
Pipelining V

Topics

 Branch prediction

 State machine design

Systems I

2

Branch Prediction

Until now - we have assumed a “predict taken” strategy
for conditional branches

 Compute new branch target and begin fetching from there

 If prediction is incorrect, flush pipeline and begin refetching

However, there are other strategies

 Predict not-taken

 Combination (quasi-static)

 Predict taken if branch backward (like a loop)

 Predict not taken if branch forward

3

Branching Structures

Predict not taken works well for “top of the loop”
branching structures Loop: cmpl %eax, %edx

 je Out

 1nd loop instr

 .

 .

 last loop instr

 jmp Loop

Out: fall out instr

 But such loops have jumps at

the bottom of the loop to return

to the top of the loop – and

incur the jump stall overhead

Predict not taken doesn’t work well for “bottom of the
loop” branching structures

Loop: 1st loop instr

 2nd loop instr

 .

 .

 last loop instr

 cmpl %eax, %edx

 jne Loop

 fall out instr

4

Branch Prediction Algorithms

Static Branch Prediction

 Prediction (taken/not-taken) either assumed or encoded into

program

Dynamic Branch Prediction

 Uses forms of machine learning (in hardware) to predict

branches

 Track branch behavior

 Past history of individual branches

 Learn branch biases

 Learn patterns and correlations between different branches

 Can be very accurate (95% plus) as compared to less than

90% for static

5

IM

PC

BHT

IR

Prediction

update

Simple Dynamic Predictor

Predict branch based on past
history of branch

Branch history table

 Indexed by PC (or fraction of

it)

 Each entry stores last

direction that indexed

branch went (1 bit to encode

taken/not-taken)

 Table is a cache of recent

branches

 Buffer size of 4096 entries

are common (track 4K

different branches)

6

Multi-bit predictors

A ‘predict same as last’ strategy
gets two mispredicts on each loop

 Predict NTTT…TTT

 Actual TTTT…TTN

Can do much better by adding
inertia to the predictor

 e.g., two-bit saturating counter

 Predict TTTT…TTT

 Use two bits to encode:
 Strongly taken (T2)

 Weakly taken (T1)

 Weakly not-taken (N1)

 Strongly not-taken (N2)

for(j=0;j<30;j++) {

 …

}

N2 N1 T1 T2

T T T T

N N N N

State diagram to representing states and transitions

7

How do we build this in Hardware?

This is a sequential logic circuit that can be formulated as a state
machine

 4 states (N2, N1, T1, T2)

 Transitions between the states based on action “b”

General form of state machine:

N2 N1 T1 T2

T T T T

N N N N

State
Variables

(Flip-flops)

Comb.
Logic

inputs outputs

8

State Machine for Branch Predictor

4 states - can encode in two state bits <S1, S0>

 N2 = 00, N1 = 01, T1 = 10, T2 = 11

 Thus we only need 2 storage bits (flip-flops in last slide)

Input: b = 1 if last branch was taken, 0 if not taken

Output: p = 1 if predict taken, 0 if predict not taken

Now - we just need combinational logic equations for:

 p, S1new, S0new, based on b, S1, S0

9

Combinational logic for state
machine

p =1 if state is T2 or T1

thus p = S1 (according to
encodings)

The state variables S1, S0
are governed by the truth
table that implements the
state diagram

 S1new = S1*S0 + S1*b + S0*b

 S0new = S1*S0’ + S0’*S1’*b +

S0*S1*b

S1 S0 b S1new S0new p

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 1 1

10

IM

PC

BHT

IR

Prediction

update

Enhanced Dynamic Predictor

Replace simple table of 1 bit
histories with table of 2 bit state
bits

State transition logic can be
shared across all entries in
table

 Read entry out

 Apply combinational logic

 Write updated state bits

back into table

11

YMSBP

Yet more sophisticated branch predictors

Predictors that recognize patterns

 eg. if last three instances of a given branches were NTN, then

predict taken

Predictors that correlate between multiple branches

 eg. if the last three instances of any branch were NTN, then predict

taken

Predictors that correlate weight different past branches differently

 e.g. if the branches 1, 4, and 8 ago were NTN, then predict taken

Hybrid predictors that are composed of multiple different
predictors

 e.g. two different predictors run in parallel and a third predictor

predicts which one to use

More sophisticated learning algorithms

12

Summary

Today

 Branch mispredictions cost a lot in performance

 CPU Designers willing to go to great lengths to improve

prediction accuracy

 Predictors are just state machines that can be designed

using combinational logic and flip-flops

