CS380L.:
Advanced Operating Systems

Emmett Witchel

Agenda for Today

- Some important words...

Intro/Overview

— What is OS/systems research

— Why care about OS/systems research?
— What are the fundamental problems?

Administrivia

— Mechanical stuff

— Course structure/Goals

— There is a quiz coming up!

Today’s Readings
— Yes, there were readings! Did you read them? ©
— How [not] to write a good research paper, On being the Right size

Questions (please ask throughout)

upe:
n0

o

009 40 00 42 69 @8 00 4o 0 g 0

e 09 G0 9o 09 gu s o 0o Ga bo o b Gu
T 00 =<
05 @0 09 Gu 05 @0 09 Qe 0= o 09 Ga bo o o Gu

o &
w32 S o
3833383
& 233%82%3
e d 3% &
v o B d d o
® 2 2 9 2 2 9
® O © vV o e

“

23333833
L N S WP %
23833833 | | | |
¥LLNLALNS A climate conducive to learning and creating
1 2 g 2 knowledge is the right of every person in our
d3 e . “ community. Bias, harassment and discrimination
dod

of any sort have no place here. If you notice an
iIncident that causes concern, please contact the
Campus Climate Response Team:
diversity.utexas.edu/ccrt

The University of Texas at Austin

College of Natural Sciences

The College of Natural Sciences is steadfastly committed to enriching and
transformative educational and research experiences for every member of
our community. Find more resources to support a diverse, equitable and
welcoming community within Texas Science and share your experiences at
cns.utexas.edu/diversity

The public iImage of OS research

A. Silberschatz). Peterson P. Galvin
Operating System
CO"CeptS THIRD EDITION

[3448815
[3448815
[3448815
[3448815
x3a9

[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
[3448815
58 88 eb
eb fe 48
[3448815
[3448815
[3448815
[3448815

.3879911 [<(fffffffaB145c3b>1
.3879911 [<FEfFPFFFEBA265486>1]
L3879911 [LKAPPFFPFF8823146892 1
.3879911 [ffFffBA265c41>1]

.3879911 [(ffFFFFFBAZ419a1>1
.3879911 [<PEFFPEFFEBA265d8c>]
.3879911 [LKAfffffffadl422fer]
.3879911 [<AffFFFFFBA28al12f>1
.3879911 [<FEFFLFFFBAZ3F6992]
.3879911 [fFFFFBAZ242879>1]
.3879911 [<AEFFPEFFPEA28a8d9>1
.3879911 [(ffffFffanZeared>]
.3879911 [<AffFFFFFBAZBD5Z28>1
.3879911 [<fffffFFFBA2Bb4cA>]
.3879911

.3879911

.3879911 Code: 38 fa 58 688 4c 39 2c B8 7?5 684 Bf Bb eb fe 48 c? cB 48 fa

rext3iext3d_ordered_write_end+8x73-8x118
generic_file_buffered_write+BxlcB-Bx63c
current_fs_time+Bxles BxZ4

__generic_file_aio_write_nolock+8x33f-8

)

hrtimer_wakeup+BxB-/8xZ2
generic_file_aio_write+Bxb1-,B8xcl
rext3diextd_file_write+Bx16-8x94
do_sync_uwrite+Bxc9-Bx18c
autoremove_wake_function+BxB-/BxZe
ktime_get_ts+Bx2Z2-8x4b
wis_write+Bxad- Bx156
sys_pwuwriteb4+Bx58-8x78
system_call+Bx68-Bx6d
system_call+BxB/8x6d

R R, R . N

if 65 48 8b B4 25 180 6@ 868 BA 66 f7 B8 44 eB ff ff B@ £ff 7?5 B4 <Bf> Bb
c? cB 38 fa 58 88 48 8d 1c B8 48 83 3b A8 74 B4

.3879911 RIP [<ffffffff8037fc?c>] xen_spin_wait+Bx98-8x139

.3879911 RSP <£fffffff8A595e28>

.3879911 ---[end trace 684fbc4aelabSebbB 1---

.3888751 Kernel panic - not syncing: Aiee, killing interrupt handler?

