cleaner probably is able to do most of its
work during periods of idleness; perhaps should have measured what fraction of cleaning
done when idle...

What questions are just not addressed? How could they be addressed? X:

• Real world performance. Does a user see improved real-world performance? (Ideas for
testing – AFS benchmark, replay trace of real-world workload against LFS and against
other production system, ...)

• Real world experience issue – cleaner grabs exclusive lock on everything – multi-second
period during which everyone waits; implementation artifact, but still...

• Memory consumption – Seltzer93: “LFS [is] a very ’bad neighbor”’ – LFS locks down
3 segments per file system plus buffers reserved for staging (64-128K per FS) and cleaner
(avg 3.7MB/file system); if a system has 10 file systems mounted and 1MB segments → 60MB
“locked down” by LFS (v. 32MB for the workstation they ran microbenchmarks on). Answer
– (1) some of these are artifcats of implementation fixed by Seltzer93 (2) tech trends will
reduce this (?)

16



6.3 Ousterhout’s (and Mike’s) summary of meta-lessons
• Vary operating conditions and show each system both at its best and worst.

– Mike: if you don’t show the worst-case behavior of your system, someone else will

• Measure one level deeper than you publish; use your intuition to ask questions, not to answer
them.

– Mike: Think about graphs. Don’t just say “up and to the right, that’s what we expected.”
Be able to explain with back of the envelope calculations the magnitude of values; the
slope of line.

– Mike: Big danger in experimental systems: (1) guess answer, (2) run experiment (3)
unexpected result (my system is not as good as the other system) → debug/tweak goto
2, (4) expected result (my system better than other) → done – as expected my system
wins!

• Consider significance of results: all graphs should have a y-axis based at zero.

• Mike: Many complex heuristics in CS (FFS, TCP, ...) – how do we understand them? Danger
– build “simple systems” that seem to work and then spend a decade or more figuring how
why they work (perhaps a more systematic approach could be taken from the beginning...)

17



7 Conclusions

7.1 Why LFS? Why Not?

• LFS does well on “common” workloads

• LFS degrades for “corner” cases

• LFS architecture inherently flexible → easy to incorporate other FS paradigms

7.2 How radical is it?
• continuum

– FFS: inodes: fixed, update-in-place; data: fixed, update-in-place

– JFS: inodes: fixed, redo log; data: fixed, update-in-place

– “Transactional FS”: inodes: fixed, redo log; data: fixed, redo log

– LFS: inodes: mobile, log+cleaner data: mobile, log+

• Compare “Transactional FS” v. “LFS”

– In LFS need to be able to find data in log, but really no different than normal inode
structure

18



– Compare cleaning cost v. replay cost

* LFS: get to wait longer before cleaning → data may die

* LFS: write cleaned data to log → fewer seeks

* Transactional FS: wait shorter before re-write → don’t have to read log (in com-
mon case)

* TFS: Still get to batch many writes → maybe seeks are not too bad...

• Henson: LFS Failed because of segment cleaning overheads.

• Technology trends, solid state devices (SSD)

– Reads are cheap, writes are expensive (large blocks).

– LFS, but in device firmware!

– Looks like a block device to OS, format with ext4.

– Ooops, include TRIM command, which lets the file system tell the block device which
blocks are free.

19


