
The UNIX Time-Sharing System

CS380L: Emmett Witchel
thanks to Mike Dahlin

People who log in as a player of one of the games find themselves limited to the game and
unable to investigate the presumably more interesting offereings of UNIX as a whole.

5.3% chess [CPU usage of chess (5th most popular program in terms of cycles executed),
just behind the shell (5.8%), and in front of list directory (3.3%)].

–D. M. Ritchie and K. Thompson. “The UNIX Time-Sharing System.” p. 372. Com-
munications of the ACM, 17(7), July 1974, pp. 365–375.

1 Preliminaries

1.1 Outline

• Unix

– Theme: Simplicity and elegance

– File I/O

– Process management

– Lessons

2 Theme: Simplicity and elegance

• The “Third system”

– THE: Among the first systems

∗ Worked, rigid heirarchies

∗ Very simple, lacked features & usability

– Multics: The “second system effect”

∗ Visionary

∗ Ungainly

– Unix

∗ “Elegance, taste, craftsmanship”

∗ Minimum functionality and implementation, yet...

∗ Power, and...

∗ The pieces fit together seamlessly

∗ How many times can one say: “this is just totally obvious”

∗ This paper nearly summarizes undergrad OS...if you understand it, you understand
most of the basics of modern OS’s

1

Feature Unix 1973 Linux 2005 Linux 2016

Min cost system $40,000 $100 $5 (Raspberry Pi Zero)

Applications

C compiler
assembler
debugger

YACC

form letter generator (?!)

C compiler
assembler
debugger

YACC

C compiler
assembler
debugger

YACC

Memory 144KB 2GB 32GB

Memory (min) 50KB
500KB (4MB embedded
systems, e.g., ttylinux)

∼1MB for microYocto
32-bit, 1.3MB for 64-bit,

IoT

Disk 1MB swap, 2.5MB, 40MB
500GB, swap on partition

or files
4TB disk or 128GB SSD,
swap on partition or files

File names Up to 14 characters Up to 255 characters Up to 255 characters

mkdir setuid program user program (mkdir syscall) user program (mkdir syscall)

File creation create syscall O CREAT flag to open syscall O CREAT flag to open syscall

File block size 512B 4KB 4KB

Max file size 1MB 4TB (NTFS is 2TB) 16TB (ext4)

Static lines of code 10K 4.2M 20.6M (4.3 2015-11-01)
[12M (Sloccount on 3.16.1)]

Intellectual property AT&T propietary Open source Open source

Person-years 2

4,528
http://www.dwheeler.com/-

essays/-

linux-kernel-cost.html

8,000 ($1 Trillion)

3 Unix 1974 vs. Linux 2005

Look carefully students, this is what systems success beyond your wildest dreams looks like.

4 File I/O

The most important role of UNIX is to provide a file system (p. 366)

• Hierarchical name space

– strict hierarchy across directories

– QUESTION: What would get much more complex if you allow non-hierarchy?

– Disallowing multiple links to directories →
∗ Easier search

∗ Easier garbage collection – no cycles

– Engineering “taste” – give up a tiny bit of generality for a big savings in complexity

– Eventually augmented with soft links, but soft links don’t increment link count, so they
can dangle.

– Windows NT/2K/XP does without real soft links (shortcuts are interpreted by applica-
tions, not the OS).

• Directories are files

– A certain elegance, but does this really help anything? What about network file systems?

2

∗ Review: what is an inode? What is in an inode?

∗ What is a directory? What is in a directory?

∗ How do I find the inumber for file /foo/bar?

∗ How do I find the inode for inumber 49824?

∗ How do I read the third block of file /foo/bar?

∗ What is the difference between a hard link and a symbolic link?

• How important are hard links? They save space, but they confuse users. They frustrate space
accounting :).