OS research actually
- Not really just about building Oses

- Any large code base converges on becoming an OS
— Manages memory, programming for space/performance, hardware details
- database, JVM, browser, parallel/distributed systems, internet services
- How to structure systems and deal with complexity
— Modularize and encapsulate
— Choose interfaces/abstractions carefully

- Themes in this class
— Abstractions for managing/accessing resources: storage, replication, naming
— Correctness: concurrency and sharing
— Guarantees in real systems: security, fault tolerance, etc.

How to “structure” a system

How to “structure” a system

CPU /O dev DISK NIC

MH

How to “structure” a system

Hardware

Interface \

fr—

A
é! CPU

/O dev

DISK

NIC

|-

How to “structure” a system

Applications

Hardware

Interface \
%! CPU /O dev DISK NIC

\

How to “structure” a system

Applications

process files pipes user-mode

§ Runtimes/libs
= LIBC/CLR

: : OS-level
) process files pipes abstractions
S
= F HAL
=| CPU || WOdev || DIsK NIC

How to “structure” a system

programmer-
visible interface

Applications

ﬁ

T

user-mode
J Runtimes/libs

| process

files

pipes I

1
driver driver driver

CPU

/O dev

DISK

NIC

OS-level
abstractions

+ HAL

How to “structure” a system

MH

How to “structure” a system

How to “structure” a system

CPU /O dev DISK NIC

MH

How to “structure” a system

Hardware

Interface \

fr—

A
é! CPU

/O dev

DISK

NIC

|

How to “structure” a system

Applications

Hardware

|

Interface \
%! CPU /O dev DISK NIC

How to “structure” a system

Applications

process files pipes user-mode

§ Runtimes/libs
= LIBC/CLR

: : OS-level
) process files pipes abstractions
S
= I HAL
=| CPU || WOdev || DIsK NIC

How to “structure” a system

programmer-
visible interface

Applications

ﬁ

T

user-mode
J» Runtimes/libs

| process

files

pipes I

1
driver driver driver

OS-level
abstractions

+ HAL

CPU

/O dev

DISK

NIC

How to “structure” a system

Hardware
interface

N

T
=

FPGA

GPU

ASIC

NVM

DSP

CRYPT

How to “structure” a system

19Sn

Applications

Runtime | Runtime

APIs APIs

Runtime Runtime

F

Vendor-specific
driver |

FPGA

GPU

ASIC

NVM

DSP

CRYPT

— Runtime
support

How to “structure” a system

programmer-
visible interface\g
)]

Applications

APls

Runtime

APIs APIs

Runtime Runtime

FPGA

GPU

ASIC

NVM

DSP

CRYPT

F

Vendor-specific
driver |

— Runtime
support

How to “structure” a system

programmer-

visible interface
g

no OS-level
abstractions!

Fat driver,

proprietary =—

Interfaces

Applications
APIs

' device

Runtime

APIs APIs

Runtime Runtime

MH

Vendor-specific

driver
FPGA GPU ASIC
NVM DSP CRYPT

— Runtime
support

System Software is Living in the Past

- OSes designed for old hardware
- Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

T picaons

device device device device
APIs APls APIs APIs

Runtime | Runtime | Runtime | Runtime

mmap
Vendor-specific

driver

driver

CPU GPU DISK ASIC

NVM FPGA DSP CRYPT

System Software is Living in the Past

- OSes designed for old hardware

- Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

T

device
APIs

Runtime

device
APls

Runtime

device
APls

Runtime

device
APIs

Runtime

ioctl mmap
Vendor-specific
driver
vCPU vGPU vDISK VASIC
VNVM VFPGA vDSP VCRPT

HYPERVISOR

CPU

GPU

DISK

ASIC

NVM

FPGA

DSP

CRYPT

System Software is Living in the Past

- OSes designed for old hardware

- Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

T

device
APIs

Runtime

device
APls

Runtime

device
APls

Runtime

device
APIs

Runtime

ioctl mmap
Vendor-specific
driver
vCPU vGPU vDISK VASIC
VNVM VFPGA vDSP VCRPT

HYPERVISOR

CPU

GPU

DISK

ASIC

NVM

FPGA

DSP

CRYPT

System Software is Living in the Past

- OSes designed for old hardware
« Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

