

COURSE OVERVIEW

SYSTEMS I

Instructor:
Professor Emmett Witchel

2

University of Texas at Austin

Overview

• Course theme

• Five realities

• How the course fits into the CS/ECE curriculum

• Logistics

3

University of Texas at Austin

Course Theme:

Abstraction Is Good But Don’t Forget Reality

• Most CS and CE courses emphasize abstraction

• Abstract data types

• Asymptotic analysis

• These abstractions have limits

• Especially in the presence of bugs

• Need to understand details of underlying implementations

• Useful outcomes

• Become more effective programmers

• Able to find and eliminate bugs efficiently

• Able to understand and tune for program performance

• Prepare for later “systems” classes in CS & ECE

• Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

4

University of Texas at Austin

Great Reality #1:

Ints are not Integers, Floats are not Reals

• Example 1: Is x2 ≥ 0?

• Floats: Yes!

• Ints:

• 40000 * 40000 →1600000000

• 50000 * 50000 → ??

• Example 2: Is (x + y) + z = x + (y + z)?

• Unsigned & Signed Ints: Yes!

• Floats:

• (1e20 + -1e20) + 3.14 --> 3.14

• 1e20 + (-1e20 + 3.14) --> ??

Source: xkcd.com/571

5

University of Texas at Austin

Code Security Example

• Similar to code found in FreeBSD’s implementation of

getpeername

• There are legions of smart people trying to find

vulnerabilities in programs

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

 /* Byte count len is minimum of buffer size and maxlen */

 int len = KSIZE < maxlen ? KSIZE : maxlen;

 memcpy(user_dest, kbuf, len);

 return len;

}

6

University of Texas at Austin

Typical Usage

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

 /* Byte count len is minimum of buffer size and maxlen */

 int len = KSIZE < maxlen ? KSIZE : maxlen;

 memcpy(user_dest, kbuf, len);

 return len;

}

#define MSIZE 528

void getstuff() {

 char mybuf[MSIZE];

 copy_from_kernel(mybuf, MSIZE);

 printf(“%s\n”, mybuf);

}

7

University of Texas at Austin

Malicious Usage

#define MSIZE 528

void getstuff() {

 char mybuf[MSIZE];

 copy_from_kernel(mybuf, -MSIZE);

 . . .

}

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

 /* Byte count len is minimum of buffer size and maxlen */

 int len = KSIZE < maxlen ? KSIZE : maxlen;

 memcpy(user_dest, kbuf, len);

 return len;

}

8

University of Texas at Austin

Computer Arithmetic

• Does not generate random values

• Arithmetic operations have important mathematical properties

• Cannot assume all “usual” mathematical properties

• Due to finiteness of representations

• Integer operations satisfy “ring” properties

• Commutativity, associativity, distributivity

• Floating point operations satisfy “ordering” properties

• Monotonicity, values of signs

• Observation

• Need to understand which abstractions apply in which contexts

• Important issues for compiler writers and serious application
programmers

9

University of Texas at Austin

Great Reality #2:

You’ve Got to Know Assembly

• Chances are, you’ll never write programs in assembly

• Compilers are much better & more patient than you are

• But: Understanding assembly is key to machine-level
execution model

• Behavior of programs in presence of bugs

• High-level language models break down

• Tuning program performance

• Understand optimizations done / not done by the compiler

• Understanding sources of program inefficiency

• Implementing system software

• Compiler has machine code as target

• Operating systems must manage process state

• Creating / fighting malware

• x86 assembly is the language of choice!

10

University of Texas at Austin

Assembly Code Example

• Time Stamp Counter

• Special 64-bit register in Intel-compatible machines

• Incremented every clock cycle

• Read with rdtsc instruction

• Application

• Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

11

University of Texas at Austin

Code to Read Counter

• Write small amount of assembly code using GCC’s

asm facility

• Inserts assembly code into machine code generated

by compiler

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits

 of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *lo)

{

 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

 : "=r" (*hi), "=r" (*lo)

 :

 : "%edx", "%eax");

}

12

University of Texas at Austin

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

• Memory is not unbounded

• It must be allocated and managed

• Many applications are memory dominated

• Memory referencing bugs especially pernicious

• Effects are distant in both time and space

• Memory performance is not uniform

• Cache and virtual memory effects can greatly affect
program performance

• Adapting program to characteristics of memory system can
lead to major speed improvements

13

University of Texas at Austin

Memory Referencing Bug Example

• Result is architecture specific

double fun(int i)

