
Pipelining V

Topics
 Branch prediction
 State machine design

Systems I
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Branch Prediction
Until now - we have assumed a “predict taken” strategy 

for conditional branches
 Compute new branch target and begin fetching from there
 If prediction is incorrect, flush pipeline and begin refetching

However, there are other strategies
 Predict not-taken
 Combination (quasi-static)

 Predict taken if branch backward (like a loop)
 Predict not taken if branch forward
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Fetch Logic Revisited
During Fetch Cycle

1. Select PC
2. Read bytes from 

instruction memory
3. Examine icode to 

determine 
instruction length

4. Increment PC

Timing
 Steps 2 & 4 require 

significant amount 
of time
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Standard Fetch Timing

 Must Perform Everything in Sequence
 Can’t compute incremented PC until know how much to 

increment it by

Select PC

Mem. Read Increment

need_regids, need_valC

1 clock cycle
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A Fast PC Increment Circuit 

3-bit adder

need_ValC

need_regids
0

29-bit
incre-

menter

MUX

High-order 29 bits
Low-order 3 bits

High-order 29 bits Low-order 3 bits

0 1

PC

incrPC

Slow Fast

carry



6

Modified Fetch Timing

29-Bit Incrementer
 Acts as soon as PC selected
 Output not needed until final MUX
 Works in parallel with memory read

Select PC

Mem. Read

Incrementer

need_regids, need_valC
3-bit add

MUX

1 clock cycle

Standard cycle
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More Realistic Fetch Logic

Fetch Box
 Integrated into instruction cache
 Fetches entire cache block (16 or 32 bytes)
 Selects current instruction from current block
 Works ahead to fetch next block

 As reaches end of current block
 At branch target

Instruction
Cache

Instruction
Cache

Bytes 1-5Byte 0

Current Block

Next Block

Current
Instruction
Current

Instruction
Instr.

Length
Instr.

Length
Fetch

Control
Fetch

Control

Other PC Controls
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Modern CPU Design

ExecutionExecution

Functional
Units

Instruction ControlInstruction Control

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Instruction
Cache

Data
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations
Prediction
OK?

DataData
Addr. Addr.

General
Integer

Operation Results

Retirement
Unit

Register
File

Register
Updates
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Instruction Control

Grabs Instruction Bytes From Memory
 Based on Current PC + Predicted Targets for Predicted Branches
 Hardware dynamically guesses whether branches taken/not taken 

and (possibly) branch target

Translates Instructions Into Operations
 Primitive steps required to perform instruction
 Typical instruction requires 1–3 operations

Converts Register References Into Tags
 Abstract identifier linking destination of one operation with sources 

of later operations

Instruction ControlInstruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Retirement
Unit

Register
File

Instruction ControlInstruction Control

Instruction
Cache

Fetch
Control

Instruction
Decode

Address

Instructions

Operations

Retirement
Unit

Register
File



10

Execution
Unit

 Multiple functional units
 Each can operate in independently

 Operations performed as soon as operands available
 Not necessarily in program order
 Within limits of functional units

 Control logic
 Ensures behavior equivalent to sequential program execution

ExecutionExecution

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div Load Store

Data
Cache

Prediction
OK?

DataData
Addr. Addr.

General
Integer

Operation Results

Register
Updates

Operations
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CPU Capabilities of Intel iCore7
Multiple Instructions Can Execute in Parallel

 1 load
 1 store
 1 FP multiplication or division
 1 FP addition
 > 1 integer operation

Some Instructions Take > 1 Cycle, but Can be Pipelined
 Instruction Latency Cycles/Issue
 Load / Store 3 1
 Integer Multiply 3 1
 Integer Divide 11—21 5—13
 Double/Single FP Multiply 4 1
 Double/Single FP Add 3 1
 Double/Single FP Divide 10—15 6—11
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iCore Operation
Translates instructions dynamically into “Uops”

 ~118 bits wide
 Holds operation, two sources, and destination

Executes Uops with “Out of Order” engine
 Uop executed when

 Operands available
 Functional unit available

 Execution controlled by “Reservation Stations”
 Keeps track of data dependencies between uops
 Allocates resources
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High-Perforamnce Branch Prediction
Critical to Performance

 Typically 11–15 cycle penalty for misprediction

Branch Target Buffer
 512 entries
 4 bits of history
 Adaptive algorithm

 Can recognize repeated patterns, e.g., alternating taken–not 
taken

Handling BTB misses
 Detect in ~cycle 6
 Predict taken for negative offset, not taken for positive

 Loops vs. conditionals
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Branching Structures
Predict not taken works well for “top of the loop” 

branching structures Loop: cmpl %eax, %edx
je Out
1nd loop instr

.