HYPERVISOR

Fﬂ@m@

System Software is Living in the Past

- OSes designed for old hardware
« Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

[¢] p
v = n
‘ _driver

] ¥ i i
VNV — VFP L] VD L VCR

HYPERVISOR
g A DSP

System Software is Living in the Past

- OSes designed for old hardware
- Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

| HYPERVISOR

System Software is Living in the Past

- OSes designed for old hardware
- Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

| HYPERVISOR

System Software is Living in the Past

- OSes designed for old hardware
- Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

m; . " mm .
o v o
P Vendor-specific e, P vendor-specific
dfivel 4 I i _' drivel

| HYPERVISOR | HYPERVISOR

System Software is Living in the Past

OSes designed for old hardware
Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

mi . .
- - - \Y - - - il NN

P Vendor-specific Y = = P vendor-specific Y e P Vendor-specific

dfivel 4 I _ drivel 4 I '__' dfivel

HYPERVISOR HYPERVISOR HYPERVISOR

System Software is Living in the Past

OSes designed for old hardware
Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

e mm - . = wom mEm mE e "

- lEE nie nile e - M€ nie e e - € nie nile o - e e e nic
__ Qe __Quve _ Qe _ Onve

mma . mma 3 mma . mma

o o — | i_ |
.‘ O""“' p— P Vendor-specific .‘ u'"’c' - P Vendor-specific .‘ spane P Vendor-specific .‘ S P vendor-specific

.‘ driver _i dfivel .- driver _i drivel .‘ driver _i dfivel .‘ driver j dfivef

System Software is Living in the Past

OSes designed for old hardware
Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

I 1 I 1
1
- - - - !
- e | nie nie - e | nse e - e | nie nie fr— | |me | ..

_ Qe _ Onve _ Qe _ Qunve

_ mma . _ mma . mma . mma

[] ‘ spane P Vendor-specific [] - i P Vendor-specific [] ‘ s —_ P Vendor-specific . ‘ Quver j_ P Vendor-specific
.‘ driver _i dfivel .- driver _i drivel .‘ driver _i dfivel I criver driver
[“ _ ¥ “ I “ y I‘ [

HYPERVISOR

Cluster OS

System Software is Living in the Past

OSes designed for old hardware

Old OS assumptions: CPUs, disks, networks, OS is the only resource manager

ice ice ice ice ice ice ice ice ice ice ice ice ice ice
| | | | | |
| | | I
[I [[I i I [I I I [[
| | | | |

m _ v V | Y vV S v V R L
-— P Vendor-specific A P Vendor-specific e P Vendor-specific Hver P vendor-specific
I _orver driver .- driver _ driver .‘ driver __ driver .‘ driver __j driver
I“U“I“l‘“ I“I‘“I“I‘“ ‘“U“I“Im I I I | I § IS
VD VD VU — VNV VFEP = VD — VCR

HYPERVISOR HYPERVISOR HYPERVISOR B YPRVR]

JIIN ISP NI

Modern Stacks: choose an interface and virtualize

- Cool modern interfaces at the top
- Many *many* layers

- Each component or layer may compose and deal with
— Distribution (challenges: scheduling, fault tolerance, orchestration)
— Heterogeneity (multiple programming models)
— Concurrency (synchronization, consistency)

- How do we structure systems with these properties?
- How do we know they are correct/safe/etc?

- We’re going to talk about a lot of systems but only a subset will actually be
OSes

What i1s virtualization?

e In computing, virtualization ... is the act of creating a virtual (rather than actual) version of
something at the same abstraction level. — wikipedia

e Virtualization uses software to create an abstraction layer over computer hardware that
allows the hardware elements of a single computer—processors, memory, storage and
more—to be divided into multiple virtual computers, commonly called virtual machines (VMs).
— ibm.com

e Virtualization defines an interface that allows multiple implementations, possibly with a very
different technology. For example, virtual machines are implemented with software, physical
machines with hardware.

