Systems I

Pipelining I

Topics

- Pipelining principles
- **Pipeline overheads**
- **Pipeline registers and stages**

Overview

What's wrong with the sequential (SEQ) Y86?

- It's slow!
- Each piece of hardware is used only a small fraction of time
- We would like to find a way to get more performance with only a little more hardware

General Principles of Pipelining

- Goal
- Difficulties

Creating a Pipelined Y86 Processor

- Rearranging SEQ
- Inserting pipeline registers
- Problems with data and control hazards

Real-World Pipelines: Car Washes

Sequential

Pipelined

Parallel

Idea

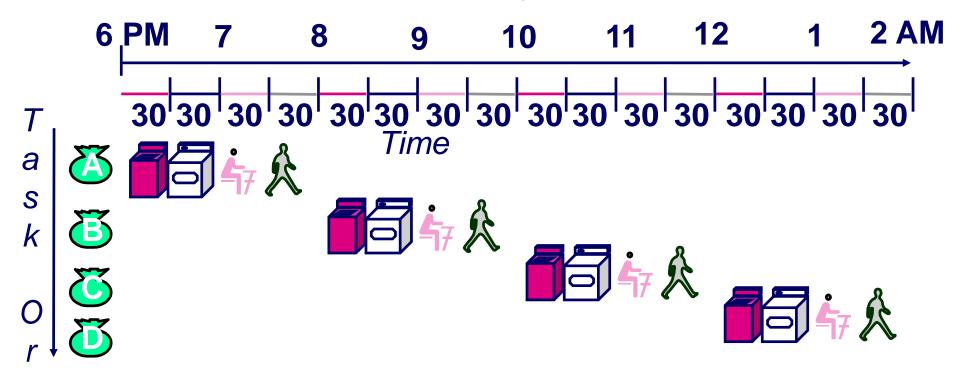
- Divide process into independent stages
- Move objects through stages in sequence
- At any given times, multiple objects being processed

Laundry example

Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold

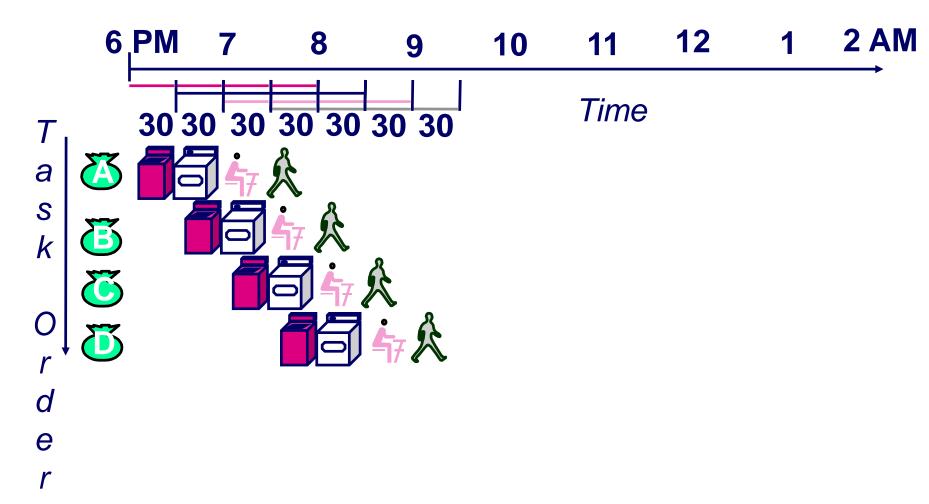
Washer takes 30 minutes

Dryer takes 30 minutes


"Folder" takes 30 minutes

"Stasher" takes 30 minutes to put clothes into drawers

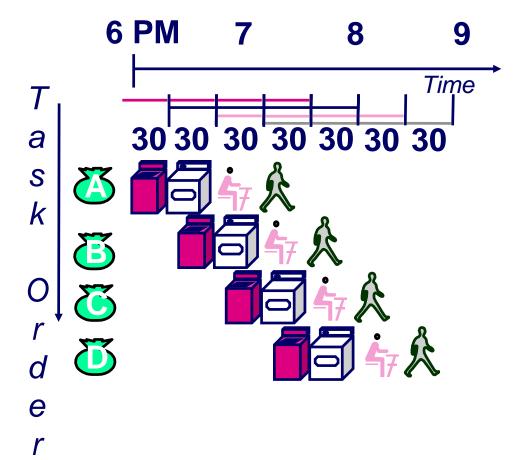
Sequential Laundry


Sequential laundry takes 8 hours for 4 loads

e

If they learned pipelining, how long would laundry take?