{

 volatile double d[1] = {3.14};

 volatile long int a[2];

 a[i] = 1073741824; /* Possibly out of bounds */

 return d[0];

}

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14, then segmentation fault

14

University of Texas at Austin

Memory Referencing Bug Example

double fun(int i)

{

 volatile double d[1] = {3.14};

 volatile long int a[2];

 a[i] = 1073741824; /* Possibly out of bounds */

 return d[0];

}

fun(0) → 3.14

fun(1) → 3.14

fun(2) → 3.1399998664856

fun(3) → 2.00000061035156

fun(4) → 3.14, then segmentation fault

Location accessed by

fun(i)

Explanation:
Saved State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

15

University of Texas at Austin

Memory Referencing Errors

• C and C++ do not provide any memory protection

• Out of bounds array references

• Invalid pointer values

• Abuses of malloc/free

• Can lead to nasty bugs

• Whether or not bug has any effect depends on system and compiler

• Action at a distance

• Corrupted object logically unrelated to one being accessed

• Effect of bug may be first observed long after it is generated

• How can I deal with this?

• Program in Java, Ruby or ML

• Understand what possible interactions may occur

• Use or develop tools to detect referencing errors (e.g. Valgrind)

16

University of Texas at Austin

Memory System Performance Example

• Hierarchical memory organization

• Performance depends on access patterns

• Including how step through multi-dimensional array

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

17

University of Texas at Austin

The Memory Mountain

6
4
M

8
M

1
M 1
2
8

K 1
6
K

2
K

0

1000

2000

3000

4000

5000

6000

7000

s
1

s
3

s
5

s
7

s
9

s
1

1

s
1

3

s
1

5

s
3

2

Size (bytes)

R
e
a

d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

L1

L2

Mem

L3

copyij

copyji

Intel Core i7

2.67 GHz

32 KB L1 d-cache

256 KB L2 cache

8 MB L3 cache

18

University of Texas at Austin

Great Reality #4: There’s more to

performance than asymptotic complexity

• Constant factors matter too!

• And even exact op count does not predict performance

• Easily see 10:1 performance range depending on how code

written

• Must optimize at multiple levels: algorithm, data

representations, procedures, and loops

• Must understand system to optimize performance

• How programs compiled and executed

• How to measure program performance and identify

bottlenecks

• How to improve performance without destroying code

modularity and generality

19

University of Texas at Austin

Example Matrix Multiplication

• Standard desktop computer, vendor compiler, using optimization flags

• Both implementations have exactly the same operations count (2n3)

• What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

20

University of Texas at Austin

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: fewer register spills, L1/L2 cache misses, and TLB misses

23

University of Texas at Austin

Course Perspective

• Most Systems Courses are Builder-Centric

• Computer Architecture

• Design pipelined processor in Verilog

• Operating Systems

• Implement large portions of operating system

• Compilers

• Write compiler for simple language

• Networking

• Implement and simulate network protocols

24

University of Texas at Austin

Course Perspective (Cont.)

• Our Course is Programmer-Centric

• Purpose is to show how by knowing more about the

underlying system, one can be more effective as a

programmer

• Enable you to

• Write programs that are more reliable and efficient

• Incorporate features that require hooks into OS

• E.g., concurrency, signal handlers

• Not just a course for dedicated hackers

• We bring out the hidden hacker in everyone

• Cover material in this course that you won’t see elsewhere

26

University of Texas at Austin

Textbooks

• Randal E. Bryant and David R. O’Hallaron,

• “Computer Systems: A Programmer’s Perspective, Second
Edition” (CS:APP2e), Prentice Hall, 2011

• http://csapp.cs.cmu.edu

• This book really matters for the course!

• How to solve labs

• Practice problems typical of exam problems

• Brian Kernighan and Dennis Ritchie,

• “The C Programming Language, Second Edition”, Prentice
Hall, 1988

27

University of Texas at Austin

Course Components

• Lectures

• Higher level concepts

• Recitations

• Applied concepts, important tools and skills for labs, clarification
of lectures, exam coverage

• Labs (7)

• The heart of the course

• 1-3 weeks each

• Provide in-depth understanding of an aspect of systems

• Programming and measurement

• Exams (3)

• Test your understanding of concepts & mathematical principles

28

University of Texas at Austin

Course Learning

• Lectures

• Good for overview, resolving questions, flagging topics
for further review

• Reading

• Good for specifics, good preparation for lecture

• Homeworks

• Cement your understanding, give each other questions

• Exams will require you to understand the material.
Such understanding likely requires attending lecture
and reading.