.
last loop instr
jmp  Loop

Out:  fall out instr

 But such loops have jumps at 
the bottom of the loop to return 
to the top of the loop – and 
incur the jump stall overhead

Predict not taken doesn’t work well for “bottom of the 
loop” branching structures Loop: 1st loop instr

2nd loop instr
.
.

last loop instr
cmpl %eax, %edx
jne Loop
fall out instr
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Branch Prediction Algorithms
Static Branch Prediction

 Prediction (taken/not-taken) either assumed or encoded into 
program

Dynamic Branch Prediction
 Uses forms of machine learning (in hardware) to predict 

branches
 Track branch behavior

 Past history of individual branches
 Learn branch biases
 Learn patterns and correlations between different branches
 Can be very accurate (95% plus) as compared to less than 

90% for static
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IM

PC

BHT

IR

Prediction

update

Simple Dynamic Predictor
Predict branch based on past 
history of branch
Branch history table

 Indexed by PC (or fraction of 
it)

 Each entry stores last 
direction that indexed 
branch went (1 bit to encode 
taken/not-taken)

 Table is a cache of recent 
branches

 Buffer size of 4096 entries 
are common (track 4K 
different branches)
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Multi-bit predictors
A ‘predict same as last’ strategy 
gets two mispredicts on each loop
 Predict NTTT…TTT
 Actual  TTTT…TTN

Can do much better by adding 
inertia to the predictor
 e.g., two-bit saturating counter
 Predict TTTT…TTT
 Use two bits to encode:

 Strongly taken (T2)
 Weakly taken (T1)
 Weakly not-taken (N1)
 Strongly not-taken (N2)

for(j=0;j<30;j++) {

…

}

N2 N1 T1 T2

T T TT

NN N N

State diagram to representing states and transitions
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How do we build this in Hardware?

This is a sequential logic circuit that can be formulated as a state 
machine
 4 states (N2, N1, T1, T2)
 Transitions between the states based on action “b”

General form of state machine:

N2 N1 T1 T2

T T TT

NN N N

State 
Variables

(Flip-flops)

Comb.
Logic

inputs outputs
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State Machine for Branch Predictor
4 states - can encode in two state bits <S1, S0>

 N2 = 00, N1 = 01, T1 = 10, T2 = 11
 Thus we only need 2 storage bits (flip-flops in last slide)

Input: b = 1 if last branch was taken, 0 if not taken
Output: p = 1 if predict taken, 0 if predict not taken
Now - we just need combinational logic equations for:

 p, S1new, S0new, based on b, S1, S0
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Combinational logic for state 
machine
p =1 if state is T2 or T1
thus p = S1 (according to 

encodings)
The state variables S1, S0 

are governed by the truth 
table that implements the 
state diagram
 S1new = S1*S0 + S1*b + S0*b
 S0new = S1*S0’ + S0’*S1’*b + 

S0*S1*b

S1 S0 b S1new S0new p

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 1 1
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IM

PC

BHT

IR

Prediction

update

Enhanced Dynamic Predictor
Replace simple table of 1 bit 
histories with table of 2 bit state 
bits
State transition logic can be 
shared across all entries in 
table

 Read entry out
 Apply combinational logic
 Write updated state bits 

back into table
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YMSBP
Yet more sophisticated branch predictors
Predictors that recognize patterns

 eg. if last three instances of a given branches were NTN, then 
predict taken

Predictors that correlate between multiple branches
 eg. if the last three instances of any branch were NTN, then predict 

taken

Predictors that correlate weight different past branches differently
 e.g. if the branches 1, 4, and 8 ago were NTN, then predict taken

Hybrid predictors that are composed of multiple different 
predictors
 e.g. two different predictors run in parallel and a third predictor 

predicts which one to use

More sophisticated learning algorithms
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Branch target buffers
Predictor tells us taken/not-taken

 Actual target address still must be calculated

Branch target buffer contains the predicted target address
 Allows speculative fetch to occur earlier in pipeline
 Requires more storage (PC, not just prediction state)
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Summary
Today

 Branch mispredictions cost a lot in performance
 CPU Designers willing to go to great lengths to improve 

prediction accuracy
 Predictors are just state machines that can be designed 

using combinational logic and flip-flops


	Pipelining V�
	Branch Prediction
	Fetch Logic Revisited
	Standard Fetch Timing
	A Fast PC Increment Circuit 
	Modified Fetch Timing
	More Realistic Fetch Logic
	Modern CPU Design
	Instruction Control
	Execution�Unit
	CPU Capabilities of Intel iCore7
	iCore Operation
	High-Perforamnce Branch Prediction
	Branching Structures
	Branch Prediction Algorithms
	Simple Dynamic Predictor
	Multi-bit predictors
	How do we build this in Hardware?
	State Machine for Branch Predictor
	Combinational logic for state machine
	Enhanced Dynamic Predictor
	YMSBP
	Branch target buffers
	Summary

