

 VIVEK NATARAJAN

Introduction to C
CS 429H SPRING 14

Outline:
 I have 2 hours to teach you basics of C

 You will be using it for most of your assignments

 Main topics : Basic C program structure, functions,
operators. control structures, pointers, structures, make

 I will hand out exercises. You can ssh into the CS Lab
machines and try them -
http://apps.cs.utexas.edu/unixlabstatus/

 ssh natviv@aero.cs.utexas.edu and invoke gcc

 Use putty to login from Windows

http://apps.cs.utexas.edu/unixlabstatus/
mailto:natviv@aero.cs.utexas.edu

Editors
 Pick and choose an editor

 Emacs and Vim are the way to go

 Look online for resources

 Be prepared to spend lots of time learning them

 Number of cool tricks which would save you loads of time

C vs Java
 http://introcs.cs.princeton.edu/java/faq/c2java.html

 Much lower level than Java

 Java is object oriented while C is a procedural

 No classes in C

 Ability to manipulate raw bits and memory

 Linux kernel written in C

http://introcs.cs.princeton.edu/java/faq/c2java.html

Basics
 Compiler vs Interpreter

 Preprocessor, Compiler, Assembler, Linker, Loader

Preprocessor
 Uninteresting – does textual substitution, semantics of the

language not taken into consideration

 Expands macro definitions and includes (anything that begins
with #)

 What if you had no preprocessor directives?

 Independent of the target architecture

Compiler
 Entire courses on compilers, Interesting

 Translates preprocessed C code into assembly code making
optimizations and register allocations on the way

 The generated assembly code is target dependent

 Use gcc –S directive to see the assembly code generated

Assembler
 Assemble code translated to machine code – resulting file is

called an object file (.o file)

 Gives symbolic memory location (through offsets) to your
variables and instruction because its linked with other object
files and libraries – cannot give absolute locations

 Makes list of all unresolved references present in other object
files and libraries, eg printf

Linker
 Assembler writes ‘notes’ on how it assumed things were

layered in the .o files

 Linker takes these notes and assigns absolute memory
locations and resolves any unresolved references

 Might do optimizations like align procedures on page
boundaries to avoid thrashing

 Produces a binary executable that can be run from the
command line

Loader (Runtime)
 On typing a.out on the command line, a number of things

happen which the loader does for you

 Creates a process by reading the file and creating the address
space

 PTE for instruction, data, stack is created and register set
initialized

 Executes a jump instruction to the first pgm instruction

 Causes a page fault and your program to load into memory

 Sometimes DLL references (Dynamically loaded libraries)
must be resolved similar to a linker

Loader
 Static linkage (compile time) vs Dynamic linkage (run time)

 Responsibility to map instructions, data to appropriate
locations

 Data allocated via malloc placed in the heap

Hello World

Comments
 Block Comments /* ….

Several lines here …..*/

 Single line comments //One line comment

 Some arcane compilers don’t support these

#include statements
 Use # include <…> to access code libraries ex:

#include <stdio.h>

 Header files contain constants, structure, function declarations
and macro definitions to be shared between several source files.
Put them at the top

 System header files contain declarations and definitions to invoke
OS, make system calls and libraries

 Custom header files grouping related declarations and definitions
to be used in several source files

 stdlib.h (standard utilities), stdio.h (basic IO), string.h (string
functions), time.h (time functions), math.h (math functions)

Function declarations
 C program can be thought of as a collection of

functions/procedures

 Same as in Java (to be precise static methods), except no
visibility specifiers like public, private, etc

 Have one return type which can be void

 Can have any number of parameter inputs

Main function
 The main function is the entry point to your program

 Return value indicates success or failure although ignored

 argc and argv hold command line arguments

Function Caveats

 Cant use a function before declaraing it. Declare a prototype
of the function to use it before defining it

 Arguments passed by value i.e they are copied to the function
parameters. Changes disappear when function ends. We use
pointers to pass values by reference and circumvent this

printf
 printf handles console output, declared in stdio.h

 The first argument is the format string, other parameters are
for substitutions

 Example: printf("Hello, world!\n");

 Example: printf("Login attempt %i:", attempts);

 There are tons of format specifiers, look them up

Building and Running
 gcc cross compiler runs on many machines, works in phases

 By default, gcc will compile and link your program

 The -o flag tells it the name of the output binary

 Use ./name to run something

Command line arguments

Output

Assembler output from gcc
 Will be using it in Homework 1

Output sum.s

Variables
 The compiler tries to enforce types, and will attempt to convert

or error out as appropriate. C not as strongly typed as Java.
Casting not always safe

 Explicit typecasts can force conversions. Look up C implicit and
explicit casting rules

 Variables must be defined at the beginning of a function, before
any other code!

