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Branch Prediction

Until now - we have assumed a “predict taken™ strategy
for conditional branches

m Compute new branch target and begin fetching from there
m If prediction is incorrect, flush pipeline and begin refetching

However, there are other strategies
m Predict not-taken

m Combination (quasi-static)
® Predict taken if branch backward (like a loop)
® Predict not taken if branch forward



Fetch Logic Revisited
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Standard Fetch Timing
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A Fast PC Increment Circuit
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Modified Fetch Timing
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29-Bit Incrementer
m Acts as soon as PC selected
m Output not needed until final MUX
m Works in parallel with memory read

Standard cycle



More Realistic Fetch Logic
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m Integrated into instruction cache
m Fetches entire cache block (16 or 32 bytes)
m Selects current instruction from current block

m Works ahead to fetch next block
® As reaches end of current block

® At branch target



Modern CPU Design
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Instruction Control

Instruction Control

Address
Register
File

structions

Operations
Grabs Instruction Bytes From Memory

m Based on Current PC + Predicted Targets for Predicted Branches
m Hardware dynamically guesses whether branches taken/not taken
and (possibly) branch target
Translates Instructions Into Operations
m Primitive steps required to perform instruction
m Typical instruction requires 1-3 operations

Converts Register References Into Tags

m Abstract identifier linking destination of one operation with sources

of later operations 9



EX eC u t I O 1 Register Prediction Operations
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Execution

m Multiple functional units
® Each can operate in independently

m Operations performed as soon as operands available
® Not necessarily in program order
® Within limits of functional units

m Control logic
® Ensures behavior equivalent to sequential program execution
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CPU Capablilities of Intel iCore7

Multiple Instructions Can Execute in Parallel
m 1 load

m 1 store

m 1 FP multiplication or division

m 1 FP addition

m > 1 integer operation

Some Instructions Take > 1 Cycle, but Can be Pipelined

m Instruction Latency Cycles/Issue
m Load / Store 3 1
m Integer Multiply 3 1
m Integer Divide 11—21 5—13
m Double/Single FP Multiply 4 1
m Double/Single FP Add 3 1
m Double/Single FP Divide 10—15 6—11



ICore Operation

Translates instructions dynamically into “Uops”
m ~118 bits wide
m Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine

m Uop executed when
® Operands available
® Functional unit available

m Execution controlled by “Reservation Stations”
® Keeps track of data dependencies between uops
® Allocates resources
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High-Perforamnce Branch Prediction

Critical to Performance
m Typically 11-15 cycle penalty for misprediction

Branch Target Buffer
m 512 entries
m 4 bits of history

m Adaptive algorithm
® Can recognize repeated patterns, e.g., alternating taken—not
taken

Handling BTB misses
m Detectin ~cycle 6

m Predict taken for negative offset, not taken for positive
® Loops vs. conditionals
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Branching Structures

Predict not taken works well for “top of the loop”

branching structures Loop: cmpl %eax, %edx
je Out
1nd loop instr
m But such loops have jumps at
the bottom of the loop to return - ]
to the top of the loop — and last loop instr

. : Jmp Loop
incur the jump stall overhead out- Fall out instr

Predict not taken doesn’t work well for “bottom of the

loop™ branching structures Loop: 15t loop instr

2nd loop iInstr

last loop iInstr
cmpl %eax, %edx
Jjne Loop

fall out iInstr
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Branch Prediction Algorithms

Static Branch Prediction

m Prediction (taken/not-taken) either assumed or encoded into
program

Dynamic Branch Prediction

m Uses forms of machine learning (in hardware) to predict
branches
® Track branch behavior

m Past history of individual branches
m Learn branch biases
m Learn patterns and correlations between different branches

m Can be very accurate (95% plus) as compared to less than
90% for static
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Simple Dynamic Predictor

Predict branch based on past
history of branch

Branch history table

m Indexed by PC (or fraction of
it) FC
m Each entry stores last
direction that indexed
branch went (1 bit to encode E

taken/not-taken)

m Tableis a cache of recent
branches BHT Prediction

m Buffer size of 4096 entries 1
are common (track 4K update
different branches)
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Multi-bit predictors

A ‘predict same as last’ strategy
gets two mispredicts on each loop

m Predict NTTT...TTT
m Actual TTTT...TTN

for(J=0;3<30;j++) {

Can do much better by adding
inertia to the predictor

m e.g., two-bit saturating counter
m Predict TTTT...TTT

m Use two bits to encode:
e Strongly taken (T2)
e Weakly taken (T1)
® Weakly not-taken (N1)
e Strongly not-taken (N2)

State diagram to representing states and transitions
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How do we build this in Hardware?

This is a sequential logic circuit that can be formulated as a state

machine
m 4 states (N2, N1, T1, T2)

m Transitions between the states based on action “b”

General form of state machine:

inputs

Comb.
Logic

State
Variables
(Flip-flops)

» outputs
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State Machine for Branch Predictor

4 states - can encode in two state bits <S1, S0>
m N2=00,N1=01,T1=10,T2=11
m Thus we only need 2 storage bits (flip-flops in last slide)

Input: b =1 if last branch was taken, 0 if not taken
Qutput: p =1 if predict taken, O if predict not taken

Now - we just need combinational logic equations for:
mp,S1,., SO, based on b, S1, SO
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Combinational logic for state

machine

p=1lifstateis T2or T1

thus p = S1 (according to
encodings)

The state variables S1, SO
are governed by the truth
table that implements the
state diagram

m S1..,=S1*S0 + S1*b + SO*b

m SO, = S1*SO’ + SO™*S1*b +
S0*S1*b

new

S1

SO

Slnew

Sonew

0

0

0

0

0

0

1

0
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Enhanced Dynamic Predictor

Replace simple table of 1 bit
histories with table of 2 bit state

bits

State transition logic can be

shared across all entries in
table

m Read entry out
m Apply combinational logic E

m Write updated state bits
back into table

BHT Prediction

update
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YMSBP

Yet more sophisticated branch predictors

Predictors that recognize patterns

m eg. if last three instances of a given branches were NTN, then
predict taken

Predictors that correlate between multiple branches

m eg. if the last three instances of any branch were NTN, then predict
taken

Predictors that correlate weight different past branches differently
m e.g.if the branches 1, 4, and 8 ago were NTN, then predict taken

Hybrid predictors that are composed of multiple different
predictors

m e.g.two different predictors run in parallel and a third predictor
predicts which one to use

More sophisticated learning algorithms
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Branch target buffers

Predictor tells us taken/not-taken
m Actual target address still must be calculated

Branch target buffer contains the predicted target address
m Allows speculative fetch to occur earlier in pipeline
m Requires more storage (PC, not just prediction state)
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Summary

Today
m Branch mispredictions cost a lot in performance

m CPU Designers willing to go to great lengths to improve
prediction accuracy

m Predictors are just state machines that can be designed
using combinational logic and flip-flops
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