
RaceTrack: Efficient Detection of Data Race Conditions
via Adaptive Tracking

If the lock-free code happens to be correct, these warnings are false alarms. How-
ever, it is difficult even for experienced programmers to write correct lock-free
code.

Implementing RaceTrack entirely inside the CLR, although an admittedly rather
technical undertaking for a very sophisticated runtime, makes it completely trans-
parent to applications.
Yuan Yu, Tom Rodeheffer, Wei Chen

1 Overview of data race detectors
A data race occurs in a multithreaded program when two threads access the same memory
location without any intervening synchronization operations, and at least one of the accesses
is a write.

• Static analysis tends to be conservative, generating spurious warnings (false posi-
tives). Scaling is difficult because it is a whole program analysis. Strong type systems
can be used to avoid data races but they require source annotations and restrict con-
currency models.

• Dynamic analysis has fewer false positives, but the analysis is limited to the thread
interleavings that are executed.

• Lockset algorithms ensure that a piece of data is accessed with a consistent set of
locks held. Does not recognize fork/join parallelism and asynchronous calls. With no
language support, requires shadow words (high overhead).

• Happens-before data race detectors use program order and synchronization events
to establish a partial temporal order on program statements. If two memory accesses
are not temporally ordered, they can race.

• Language independent program instrumentation intercepts every load and store to
global memory, and often must have a shadow word for every word of global memory
to hold lockset information. 10–30× slowdown.

• Object-oriented detectors can detect races at object granularity, lowering overheads
(2× in time), while increasing the probability of false positives.

1

2 RaceTrack
• Implemented in Microsoft’s Common Language Runtime.

• Modifies JIT and garbage collector.

• Dynamically adjust object to field granularity. Deals with arrays.

• Dynamically adjusts tracking lockset and happens-before relationship.

• 3× slowdown, with 1.2× memory use on SpecJBB.

• Deals with interactions between managed and native code. This is an industrial
strength project!

3 Vector clocks
• Lamport clock defines the happens-before relation. If u causally happens before v
(u < v) then the Lamport clock value of u will be less than the Lamport clock value
for v. But if L(x) < L(y) we cannot conclude that x < y.

• With a vector clock, each node includes the last known timestamp from every other
node. With vector clocks if V (x) < V (y) then x < y. Events are simultaneous (u||v)
iff V (u) ̸< V (v)V (v) ̸< V (u). Note that the simultaneity relation || is not transitive.
V (x) < V (y) iff V (x)[i] < V (y)[i] where i indexes the vector.

4 Detecting races
• See notes for definition of data race and lockset.

• Each thread has a lockset (Lt)and a vector clock (Bt).

• Each variable has a lockset (Cx) and threadset (Sx). Cx initialized to all possible locks,
Sx initialized to ∅.

• Only the most recent access for a given thread is kept.

• Vector clocks identify accesses that are concurrent.

• Only allow lockset to grow when threadset has multiple entries.

• See figure 2 for basic algorithm.

• Only issue a warning when |Sx| > 1 and Cx is empty.

• See figure 3 for an example where the lockset algorithm would

2

5 Making detection practical
• Use state machines to limit the amount of tracked data for each variable.

• See Figure 4 for state machine.

• Exclusive2 is the state where lockset reports race.

• Adaptive granularity (on potential race, track fields/array elements).

• Funny idioms

– Master thread checks IsAlive to find dead threads. This must be treated as a
thread join.

– Finalizers are reset to state Exclusive0

• Implementation

– Immobile lockset table. Realloc on filling table (the number of lockset don’t
increase without bound).

– Immobile threadset table. Reference counting to garbage collect.

– Pointer to racetrack state at the end of the object to preserve layout.

– Figure 6 shows the space-optmized state layout, with lock-free updates. Some-
times, only the first word needs updating.

• Don’t track volatiles.

• Track first, middle and last m elements of an array.

• Discard some elements of a large vector clock.

For Boxwood and SATsolver slowdown was based on elapsed runtime, for SpecJBB on its
reported throughput, for Crawler on the number of pages downloaded, and for Vclient on
average CPU load.

6 Making racetack usable
• Generate a stack trace of first racing thread on second race occurrence.

• Generate lots of warnings, then prioritize using heuristics. Allow user to supress warn-
ings.

• See Table 1 for taxonomy of races.

• See results examples of real races.

• See Table 2 for overheads.

3