Data Types
 char: one byte (eight bits) signed integer – byte equivalent of

Java

 short: two byte signed integer (same as short int)

 int: four byte signed integer (same as long int)

 unsigned: add to the above to make them unsigned

 float: four byte floating point

 double: eight byte floating point

 const: add to a data type to make its value constant

Assignment
 The equals operator copies the right hand side to the left

hand side

 It also returns the value it copied, which enables some cool
tricks

 In C, all strings end with a null character ‘\0’
 char s[]= “Hello”

 void func (char* s, char* d) {

 while(*d++=*s++);

 }

Logical operators
 Logic is supported as usual

 In order of precendence: ! (not), && (and), || (or)

 No boolean type; any integer zero is considered

 false, any integer nonzero is true

 !0 = 1, usually

 For example: 1 && !1 || !0 && -999 // true

Math Operators
 Math is the same as usual, with normal operator

 precedence (use parentheses when unsure)

 Supported operators are: + - * / %

 In-place versions as well: ++, --, +=, *=, etc.

 Integers round down after every operation

 No operator for exponent, ^ means something different
(what ?) (look for pow() in math.h)

Comparison Operators
 Comparisons are also what you’d expect
 == (equals), != (not equals), < (less than), <= (less than or

equals), > (greater than), >= (greater than or equals)

Bitwise operators
 You have an entire lab on this

 These treat data as a simple collection of bits

 Useful for low-level code, you’ll use them a bunch

 They are: & (bitwise and), | (bitwise or), ~(bitwise not), ^
(bitwise xor), << (shift left), >> (shift right)

 Also useful: you can write hex numbers using 0x

 For example: 0x5B == 91

If/else
 Evaluates the given conditions in order, and will execute the

appropriate block

 Can have any number of else ifs

 Else if and else are optional

Switch
 A convenient way of doing lots of equality checks

 Why break? Why default?

Loops
 Loops work the same as in Java
 Remember to declare your loop variables at the top of the

function
 Also do / while loops: same as while, but automatically

execute once

Arrays
 To declare an array, specify the size in brackets
 Size is fixed once an array is declared
 You can also provide an initializer list in braces
 If you omit the dimension, the compiler will try to figure it

out from the initializer list
 Use brackets to index, starting with zero (note that bounds

arent checked!)

Pointers
 A pointer is just a number (an unsigned int) containing the

memory address of a particular chunk of data

 There is special syntax for dealing with pointers and what
they point to

 They are by far the easiest and most effective way to shoot
yourself in the foot – You will see a lot of them and hopefully
master them by the end of the course

Declaring pointers
 Pointers are created by adding * to a variable declaration

 In the example above, ip is a pointer to an int,

 string and buffer are pointers to chars

 NULL is just zero, and is used to represent an uninitialized
pointer

Using Pointers

Call by value vs Call by reference

Pointers and Arrays
 Arrays don’t keep track of their length in C, you have to do

that yourself

 The syntax shown earlier is just for convenience, arrays are
actually just pointers to the first element of a contiguous
block of memory

 Pointers can be interchanged with arrays, and indexed the
same way

Strings
 There’s no special string type in C, strings are just arrays of

characters ending in a null character \0

 You have to keep track of string length yourself strlen() in
string.h will count up to the null for you

 strcpy() will copy strings.

 String literals are of type const char*.