3

danko:/usr/lib/i386-linux-gnu/dri> ls -il *.so

20897983 -rw-r--r-- 5 root root 5477116 May 15 04:43 i915_dri.so

20897983 -rw-r--r-- 5 root root 5477116 May 15 04:43 i965_dri.so

20885369 -rw-r--r-- 1 root root 4262808 May 15 04:42 nouveau_dri.so

20897983 -rw-r--r-- 5 root root 5477116 May 15 04:43 nouveau_vieux_dri.so

20897983 -rw-r--r-- 5 root root 5477116 May 15 04:43 r200_dri.so

20897984 -rw-r--r-- 1 root root 3488564 May 15 04:42 r300_dri.so

20897982 -rw-r--r-- 1 root root 3996492 May 15 04:42 r600_dri.so

20897983 -rw-r--r-- 5 root root 5477116 May 15 04:43 radeon_dri.so

20885367 -rw-r--r-- 1 root root 3356880 May 15 04:42 radeonsi_dri.so

danko:/usr/lib/git-core> ls -il git* | head -n 45

20891152 -rwxr-xr-x 1 root root 1577256 Mar 19 09:43 git*

20891810 lrwxrwxrwx 1 root root 3 Mar 19 09:43 git-add -> git*

20890454 -rwxr-xr-x 1 root root 36841 Mar 19 09:43 git-add--interactive*

20890466 -rwxr-xr-x 1 root root 23060 Mar 19 09:43 git-am*

20891782 lrwxrwxrwx 1 root root 3 Mar 19 09:43 git-annotate -> git*

20896021 lrwxrwxrwx 1 root root 3 Mar 19 09:43 git-apply -> git*

20891824 lrwxrwxrwx 1 root root 3 Mar 19 09:43 git-archive -> git*

20890468 -rwxr-xr-x 1 root root 11997 Mar 19 09:43 git-bisect*

20891792 lrwxrwxrwx 1 root root 3 Mar 19 09:43 git-bisect--helper -> git*

20891788 lrwxrwxrwx 1 root root 3 Mar 19 09:43 git-blame -> git*

danko:~> mkdir tmp

danko:~> touch tmp/foo

danko:~> ls -l tmp

total 0

-rw-rw-r-- 1 witchel osa 0 Sep 4 2014 foo

danko:~> ls -ld foo

drwxrwxr-x 3 witchel osa 4096 May 5 23:53 foo/

danko:~> chmod 0 tmp

danko:~> cat tmp/foo

cat: tmp/foo: Permission denied

[status 1]

danko:~> chmod +x tmp

danko:~> ls -ld tmp

d--x--x--x 2 witchel osa 4096 Sep 4 01:20 tmp/

danko:~> cat tmp/foo

danko:~> rm tmp/foo

rm: cannot remove ’tmp/foo’: Permission denied

[status 1]

danko:~> chmod +w tmp

danko:~> rm tmp/foo

4

danko:~> touch quux

danko:~> ls -l quux

-rw-rw-r-- 1 witchel osa 0 Sep 4 2014 quux

danko:~> ln quux tmp/quux

danko:~> chmod 0 tmp

danko:~> chmod 777 quux

danko:~> chmod 777 tmp

danko:~> ls -l tmp

total 0

-rwxrwxrwx 2 witchel osa 0 Sep 4 11:22 quux*

• In order to be able to list, read or write a file, you need execute permission on the directories
leading to that file (e.g., on a, b, and c for /a/b/c/execute me.py).

• File owner can always chmod, does not need write or execute permission in enclosing directory.

• Return value of read/write. Short reads, short writes, EWOULDBLOCK.

• Writing blocks of data far more efficient than individual bytes.

• What are sparse files? Why are they needed?

• lockf, flock, fcntl, why is Unix file locking such a mess? (The contradictions of fine-grained
sharing)

• (slides for editor update, rename)

• Untyped data (byte oriented)

– The structure of files is controlled by the programs which use them, not by the system.
(p. 366)

– What are the advantages of the “resource fork” ala Macintosh?

– Where to store access control lists for a user-level implementation of a new file system?

– Memory also “untyped”: Another important aspect of programming convenience is that
there are not “control blocks” with a complicated structure partially maintained by and
depended on by the file system or other system calls. Generally speaking, the contents
of a program’s address space are the property of the program, and we have tried to avoid
placing restrictions on the data structures within that address space. (p. 374)

– IRIX had the PRDA (process data area). The OS puts useful data values on this page
so user programs can read them without system calls. Generally considered a wart, but
an understandable one.