Slide courtesy of D. Patterson


Pipelined Laundry: Start ASAP

Pipelined laundry takes 3.5 hours for 4 loads!

Slide courtesy of D. Patterson

Pipelining Lessons

Pipelining doesn't help latency of single task, it helps throughput of entire workload

Multiple tasks operating simultaneously using different resources

Potential speedup = Number pipe stages

Pipeline rate limited by slowest pipeline stage

Unbalanced lengths of pipe stages reduces speedup

Time to "fill" pipeline and time to "drain" it reduces speedup

Stall for Dependences

Latency and Throughput

Latency: time to complete an operation

Throughput: work completed per unit time

Consider plumbing

- Low latency: turn on faucet and water comes out
- High bandwidth: lots of water (e.g., to fill a pool)

What is "High speed Internet?"

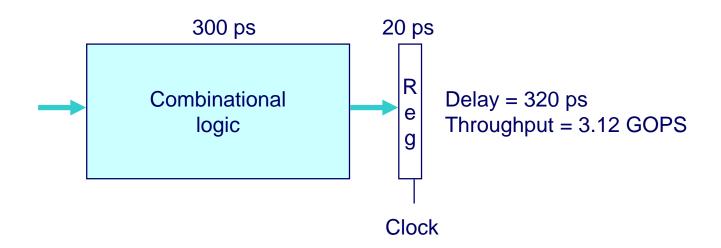
- Low latency: needed to interactive gaming
- High bandwidth: needed for downloading large files
- Marketing departments like to conflate latency and bandwidth...

Relationship between Latency and Throughput

Latency and bandwidth only loosely coupled

Henry Ford: assembly lines increase bandwidth without reducing latency

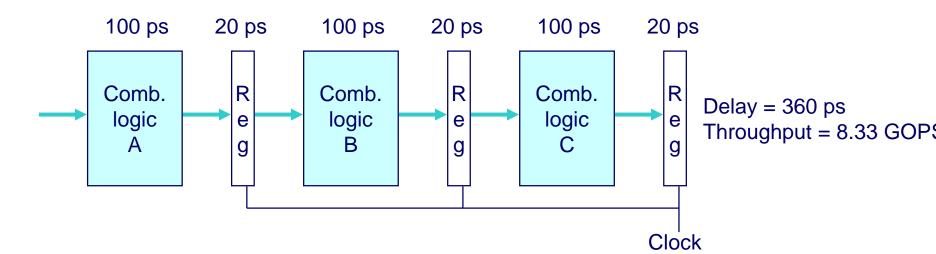
My factory takes 1 day to make a Model-T ford.


- But I can start building a new car every 10 minutes
- At 24 hrs/day, I can make 24 * 6 = 144 cars per day
- A special order for 1 green car, still takes 1 day
- Throughput is increased, but latency is not.

Latency reduction is difficult

Often, one can buy bandwidth

- E.g., more memory chips, more disks, more computers
- Big server farms (e.g., google) are high bandwidth


Computational Example

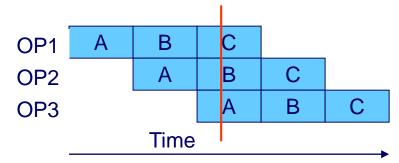
System

- Computation requires total of 300 picoseconds
- Additional 20 picoseconds to save result in register
- Must have clock cycle of at least 320 ps

