Protection and Security

How to be a paranoid
or just think like one

Pstche

OCTOBER 2007
PSYCHOLOGYTODAY.COM

MIND

FOR A HEALTHIER LIFE I

\ IS THAT

READING
ANSWER?

How to Know Decisions
What People Without
Are Really Dread
Thinking MYSTERY
MALAISE

When Mom

Gets the
Blame

JUMPING
| JOBS

- When
| -\EShStay’ DID | DELETE
en

HISTORY?

| HOPE HE
DOESN'T LIVE
WITH HIS
MOTHER

DIVA ALERT
Deposing the
Drama Queen

HOW TO GET

Leaking information

+ Stealing 26.5 million veteran’s data

+ Data on laptop stolen from employee’s home (5/06)
» Veterans’ names

» Social Security numbers
» Dates of birth

+ EXxposure to identity theft

+ CardSystems exposes data of 40 million cards (2005)
» Data on 70,000 cards downloaded from ftp server

These are attacks on privacy (confidentiality, anonymity)

The Sony rootkit

1 ¢,
¥ MUSIC ENTERTAINMENT {
&,

DID YOU HEAR How IF You PLAY ONE ON A MAKES You FEEL : ‘;
SONY WAS oUTED PC, 1T INVISIBLY WSTALLS || SORRY FOR PEOPLE I waAS ABoUT s 5
FoR INCLUDING NASTY STUFF 1NTo YOUR SYSTEM WHO BoUGHT WELL, To SAY.. X 1
DR SOFTWARE on THAT VIRUS WRITERS CAN THE MEW CELINE
CERTAIN MUSIC CDs? USE To HIDE ALL KINDS
F oF tMALICIoUS CoDE.,
I

—

¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢
S

+ "Protected” albums included
> Billie Holiday
» Louis Armstrong
» Switchfoot
» The Dead 60’s
» Flatt & Scruggs, etc.

+ Rootkits modify files to infiltrate & hide
» System configuration files
» Drivers (executable files)

The Sony rootkit

‘:&hmnu-.

+ Sony’s rootkit enforced DRM but expose
» CDs recalled
» Classified as spyware by anti-virus software
» Rootkit removal software distrubuted
» Removal software had exposure vulnerability
» New removal software distrubuted

+ Sony sued by
» Texas
» New York
» California

omputer

This 1s an attack on integrity

The Problem

+ Types of misuse
» Accidental
» Intentional (malicious)

+ Protection and security objective
» Protect against/prevent misuse

+ Three key components:
» Authentication: Verify user identity
» Integrity: Data has not been written by unauthorized entity
» Privacy: Data has not been read by unauthorized entity
» Freshness: Data read is the latest written

Have you used an anonymizing service?

Yes, for emall

Yes, for web browsing
Yes, for something else
NoO

A

What are your security goals?

+ Authentication
» User is who s/he says they are.
» Example: Certificate authority (verisign)

+ Integrity
» Adversary can not change contents of message
» But not necessarily private (public key)
» Example: secure checksum
» Freshness (read latest writes)

+ Privacy (confidentiality)
» Adversary can not read your message

» If adversary eventually breaks your system can they decode
all stored communication?

» Example: Anonymous remailer (how to reply?)
+ Authorization, repudiation (or non-repudiation),

forward security (crack now, not crack future),
backward security (crack now, not cracked past)

What About Security in Distributed Systems?

+ Three challenges
» Authentication
< Verify user identity
> Integrity
+ Verify that the communication has not been tempered with
» Privacy
+ Protect access to communication across hosts

+ Solution: Encryption
» Achieves all these goals

» Transform data that can easily reversed given the correct key (and
hard to reverse without the key)

+ Two common approaches
» Private key encryption
» Public key encryption

+ Cryptographic hash

» Hash is a fixed sized byte string which represents arbitrary length
data. Hard to find two messages with same hash.

» If m!=m’then H(m) != H(m’) with high probability. H(m) is 256 bits

Private Key (Symmetric Key) Encryption

+ Basic idea:
» {Plain text}*K - cipher text
» {Cipher text}*K - plain text
> As long as key K stays secret, we get authentication, secrecy and
integrity
+ Infrastructure: Authentication server (example: kerberos)

» Maintains a list of passwords; provides a key for two parties to
communicate

+ Basic steps (using secure server S)
» A > S {Hi! l would like a key for AB}
» S 2 A{Use Kab {This is A! Use Kab}*Kb}"Ka
» A-> B {This is Al Use Kab}*Kb

» Master keys (Ka and Kb) distributed out-of-band and stored
securely at clients (the bootstrap problem)

+ Refinements

» Generate temporary keys to communicate between clients and
authentication server

Public Key Encryption

+ Basic idea:
» Separate authentication from secrecy
» Each key is a pair: K-public and K-private
» {Plain text}*K-private - cipher text
» {Cipher text}*K-public = plain text
» K-private is kept a secret; K-public is distributed
+ Examples:
» {I'm Emmett}*K-private
<+ Everyone can read it, but only | can send it (authentication)
» {Hi, Emmett}*K-public
<+ Anyone can send it but only | can read it (secrecy)
+ Two-party communication
» A - B {I'm A {use Kab}*K-privateA}*K-publicB
» No need for an authentication server

» Question: how do you trust the “public key” server?
+ Trusted server: {K-publicA}*K-privateS

Implementing your security goals

+

+

+

+

+

Authentication

» {I'm Emmett}*K-private
Integrity

» {SHA-256 hash of message | just send is ...}*K-private
Privacy (confidentiality)

» Public keys to exchange a secret

» Use shared-key cryptography (for speed)
» Strategy used by ssh

Forward/backward security
» Rotate shared keys every hour

Repudiation
» Public list of cracked keys

When you log into a website using an http URL, which
property are you missing?

