
Datapath Design I

Topics
 Sequential instruction execution cycle

 Instruction mapping to hardware

 Instruction decoding

Systems I

2

Overview

How do we build a digital computer?

 Hardware building blocks: digital logic primitives

 Instruction set architecture: what HW must implement

Principled approach

 Hardware designed to implement one instruction at a time

 Plus connect to next instruction

 Decompose each instruction into a series of steps

 Expect that most steps will be common to many instructions

Extend design from there

 Overlap execution of multiple instructions (pipelining)

 Later in this course

 Parallel execution of many instructions

 In more advanced computer architecture course

3

Y86 Instruction Set
Byte 0 1 2 3 4 5

pushl rA A 0 rA 8

jXX Dest 7 fn Dest

popl rA B 0 rA 8

call Dest 8 0 Dest

rrmovl rA, rB 2 0 rA rB

irmovl V, rB 3 0 8 rB V

rmmovl rA, D(rB) 4 0 rA rB D

mrmovl D(rB), rA 5 0 rA rB D

OPl rA, rB 6 fn rA rB

ret 9 0

nop 0 0

halt 1 0

addl 6 0

subl 6 1

andl 6 2

xorl 6 3

jmp 7 0

jle 7 1

jl 7 2

je 7 3

jne 7 4

jge 7 5

jg 7 6

4

Building Blocks

Combinational Logic

 Compute Boolean functions of

inputs

 Continuously respond to input

changes

 Operate on data and implement

control

Storage Elements

 Store bits

 Addressable memories

 Non-addressable registers

 Loaded only as clock rises

Register

file

A

B

W
dstW

srcA

valA

srcB

valB

valW

Clock

A

L

U

fun

A

B

MUX

0

1

=

Clock

5

Hardware Control Language

 Very simple hardware description language

 Can only express limited aspects of hardware operation

 Parts we want to explore and modify

Data Types

 bool: Boolean

 a, b, c, …

 int: words

 A, B, C, …

 Does not specify word size---bytes, 32-bit words, …

Statements

 bool a = bool-expr ;

 int A = int-expr ;

6

HCL Operations

 Classify by type of value returned

Boolean Expressions

 Logic Operations

 a && b, a || b, !a

 Word Comparisons

 A == B, A != B, A < B, A <= B, A >= B, A > B

 Set Membership

 A in { B, C, D }

» Same as A == B || A == C || A == D

Word Expressions

 Case expressions

 [a : A; b : B; c : C]

 Evaluate test expressions a, b, c, … in sequence

 Return word expression A, B, C, … for first successful test

7

An Abstract Processor

What does a processor do?

Consider a processor that only executes nops.

 void be_a_processor(unsigned int pc,

 unsigned char* mem){

 while(1) {

 char opcode = mem[pc];

 assert(opcode == NOP);

 pc = pc + 1;

 }

 }

Fetch

Decode

Execute

8

An Abstract Processor

Executes nops and absolute jumps

 void be_a_processor(unsigned int pc,

 unsigned char* mem){

 while(1) {

 char opcode = mem[pc];

 switch (opcode) {

 case NOP: pc++;

 case JMP: pc = *(int*)&mem[(pc+1)];

Missing execute and memory access

9

SEQ Hardware
Structure
State

 Program counter register (PC)

 Condition code register (CC)

 Register File

 Memories

 Access same memory space

 Data: for reading/writing program

data

 Instruction: for reading

instructions

Instruction Flow

 Read instruction at address

specified by PC

 Process through stages

 Update program counter

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CC CC
ALU ALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA , srcB
dstA , dstB

valA , valB

aluA , aluB

Bch

valE

Addr , Data

valM

PC
valE , valM

newPC

10

SEQ Stages

Fetch

 Read instruction from instruction

memory

Decode

 Read program registers

Execute

 Compute value or address

Memory

 Read or write data

Write Back

 Write program registers

PC

 Update program counter

Instruction
memory

Instruction
memory

PC
increment

PC
increment

CC CC
ALU ALU

Data
memory

Data
memory

Fetch

Decode

Execute

Memory

Write back

icode ifun
rA , rB

valC

Register
file

Register
file

A B
M

E

Register
file

Register
file

A B
M

E

PC

valP

srcA , srcB
dstA , dstB

valA , valB

aluA , aluB

Bch

valE

Addr , Data

valM

PC
valE , valM

newPC

11

Instruction Decoding

Instruction Format

 Instruction byte icode:ifun

 Optional register byte rA:rB

 Optional constant word valC

5 0 rA rB D

icode

ifun

rA

rB

valC

Optional Optional

12

Executing Arith./Logical Operation

Fetch

 Read 2 bytes

Decode

 Read operand registers

Execute

 Perform operation

 Set condition codes

Memory

 Do nothing

Write back

 Update register

PC Update

 Increment PC by 2

 Why?

OPl rA, rB 6 fn rA rB

13

Stage Computation: Arith/Log. Ops

 Formulate instruction execution as sequence of simple

steps

 Use same general form for all instructions

OPl rA, rB

icode:ifun  M1[PC]

rA:rB  M1[PC+1]

valP  PC+2

Fetch

Read instruction byte

Read register byte

Compute next PC

valA  R[rA]

valB  R[rB]
Decode

Read operand A

Read operand B

valE  valB OP valA

Set CC
Execute

Perform ALU operation

Set condition code register

 Memory

R[rB]  valE

Write

back

Write back result

PC  valP PC update Update PC

14

Executing rmmovl

Fetch

 Read 6 bytes

Decode

 Read operand registers

Execute

 Compute effective address

Memory

 Write to memory

Write back

 Do nothing

PC Update

 Increment PC by 6

rmmovl rA, D(rB) 4 0 rA rB D

15

Stage Computation: rmmovl

 Use ALU for address computation

rmmovl rA, D(rB)

icode:ifun  M1[PC]

rA:rB  M1[PC+1]

valC  M4[PC+2]

valP  PC+6

Fetch

Read instruction byte

Read register byte

Read displacement D

Compute next PC

valA  R[rA]

valB  R[rB]
Decode

Read operand A

Read operand B

valE  valB + valC
Execute

Compute effective address

 M4[valE]  valA Memory Write value to memory

Write

back

PC  valP PC update Update PC

16

Executing popl

Fetch

 Read 2 bytes

Decode

 Read stack pointer

Execute

 Increment stack pointer by 4

Memory

 Read from old stack pointer

Write back

 Update stack pointer

 Write result to register

PC Update

 Increment PC by 2

popl rA b 0 rA 8

17

Stage Computation: popl

 Use ALU to increment stack pointer

 Must update two registers

 Popped value

 New stack pointer

popl rA

icode:ifun  M1[PC]

rA:rB  M1[PC+1]

valP  PC+2

Fetch

Read instruction byte

Read register byte

Compute next PC

valA  R[%esp]

valB  R [%esp]
Decode

Read stack pointer

Read stack pointer

valE  valB + 4
Execute

Increment stack pointer

valM  M4[valA] Memory Read from stack

R[%esp]  valE

R[rA]  valM

Write

back

Update stack pointer

Write back result

PC  valP PC update Update PC

18

Summary

Today
 Sequential instruction execution cycle

 Instruction mapping to hardware

 Instruction decoding

Next time
 Control flow instructions

 Hardware for sequential machine (SEQ)