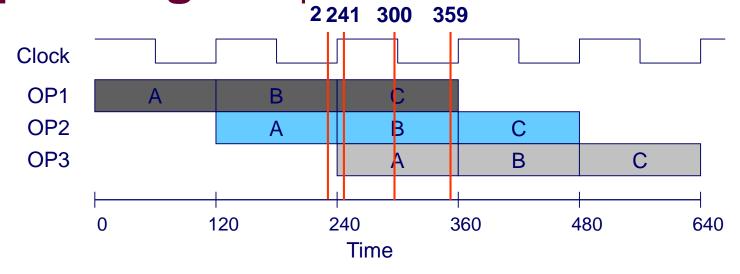
3-Way Pipelined Version

System

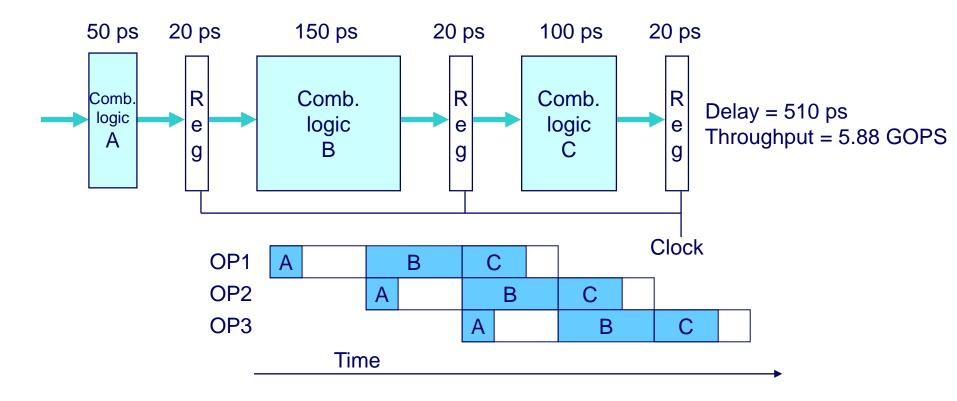
- Divide combinational logic into 3 blocks of 100 ps each
- Can begin new operation as soon as previous one passes through stage A.
 - Begin new operation every 120 ps
- Overall latency increases
 - 360 ps from start to finish


Pipeline Diagrams

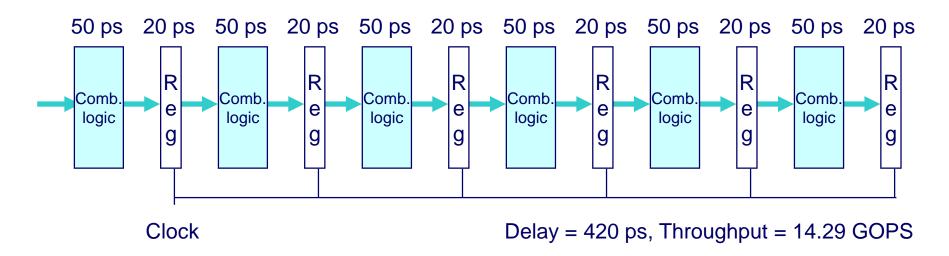
Unpipelined


Cannot start new operation until previous one completes

3-Way Pipelined


■ Up to 3 operations in process simultaneously

Operating a Pipeline



Limitations: Nonuniform Delays

- Throughput limited by slowest stage
- Other stages sit idle for much of the time
- Challenging to partition system into balanced stages

Limitations: Register Overhead

- As try to deepen pipeline, overhead of loading registers becomes more significant
- Percentage of clock cycle spent loading register:

• 1-stage pipeline: 6.25%

• 3-stage pipeline: 16.67%

6-stage pipeline: 28.57%

High speeds of modern processor designs obtained through very deep pipelining

CPU Performance Equation

3 components to execution time:

$$CPU time = \frac{Seconds}{Program} = \frac{Instructions}{Program} * \frac{Cycles}{Instruction} * \frac{Seconds}{Cycle}$$

Factors affecting CPU execution time:

	Inst. Count	CPI	Clock Rate
Program	X		
Compiler	X	(X)	
Inst. Set	X	X	(X)
Organization		X	X
MicroArch		X	X
Technology			X

Consider all three elements when optimizing
Workloads change!

Cycles Per Instruction (CPI)

Depends on the instruction

 CPI_i = Execution time of instruction i * Clock Rate

Average cycles per instruction

$$CPI = \sum_{i=1}^{n} CPI_i * F_i$$
 where $F_i = \frac{IC_i}{IC_{tot}}$

Example:

Op	Freq	Cycles	CPI(i)	%time
ALU	50%	1	0.5	33%
Load	20%	2	0.4	27%
Store	10%	2	0.2	13%
Branch	20%	2	0.4	27%
		CPI(total)	1.5	

Comparing and Summarizing Performance

Fair way to summarize performance?

Capture in a single number?

Example: Which of the following machines is best?

	Computer A	Computer B	Computer C
Program 1	1	10	20
Program 2	1000	100	20
Total Time	1001	110	40

Means

Arithmetic mean
$$\frac{1}{n} \sum_{i=1}^{n} T_i$$
 Can be weighted: $\mathbf{a_i} T_i$ Represents total exec

Can be weighted:
$$\, {f a_i} {f T_i} \,$$

Represents total execution time Should not be used for aggregating normalized numbers

$$\left(\prod_{i=1}^n T_i\right)^{\frac{1}{n}}$$

Geometric mean $\left(\prod_{i=1}^{n} T_{i}\right)^{\frac{1}{n}}$ Consistent independent of reference Best for combining results Best for normalized results

$$\ln(Geo) = \frac{1}{n} \sum_{i=1}^{n} \ln(T_i)$$

What is the geometric mean of 2 and 8?

- A. 5
- **B. 4**

Is Speed the Last Word in Performance?

Depends on the application!

