
Pipelining V

Topics

 Branch prediction

 State machine design

Systems I

2

Branch Prediction

Until now - we have assumed a “predict taken” strategy
for conditional branches

 Compute new branch target and begin fetching from there

 If prediction is incorrect, flush pipeline and begin refetching

However, there are other strategies

 Predict not-taken

 Combination (quasi-static)

 Predict taken if branch backward (like a loop)

 Predict not taken if branch forward

3

Branching Structures

Predict not taken works well for “top of the loop”
branching structures Loop: cmpl %eax, %edx

 je Out

 1nd loop instr

 .

 .

 last loop instr

 jmp Loop

Out: fall out instr

 But such loops have jumps at

the bottom of the loop to return

to the top of the loop – and

incur the jump stall overhead

Predict not taken doesn’t work well for “bottom of the
loop” branching structures

Loop: 1st loop instr

 2nd loop instr

 .

 .

 last loop instr

 cmpl %eax, %edx

 jne Loop

 fall out instr

4

Branch Prediction Algorithms

Static Branch Prediction

 Prediction (taken/not-taken) either assumed or encoded into

program

Dynamic Branch Prediction

 Uses forms of machine learning (in hardware) to predict

branches

 Track branch behavior

 Past history of individual branches

 Learn branch biases

 Learn patterns and correlations between different branches

 Can be very accurate (95% plus) as compared to less than

90% for static

5

IM

PC

BHT

IR

Prediction

update

Simple Dynamic Predictor

Predict branch based on past
history of branch

Branch history table

 Indexed by PC (or fraction of

it)

 Each entry stores last

direction that indexed

branch went (1 bit to encode

taken/not-taken)

 Table is a cache of recent

branches

 Buffer size of 4096 entries

are common (track 4K

different branches)

6

Multi-bit predictors

A ‘predict same as last’ strategy
gets two mispredicts on each loop

 Predict NTTT…TTT

 Actual TTTT…TTN

Can do much better by adding
inertia to the predictor

 e.g., two-bit saturating counter

 Predict TTTT…TTT

 Use two bits to encode:
 Strongly taken (T2)

 Weakly taken (T1)

 Weakly not-taken (N1)

 Strongly not-taken (N2)

for(j=0;j<30;j++) {

 …

}

N2 N1 T1 T2

T T T T

N N N N

State diagram to representing states and transitions

7

How do we build this in Hardware?

This is a sequential logic circuit that can be formulated as a state
machine

 4 states (N2, N1, T1, T2)

 Transitions between the states based on action “b”

General form of state machine:

N2 N1 T1 T2

T T T T

N N N N

State
Variables

(Flip-flops)

Comb.
Logic

inputs outputs

8

State Machine for Branch Predictor

4 states - can encode in two state bits <S1, S0>

 N2 = 00, N1 = 01, T1 = 10, T2 = 11

 Thus we only need 2 storage bits (flip-flops in last slide)

Input: b = 1 if last branch was taken, 0 if not taken

Output: p = 1 if predict taken, 0 if predict not taken

Now - we just need combinational logic equations for:

 p, S1new, S0new, based on b, S1, S0

9

Combinational logic for state
machine

p =1 if state is T2 or T1

thus p = S1 (according to
encodings)

The state variables S1, S0
are governed by the truth
table that implements the
state diagram

 S1new = S1*S0 + S1*b + S0*b

 S0new = S1*S0’ + S0’*S1’*b +

S0*S1*b

S1 S0 b S1new S0new p

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 1 1

10

IM

PC

BHT

IR

Prediction

update

Enhanced Dynamic Predictor

Replace simple table of 1 bit
histories with table of 2 bit state
bits

State transition logic can be
shared across all entries in
table

 Read entry out

 Apply combinational logic

 Write updated state bits

back into table

11

YMSBP

Yet more sophisticated branch predictors

Predictors that recognize patterns

 eg. if last three instances of a given branches were NTN, then

predict taken

Predictors that correlate between multiple branches

 eg. if the last three instances of any branch were NTN, then predict

taken

Predictors that correlate weight different past branches differently

 e.g. if the branches 1, 4, and 8 ago were NTN, then predict taken

Hybrid predictors that are composed of multiple different
predictors

 e.g. two different predictors run in parallel and a third predictor

predicts which one to use

More sophisticated learning algorithms

12

Summary

Today

 Branch mispredictions cost a lot in performance

 CPU Designers willing to go to great lengths to improve

prediction accuracy

 Predictors are just state machines that can be designed

using combinational logic and flip-flops