Authentication
Integrity
Privacy
Authorization
None

a & W Do

Securing HTTP: HTTPS (HTTP+SSL/TLS)

client

SCIver

hello(client)

__certificate ——

CA

certificate ok?

{certificate valid

{send random shared{key }*S-public

switch to encrypted
connection using shared key

When you visit a website using an https URL, which
property are you missing?

Authentication (server to user)
Authentication (user to server)
Integrity

Privacy

None

a & W Do

Authentication

+ Objective: Verify user identity

+ Common approach:
» Passwords: shared secret between two parties
» Present password to verify identity

1. How can the system maintain a copy of passwords?

» Encryption: Transformation that is difficult to reverse without
right key

» Example: Unix /etc/passwd file contains encrypted
passwords

» When you type password, system encrypts it and then
compared encrypted versions

Authentication (Cont’d.)

2. Passwords must be long and obscure
» Paradox:
< Short passwords are easy to crack

+ Long passwords — users write down to remember =
vulnerable

» Original Unix:
+ 5 letter, lower case password
+ Exhaustive search requires 26”5 = 12 million comparisons

<« Today: < 1us to compare a password = 12 seconds to
crack a password

» Choice of passwords
+ English words: Shakespeare’s vocabulary: 30K words

< All English words, fictional characters, place names, words
reversed, ... still too few words

« (Partial) solution: More complex passwords

At least 8 characters long, with upper/lower case, numbers,
and special characters

Are Long Passwords Sufficient?

+ Example: Tenex system (1970s — BBN)
Considered to be a very secure system
Code for password check:

>
>

/

%

For (i=0, i<8, i++) {

if (userPasswd[i] |= realPasswd[i])
Report Error;

\

%

Looks innocuous — need to try 256”8 (= 1.8E+19)

combinations to crack a password
Is this good enough??

Are Long Passwords Sufficient? (Cont’d.)

+ Problem:

» Can exploit the interaction with virtual memory to crack passwords!
+ Key idea:

» Force page faults at carefully designed times to reveal password
» Approach

< Arrange first character in string to be the last character in a page
< Arrange that the page with the first character is in memory
<+ Rest is on disk (e.g., albcdefgh)
+ Check how long does a password check take?
If fast =» first character is wrong

If slow =>» first character is right > page fault > one of the later character is
wrong

< Try all first characters until the password check takes long
<+ Repeat with two characters in memory, ...

» Number of checks required = 256 * 8 = 2048 !!
+ Fix:
» Don’t report error until you have checked all characters!
» But, how do you figure this out in advance??
» Timing bugs are REALLY hard to avoid

Alternatives/enhancements to Passwords

+

+

Easier to remember passwords (visual recognition)

Two-factor authentication

» Password and some other channel, e.g., physical device
with key that changes every minute

> http://www.schneier.com/essay-083.html
» What about a fake bank web site? (man in the middle)
» Local Trojan program records second factor

Biometrics
» Fingerprint, retinal scan
» What if | have a cut? What if someone wants my finger?

Facial recognition

20

http://www.schneier.com/essay-083.html
http://www.schneier.com/essay-083.html
http://www.schneier.com/essay-083.html

Password security

S I -

Instead of hashing your password, | will hash your
password concatenated with a random salt. Then |
store the unhashed salt along with the hash.

= (password . salt)*H salt

What attack does this address?

Brute force password guessing for all accounts.
Brute force password guessing for one account.
Trojan horse password value

Man-in-the-middle attack when user gives
password at login prompt.

21

Authorization

+ Objective:
» Specify access rights: who can do what?

+ Access control: formalize all permissions in the

system Filel | File2 | File3
User A | RW R
UserB | -- RW RW
User C | RW RW RW
+ Problem:

» Potentially huge number of users, objects that dynamically
change = impractical

+ Access control lists
» Store permissions for all users with objects

» Unix approach: three categories of access rights (owner, group,
world)

» Recent systems: more flexible with respect to group creation
+ Privileged user (becomes security hole)

» Administrator in windows, root in Unix

» Principle of least privlege

22

Authorization

+ Capability lists (a capability is like a ticket)
» Each process stores information about objects it has
permission to touch

» Processes present capability to objects to access (e.g., file
descriptor)

» Lots of capability-based systems built in the past but idea
out of favor today

23

Enforcement

+ Obijectives:
» Check password, enforce access control

+ General approach
» Separation between “user” mode and “privileged” mode

¢ In Unix;

» When you login, you authenticate to the system by providing
password

» Once authenticated — create a shell for specific userlD
» All system calls pass userID to the kernel
» Kernel checks and enforces authorization constraints

+ Paradox
» Any bug in the enforcer =» you are hosed!
» Make enforcer as small and simple as possible

< Called the trusted computing base.

<+ Easier to debug, but simple-minded protection (run a lot of services in
privileged mode)

» Support complex protection schemes
<+ Hard to get it right!

24

Dweeb Nolife develops a file system that responds to
requests with digitally signed packets of data from a
content provider. Any untrusted machine can serve
the data and clients can verify that the packets they
receive were signed. So utexas.edu can give signed
copies of the read-only portions of its web site to
untrusted servers. Dweeb's FS provides which
property?

1
2
3.
4

Authentication of file system users

Integrity of file system contents

Privacy of file system data & metadata
Authorization of access to data & metadata

25

Summary

¢ Security in distributed system is essential

¢ .. And is hard to achieve!

26

HTTPS (HTTP+SSL/TLS)

HTTP

SSL
handshake cipher alert
Record
7\
TCP
IP

NS

Client and Server encrypt traffic using
Shared keys established by handshake
protocol