Cost

■ Not just processor, but other components (ie. memory)

Power consumption

Trade power for performance in many applications

Capacity

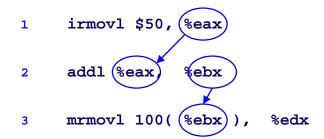
Many database applications are I/O bound and disk bandwidth is the precious commodity

Revisiting the Performance Eqn

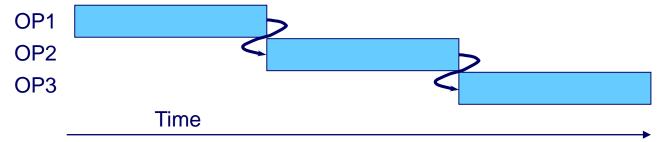
$$CPU time = \frac{Seconds}{Program} = \frac{Instructions}{Program} * \frac{Cycles}{Instruction} * \frac{Seconds}{Cycle}$$

Instruction Count: No change

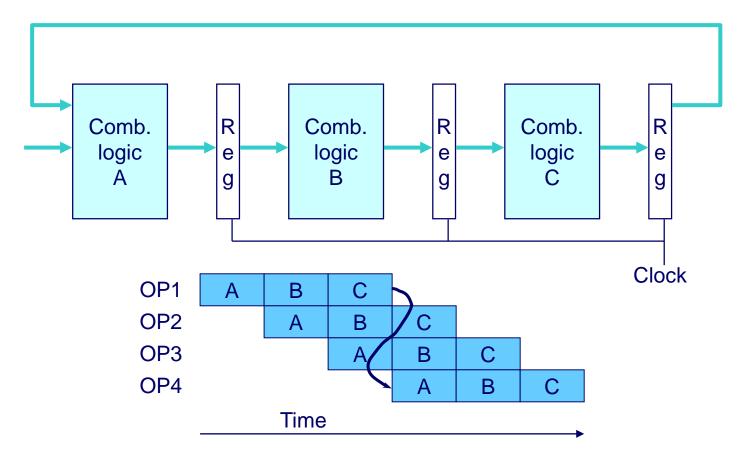
Clock Cycle Time


- Improves by factor of almost N for N-deep pipeline
- Not quite factor of N due to pipeline overheads

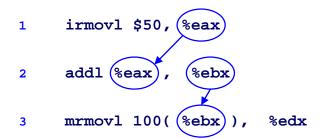
Cycles Per Instruction


- In ideal world, CPI would stay the same
- An individual instruction takes N cycles
- But we have N instructions in flight at a time
- So average CPI_{pipe} = CPI_{no pipe} * N/N

Thus performance can improve by up to factor of N


Data Dependencies

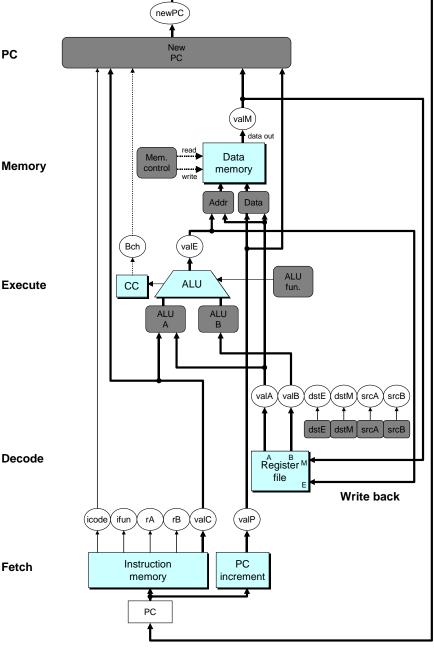
- Result from one instruction used as operand for another
 - Read-after-write (RAW) dependency
- Very common in actual programs
- Must make sure our pipeline handles these properly
 - Get correct results
 - Minimize performance impact



Data Hazards

- Result does not feed back around in time for next operation
- Pipelining has changed behavior of system

Data Dependencies in Processors



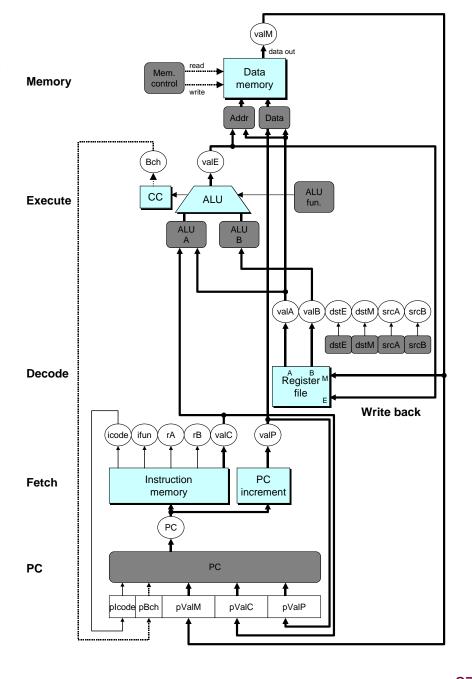
- Result from one instruction used as operand for another
 - Read-after-write (RAW) dependency
- Very common in actual programs
- Must make sure our pipeline handles these properly
 - Get correct results
 - Minimize performance impact