29

University of Texas at Austin

Getting Help

• Class Web Page

• Complete schedule of lectures, exams, and assignments

• Copies of lectures, assignments, exams, solutions

• Clarifications to assignments

• Message Board

• We will use piazza

• 1:1 Appointments

• Office hours on web page

• You can schedule 1:1 appointments with any of the teaching staff

31

University of Texas at Austin

Policies: Assignments (Labs) And Exams

• Work groups

• You must work alone on all assignments

• Handins

• Assignments due at 11:59pm on Thurs evening

• Electronic handins using turnin (no exceptions!)

• Conflicts for exams, other irreducible conflicts

• OK, but must make PRIOR arrangements at start of semester

• Notifying us well ahead of time shows maturity and makes things easier
for us (and thus we work harder to help you with your problem)

• Testing accommodation

• Please submit requests within 1 week of course start

• Appealing grades

• Within 7 days of completion of grading, in writing

32

University of Texas at Austin

Facilities

• See course information for lab location

• Need a cs account (mandatory!)

• Request one here

• https://apps.cs.utexas.edu/udb/newaccount/

• cs.utexas.edu machines

• http://apps.cs.utexas.edu/unixlabstatus/

• Public labs

• http://www.cs.utexas.edu/facilities/public-

labs

http://apps.cs.utexas.edu/unixlabstatus/
http://apps.cs.utexas.edu/unixlabstatus/

33

University of Texas at Austin

Timeliness

• Grace days

• 4 slip days for the course

• Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

• Save them until late in the term!

• Lateness penalties

• Once slip day(s) used up, get penalized 20% per day

• No handins later than 3 days after due date

• Catastrophic events

• Major illness, death in family,

• Formulate a plan (with your academic advisor) to get back on track

• Advice

• Once you start running late, it’s really hard to catch up

34

University of Texas at Austin

Cheating

• What is cheating?

• Sharing code: by copying, retyping, looking at, or supplying a file

• Coaching: helping your friend to write a lab, line by line

• Copying code from previous course or from elsewhere on WWW

• Only allowed to use code we supply, or from CS:APP website

• What is NOT cheating?

• Explaining how to use systems or tools

• Helping others with high-level design issues

• Please identify your collaborators explicitly on HW and labs

• Penalty for cheating:

• Removal from course with failing grade

• Permanent mark on your record

• Detection of cheating:

• We do check

• Our tools for doing this are much better than most cheaters think!

35

University of Texas at Austin

Other Rules of the Lecture Hall

• Laptops: not permitted (danger, youtube)

• See me for exceptions

• Electronic communications: forbidden

• No email, instant messaging, cell phone calls, etc

• No audio or video recording

• Presence in lectures, recitations: mandatory

36

University of Texas at Austin

Policies: Grading (approximate)

• Exams (50-60%)

• Labs (30-40%)

• Homeworks (5%)

• Class particpation (5%)

• Graded on a curve

37

University of Texas at Austin

Programs and Data

• Topics

• Bits operations, arithmetic, assembly language programs

• Representation of C control and data structures

• Includes aspects of architecture and compilers

• Assignments

• L1 (datalab): Manipulating bits

• L2 (archlab): Y86 (assembly) Programming

• L3 (bomblab): Defusing a binary bomb

38

University of Texas at Austin

Architecture: Datapath & Pipelining

• Topics

• How does a processor fetch, decode & execute code?

• Pipelined processors, latency, and throughput

• Assignments

• L4 (archlab): Extending a basic processor

implementation

• L5 (archlab): Modifying a pipelined processor

39

University of Texas at Austin

The Memory Hierarchy

• Topics

• Memory technology, memory hierarchy, caches, disks,

locality

• Includes aspects of architecture and OS

• Assignments

• L6 (memlab): Mapping the performance of the memory

hierarchy

40

University of Texas at Austin

• Topics

• Co-optimization (control and data), measuring time on a

computer

• Includes aspects of architecture, compilers, and OS

• Assignments

• L7(perflab): Manually optimizing an algorithm

Performance Analysis

44

University of Texas at Austin

Lab Rationale

• Each lab has a well-defined goal such as solving a

puzzle or winning a contest

• Doing the lab should result in new skills and

concepts

• We try to use competition in a fun and healthy way

• Set a reasonable threshold for full credit

46

University of Texas at Austin

Welcome
and Enjoy!