/* magicpage.c -- check for a mapping at 0x200000, IRIX’s PRDA */

#include <stdio.h>

char *prda = (char *)0x200000;

int main(int argc, char **argv) {

char c;

printf("trying %p\n", prda);

5

c = *prda;

printf("ok\n");

return 0;

}

– Linux has vdso (and for backward compatibility vsyscall), a page mapped into each
user address space that has code to implement fast system calls (e.g., gettimeofday, time
and getcpu). The format of the page is...an ELF dynamic shared object(!)

6

• File creation (UNIX vs. IBM system 360)

– UNIX
echo > /tmp/foo
redirection rocks

– IBM system 360 job control language

//PDSCRTJ1 JOB SIMOTIME,ACCOUNT,CLASS=1,MSGCLASS=0,NOTIFY=CSIP1,

// COND=(0,LT)

//* ***

//* This program is provided by: *

//* SimoTime Enterprises, LLC *

//* (C) Copyright 1987-2005 All Rights Reserved *

//* Web Site URL: http://www.simotime.com *

//* e-mail: helpdesk@simotime.com *

//* ***

//*

//* Subject: Define a PDS using the IEFBR14 with a DD Statement

//* Author: SimoTime Enterprises

//* Date: January 1,1998

//*

//* Technically speaking, IEFBR14 is not a utility program because it

//* does nothing. The name is derived from the fact that it contains

//* two assembler language instruction. The first instruction clears

//* register 15 (which sets the return code to zero) and the second

//* instruction is a BR 14 which performs an immediate return to the

//* operating system.

//*

//* IEFBR14’s only purpose is to help meet the requirements that a

//* job must have at least one EXEC statement. The real purpose is to

//* allow the disposition of the DD statement to occur.

//*

//* For example, the following DISP=(NEW,CATLG) will cause the

//* specified DSN (i.e. PDS) to be allocated.

//* Note: a PDS may also be referred to as a library.

//***

//*

//IEFBR14 EXEC PGM=IEFBR14

//TEMPLIB1 DD DISP=(NEW,CATLG),DSN=SIMOTIME.DEMO.TEMPLIB1,

// STORCLAS=MFI,

// SPACE=(TRK,(45,15,50)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800,DSORG=PO)

//*

– How about a key to some of the terms

∗ Top line is job metadata, the scheduling class, and how error messages are to be
reported to the user.

∗ EXEC line specifies program. IEFBR14 is a label to refer to the job.

∗ TEMPLIB1 is a new dataset to be created as a side effect of running the job.

7

∗ NEW,CATLG means this is a new dataset that should persist after the job is fin-
ished.

∗ DSN is dataset name. OS360 has a 3 level “heirarchy.”

∗ STORCLAS specifies the symbolic name of the unit and volume of the disk pack
which stores the data and some file metadata defaults (like RECFM, LRECL). For
SMS (storage management system).

∗ SPACE specifies the size of the dataset, here in tracks (blocks, and cylinders are
also available. In this case allocate 45 tracks initially, increment by 15 when the
dataset needs to grow (though a dataset can only be grown 15 times), and use up to
50 tracks if this is a partitioned data set (directory). Rule of thumb, one directory
block for every 6 entries.
Disks in IBM land have 512 byte blocks, a device-dependent number of sectors per
track (17, 35, 75), a device dependent number of tracks (up to 1024), a device
dependent number of heads, and a cylinder which contains as many tracks as there
are heads.

∗ DCB is the data control block

∗ RECFM specifies the record format. FB is fixed block records (variable length
records, undefined length records and others also available).

∗ LRECL is the logical record length, here 80 characters

∗ BLKSIZE is the size of the data control block itself (i.e., “inode”).

∗ DSORG specifies the data set organization. PO is partitioned organization (the
default).