SEQ Hardware

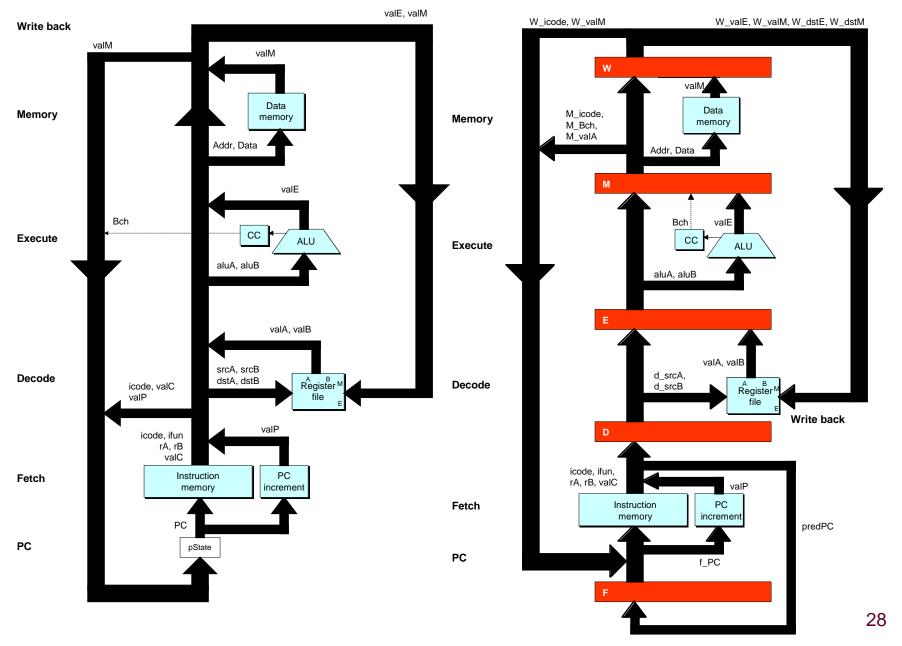
- Stages occur in sequence
- One operation in process at a time
- One stage for each logical pipeline operation
 - Fetch (get next instruction from memory)
 - **Decode (figure out what** instruction does and get values from regfile)
 - Execute (compute)
 - Memory (access data memory if necessary)
 - Write back (write any instruction result to regfile)

Fetch

SEQ+ Hardware


- Still sequential implementation
- Reorder PC stage to put at beginning

PC Stage


- Task is to select PC for current instruction
- Based on results computed by previous instruction

Processor State

- PC is no longer stored in register
- But, can determine PC based on other stored information

Adding Pipeline Registers

Pipeline Stages

Fetch

- Select current PC
- Read instruction
- Compute incremented PC

Memory

Execute

Decode

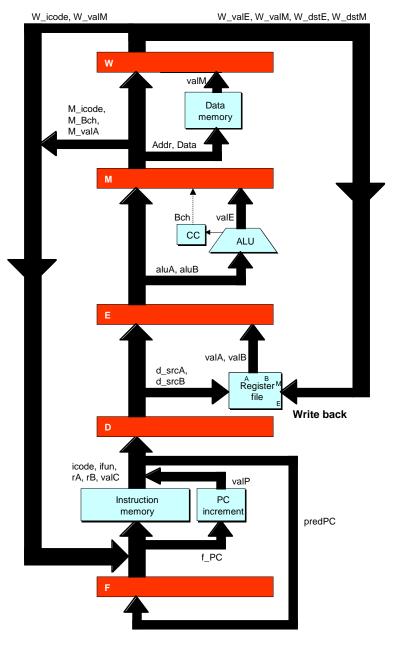
Fetch

PC

Decode

Read program registers

Execute


Operate ALU

Memory

Read or write data memory

Write Back

■ Update register file

Summary

Today

- Pipelining principles (assembly line)
- Overheads due to imperfect pipelining
- Breaking instruction execution into sequence of stages

Next Time

- Pipelining hardware: registers and feedback paths
- Difficulties with pipelines: hazards
- Method of mitigating hazards