Pointer Arithmetic
 You can increment and decrement pointers using the ++ and

-- operators
 This will automatically move to the next or previous entry in

an array
 Nothing will stop you when you hit the end of the array, so

be careful!
 Dereferencing a pointer (*p).x => p->x. Will come back

when we talk about structures

More on Pointers
 Null pointer vs void pointer (value vs type)

 Null pointer is a special reserved value of a pointer

 Void pointer refers to the type of the data being pointed to in
memory. Its void

 Null pointer used to indicate pointer that has not been
allocated memory or something like end of a linked list

 Dangling pointer do not point to valid data of the appropriate
type. Arise when data has been deleted or deallocated (using
free) but pointer has not been modified. Unpredictable
behaviour occurs on dereferencing the pointer

Pointer Caveats
 Q: What happens if you try to dereference a pointer that

doesn’t point to anything?
 A: CRASH! (Usually politely called an access violation

(Windows) or a segfault in Unix.)

 Actually, that’s the easy case. It may accidentally seem to
work fine some of the time, only to break something else.

 Also happens if you index an array out of bounds

Dynamic Memory
 Allows you to create arrays of any size at runtime

 Include <stdlib.h> to get malloc() and free()

 malloc() gives you memory, free() releases it

 Difference between malloc, calloc, realloc and free

 calloc allocates and initializes to zero, realloc used to
increase/decrease allocated memory block (where?)

Dynamic Memory
 The argument to malloc is the size of the requested memory

block, in bytes
 sizeof() will give you the size of a datatype in bytes
 You have to cast the result of malloc to the pointer type you

are using malloc() will return NULL if unsuccessful
 free() memory when you’re done with it!
 Q: What happens if you don’t free memory once you’re done

with it?
 A: You never get it back! That’s called a memory leak. If you

leak enough memory, you’ll eventually run out, then crash.
 Q: What happens if you accidentally free memory twice?
 A: You crash.

Pointer tips
 If you’re not using a pointer, set it to NULL

 This includes when the pointer is declared, otherwise it will
initialize with random garbage

 Before dereferencing or using a pointer, check to see if it’s
NULL first

 Carefully track your memory usage, and free things when
you’re done with them using something like valgrind

Structures
 Structs allow you to group together several variables and

treat them as one chunk of data

 Once defined, you can then instantiate a struct by using its
name as a type

Using Structures
 Use the dot operator to extract elements from a struct

 Use the arrow operator to pull out elements from a pointer
to a struct

Structure Caveats
 When you pass a struct to a function, you get a copy of the

whole thing

 This isn’t bad for small structs, but copying larger ones can
impact performance

 Pass pointers to structs instead, then use the arrow operator
to manipulate its contents

 Don’t forget the semicolon at the end of a structure
definition

Typedef and enum
 Typedef allows you to rename types

 For example: typedef unsigned short uint16;

 Really handy for complicated pointer and struct types

 A type instead of int is used to represent a restricted set of
values – enumeration like for days of the week. Can associate
integers with them and cast and do operations

 typedef enum {RANDOM = 1, IMMEDIATE = 2, SEARCH =3} strategy_t;
strategy_t my_strategy = IMMEDIATE;

Make
 Most UNIX projects are made of a ton of source files, which

all need to be compiled and linked together

 Doing this all by hand would be annoying

 There’s a program called make that does it for you

Makefiles
 Make knows what to build by looking in makefiles

 These are specially formatted rulesets that tell make how to
build everything

 You don’t normally need to know how they work

 It’s good to know, but we won’t teach you here

Invoking Make
 Typing ‘make’ on the command line will automatically try to

build the project described by ‘Makefile’ in the current
directory

 Lots of stuff will happen, and make will report success or
failure of the build

 You can also specify project-specific targets, like ‘make clean’

Structures vs Unions
 Supposed to use only one element, allocated size of largest

element. All stored in the same place
 union foo

 { int a; // can't use both a and b at once

 char b;

 } foo;

 union foo x;

 x.a = 0xDEADBEEF;

 x.b = 0x22;

 printf("%x, %x\n", x.a, x.b);

 Output: deadbe22, 22

Some other stuff
 Macros vs inline functions (Function calls expensive to avoid

overhead. Macros by preprocessor, Inline functions at
compile time. Leads to code bloat. Macros leads to bugs,
have binding issues)

 # define DOUBLE(x) x*x //y=3; DOUBLE(++y)

We did not cover:

 Multi dimensional arrays

 Preprocessor

 GCC options go through

 Ternary operator and more

Info regarding upcoming labs
 Canvas or turnin?

 Please write comments in your code

 Possibly a report of what you are doing.

 These slides will be posted on Piazza and the course web site

 Now onto the exercise