• Device-independent I/O

– There is a threefold advantage in treating I/O devices this way: file and device I/O are
as similar as possible; file and device names have the same syntax and meaning, so that
a programming expecting a file name as a parameter can be passed a device name; finally,
special files are subject to the same protection mechanism as regular files. (p. 367)
I’d say (3) is reasonably compelling, (1) is mildly useful, though high-performance im-
plementations tend to treat e.g., network I/O differently from disk. (2) seems useless to
dangerous. The “ioctl” interface for device-specific functionality is terrible.

– Simple owner/group/other permissions remarkably flexible and useful.

– “Pipes are not a completely general mechnism since the pipe must be set up by a common
ancestor of the process.” Now, named pipes in the file system. Though sockets are more
general than pipes.

– Chillaxing with Thompson and Ritchie, “A program which is used rarely or which does
no great volume of I/O may quite reasonably read and write in units as small as it
wishes.”

– Problems with /dev and their solution with udev (http://lwn.net/Articles/65197/) (note,
udev is now integrated with systemd)

∗ A static /dev is unwieldy and big. It would be nice to only show the /dev entries
for the devices we actually have running in the system.

∗ We are (well, were) running out of major and minor numbers for devices.

∗ The database of major/minor numbers in the kernel must match the database in
/dev or the user can not access device functionality (e.g., kernel built with CON-
FIG TUN and “mknod /dev/net/tun c 10 200”)

8

∗ Users want a way to name devices in a persistent fashion (i.e. ”This disk here, must
always be called ”boot disk” no matter where in the scsi tree I put it”, or ”This
USB camera must always be called ”camera” no matter if I have other USB scsi
devices plugged in or not.”) With /dev, the first USB printer is lp0, and the second
is lp1 (same major number, incremented minor number). But add a USB hub, and
the device names could be swapped.

∗ Userspace programs want to know when devices are created or removed, and what
/dev entry is associated with them.

– udev has replaced devfs, which replaced /dev. So it is a “deep” change that took a while
to settle down.

∗ using udev, the /dev tree only is populated for the devices that are currently present
in the system.

∗ udev emits D-BUS messages so that any other userspace program (like HAL) can
listen to see what devices are created or removed. It also allows userspace programs
to query it’s database to see what devices are present and what they are currently
named as (providing a pointer into the sysfs tree for that specific device node.)

– Network cards are not in /dev

• File descriptors are a little piece of brilliance.

– Filter programs do not know the name of input or output files.

– “Handle with access rights” – that is a capability, which is an abstraction that makes
protected sharing easier.

– How many file descriptors can you open?

– File descriptors are just integers, why can’t a user program forge one?

• Set-User-ID (rights amplification)

– Coarse-grained sharing – “execute a program as someone else”

– v. Multics rings – fine grained sharing – “execute a procedure as someone else”

– Minimalist: Need to have process == principal anyhow

– Just add setuid to that basic mechanism rather than invent an orthogonal authentication
model

– But, given “psychological acceptability” constraint, are there limits to how fine-grained
we can (correctly/conveniently) divide programs?

– Also “Make common case fast. Make uncommon case correct.” Common case is –
procedure call to same code base. How much extra mechanism do you want (complexity,
cost, speed penalty in common case) for uncommon case?

– Compare power of approach

∗ Question: suppose you have a “protected subsystem” S in multics that has data
DS that only it can access and to procedures SP1 that can be accessed by A and B
and SP2 that can only be accessed by A

· How would you arrange this in Multics?

· Can you arrange this in Unix? How?

9

∗ Long list of buggy kernel modules can crash Linux—the chickens of simplicity have
come home to roost.

∗ The single root user is a big Achilles heel in the Linux/DAC permissions system.
Compromise of any process running as root means compromise of entire OS even
though the program probably only needed one feature of root (ambient authority).

∗ Andriod operating system installs each application under a unique user id. Why?

• Mount

– Removable storage; expand storage;

– Engineering simplification: No cross-volume links allowed

5 Process management

• Theme

– Primitives, not “solutions”

– “Happily, all of this mechanism meshes very nicely...”

• A process is an executing program (or image). Code, heap and stack.

• Building blocks

– Fork, exec, wait

– File I/O structure

∗ Fork’d child shares parent’s open files

∗ → pipe, std I/O, redirection, filters

∗ “Pipes are not a completely general mechnism since the pipe must be set up by a
common ancestor of the process.” Now, named pipes. Though sockets are more
general than pipes.

∗ Coarse grained sharing of programs: cat foo | grep “bar” | sort | tail -10
– Shell, bg execution (being able to suspect a program is just brilliant (though comes later)

and absent from Windows).

– Running a program in the background is great. Why do we need nohup?

– Standard in and standard out. What a great idea, enables redirection and pipelines.

– Shell turned out to be a pretty bad programming language though.

∗ Elegant process structure enables communication

∗ Signals as another form of inter-process communication.

10

∗ Shell pseudo-code

shell(){

while(got = read(STDIN, buffer, ...)){

command, args, redirection, bg = parse(buffer);

if(pid = fork()){

/* I am the child */

if(redirection){

close stdin and/or stdout and open specified files

}

exec(command, args);

/* Only reached if error on exec */

exit(-1);

}

/* I am the parent */

if(!bg && donePid != pid){

donePid = wait();

}

}

∗ HW Question: How to add pipes?

6 Fight the man, with UNIX!

Our goals throughout the effort, when articualted at all, have always concerned themselves with
building a comfortable relationship with the machine and with exploring ideas an inventions in
operating systems. We have not been faced with the need to satisfy someone else’s requirements,
and for this freedom we are grateful. (p. 374)

• Dewey: “Rock ain’t about doing things perfect. Who can tell me what it’s really about?
Frankie?”
Frankie: “Uh? Scoring chicks?”
Dewey: “No. See? No. Eleni?”
Eleni: “Getting wasted?”
Dewey: “No. Come on. No.”
Leonard: “Sticking it to The Man?”

11

Dewey: “Yes!”
–School of Rock (2003)

• The current version of UNIX avoids the issue by not charging any fees at all (p. 369)

• Computer scientists like to build scalable, fault-tolerant, best-effort systems, all of which
conflict with central authority. Technical successes like Internet routing, the web, UNIX-
style accounting and NFS eschew the central authority embraced by failures like AFS, and
IBM system 360 accounting. Of course, sometimes central authority is a good thing, like the
domain name service or ethernet card numbering.

Figure 1: Applications, libraries and OSes

7 Lessons

How do you teach/learn “elegance”? I don’t know. Study case studies, try to learn lessons.
When you build a system, ask yourself “What would Richie and Thompson say about my

design?”
Can it be learned at all? Dijkstra attributes much of elegance to “fear”, Richie and Thompson

to having small machines.

12

7.1 Unix v. Multics v. THE

Note: Multics design and THE design pre-date Unix. Unix borrows liberally.
“The success of UNIX lies not so much in new inventions but rather in the full exploitation

of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system. (p. 374)

• Unix v. Multics

– Implementation effort: 2 work-years v. ? work-years

– Implementation latency: 2 years v. inf

– Key ideas

Feature Multix Unix

Key abstraction Unify file = memory Unify I/O = file

Protection rings (jump to memory) suid (execute file)

Sharing N segments; 3 segments (text, heap, stack)
arbitrary sharing text is shared (RO);

Communication between domains
via files, pipes

– Coarse grained (file exec) v. fine grained sharing (procedure call)

∗ Elegant structure

· unified file I/O, interprocess I/O (pipes), device I/O

· cooperating process structure: fork, exec, shared files, shell, redirection, filters

· setuid

∗ Lampson: coarse grained sharing (pipes) is one of great success in CS; fine-grained
sharing an “abject failure” (Dahlin’s paraphrase of NSF workshop, SOSP keynote
talks).

∗ Lessons?

· Simple primitives v. general solutions?

· “Psychological acceptability” limits us to coarse-grained 2-entity sharing most
of the time anyhow?

· Trade performance and features for simplicity?

– Approach

∗ Multics – “we need fine grained sharing; design the ‘right’ mechanism for it”

∗ Unix – “any system we build must have (1) process, (2) ability to read and write
files from a process, (3) a user ID associated with a process for access control, (4) be
able to read/write tty (and other devices); given those requirements, can we design
the basic abstractions in a way that supports sufficient sharing? (Yes. In fact, now
that we look at it this way, file IO and device IO are the same thing....)”

• Unix v. THE

– Similar scale (2-3 work-years)

– Dates of completion: THE (1967?), Unix (v1 1969, v2 1971)

13

– Similar abstractions
THE Unix

Level 0: sequential execution process
Level 1: Virtual memory virtual memory
Level 2: Message demux File I/O + special files + process
Level 3: Buffer I/O Buffered I/O
Level 4: User-level process User-level process
Level 5: Operator Operator

• UNIX bloat, OS bloat

– Much of multics has been put back in

– QUESTION: Many have given up on OS security and are resorting to virtual machines
for process isolation...

7.2 Quotable UNIX

• Given the partially antagonistic desires for reasonable efficiency and expressive power, the
size constraint has encouraged not only economy but a certain elegance of design. (p. 374)

– Both THE and Unix gain success/elegance by ruthless simplification

– THE motiation “fear”

– Unix motivation – hardware constraints

– Today’s motivation? (discipline?)

• Nearly from the start, the system was able to, and did, maintain itself. This fact is more
important than it might seem. If designers of a system are forced to use that system, they
quickly become aware of its functional and superficial deficiencies and are strongly motivated
to crrect them. (p. 374)

– “Eat your own dogfood”

– “worked once” system v. “real system”

8 Torvalds

• Linux is portable in part because it was not built to be portable. Sometimes it is better to be
deep than wide. Good design principles and a good development model. (I’ve heard it said
that most tech blockbusters combine a technical innovation with a business innovation, e.g.,
Netflix, Google (advertising), subsidized smart phones.

• He doesn’t like microkernels. Or academic research. I agree with many of his arguments
(more for the former).

• “You can present a better architecture to the OS than is really available on the actual hardware
platform” also true of virtualization.

• Avoid interfaces.

• Linux relies on gcc. Choose your allies/dependences carefully.

• I like his attitude toward open source/GPL. People can really get fanatical about it.

14

9 Singularity

Let’s revisit OSes from a modern persepctive.

• First, the pervasive use of safe programming languages eliminates many preventable defects,
such as buffer overruns.

• Second, the use of sound program verification tools further guarantees that entire classes of
programmer errors are removed from the system early in the development cycle.

• Third, an improved system architecture stops the propagation of runtime errors at well-defined
boundaries, making it easier to achieve robust and correct system behavior

• Software-isolated processes

– Closed object space. No shared writable memory, no dynamic code loading.

– Exchange heap is a nightmare.

– Isolation provided by software, not hardware. Does this matter?

– Low cost makes it practical to use SIPs as a fine-grain isolation and extension mechanism
to replace the conventional mechanisms of hardware protected processes and unprotected
dynamic code loading.

– As a consequence, Singularity needs only one error recovery model, one communication
mechanism, one security architecture, and one programming model, rather than the
layers of partially redundant mechanisms and policies found in current systems.

• Contract-based channels

– A channel provides a lossless, in-order message queue.

– A channel endpoint belongs to exactly one thread at a time. Only the endpoint’s owning
thread can dequeue messages from its receive queue or send messages to its peer.

– A contract consists of message declarations and a set of named protocol states.

– Channel contracts provide a clean separation of concerns between interacting compo-
nents and help in understanding the system architecture at a high level. Static checking
helps programmers avoid runtime “message not-understood errors.”

• Manifest-based programs

– To start execution, a user invokes a manifest, not an executable file

– A manifest describes an manifest-based program’s code resources, its required system
resources, its desired capabilities, and its dependencies on other programs.

– The primary purpose of the manifest is to allow static and dynamic verification of prop-
erties of the MBP. For example, the manifest of a device driver provides sufficient infor-
mation to allow installtime verification that the driver will not access hardware used by
a previously installed device driver.

– Additional MBP properties which are verified by Singularity include type and memory
safety, absence of privileged-mode instructions, conformance to channel contracts, usage
of only declared channel contracts, and correctlyversioned ABI usage.

– Singularity MBPs is delivered to the system as compiled Microsoft Intermediate Lan-
guage (MSIL) binaries. Compiled at install time.

15