There are many levels. Start with $PATH

| want to execute mpirun on odachi

odachi:~> which mpirun
mpirun is /usr/bin/mpirun

| want to execute mpirun on epee

epee:~> which mpirun
mpirun is /opt/amazon/openmpi/bin/mpirun

My PATH variable virtualizes the executable name

epee:~> echo SPATH
.../opt/amazon/openmpi/bin:/usr/bin:..

conda: a virtual software environment

Rather than installing software system-wide, wouldn't it be great if we could install software
separately for each research project?
Conda allows you to create separate environments containing files, packages, and their
dependencies that will not interact with other environments. (docs.conda.io)
Conda uses environment variables (PATH, etc.) to achieve isolation
o Thisis easy to do
o Does not require root privilege
o Integrates well with build systems
o ltis easy to break conda’s isolation via bugs or malicious code or by design

o Each program interprets “search paths” differently and system paths and non-conda paths leak
through

docker: a container

Docker provides the ability to package and run an application in a loosely isolated

environment called a container. (docs.docker.com)
The isolation and security allows you to run many containers simultaneously on a given host.
OS capabilities enable docker
Process ID namespaces (e.g., each container has an init process pid==1)
Network communication (e.g., iptables)
Control group (cgroups)
Layered/union file system (e.g., AUFS)
Tradeoffs
o More secure than conda
o OS struggles to achieve performance isolation
o Container isolation is inferior to virtual machines

kvm: a virtual machine

Using KVM, one can run multiple virtual machines running unmodified Linux or Windows
Images.
Each virtual machine has private virtualized hardware: a network card, disk, graphics adapter, etc.
(linux-kvm.org)
X86 processors enable KVM
Processor: VT-x: instructions to enter/exit a virtual machine
Memory: extended page tables (EPT): page table for hypervisor
Devices: VT-d: Memory translation for devices
Tradeoffs
o More secure than containers
o Slower than containers

Course Outline

- Operating System Design and Implementation
+ Virtualization
- File Systems
- Concurrency

- Data Centers and Computing at Scale

- Security

- Verification of Large Scale Systems LEA{}N‘NG ‘g FUN
J A Ve W ‘ p |

/%

Now that you’re motivated: mechanical/administrivia

- Web site: www.cs.utexas.edu/~witchel/cs380L
— The ground truth, please read it
— It will change, so please keep up with it
— Piazza: for most interactivity, link on website
— Canvas: for grading only, no link on website, maybe for quiz/exams
— E-mail: is a great thing, | respond to it.

- Homework 1: http://www.cs.utexas.edu/~witchel/380L/hw/hw1.pdf

- We will have a test in Canvas next week

http://www.cs.utexas.edu/~witchel/380L/hw/hw1.pdf

Course Structure

Readings, programming assignments, project
Goals:
- Good discussions

- Some exposure to kernel hacking

- Do a significant research project

- Familiarity with reasoning about computing systems, design tradeoff spaces
- Preparation to do your own research and development.

Non-goals:

-+ busy work

- create grade distribution

* cause stress

What do we hope to achieve?

- Research is key: research, research, research

- Readings -2 exposure to others’ experimental research
— Most of work we look at will be good.
— Good ideas. Also, good implementation tricks. There is wisdom in both.
— Choice of papers: key results/impact in important areas, but seldom perfect
— Learn the literature (more importantly: critical thinking about the literature)
— Cross-pollination for neighboring fields

- Labs - improve your own research methodology
— Exposure to some low-level hacking
— Learn to problem solve across stack layers

- Project - research practice, impact beyond the class
— learn by doing.
— Rapidly evolving area: a great grad student project can go to top conference (mine did)

Readings

Reading will take a long time (especially at first).

— Be active in validating your understanding.

— Take notes. Draw a picture. Work out a small example.

— Many are influential papers, but not all are well written.

— Most are good examples of experimental technique, though almost all could be improved. (deadlines!)

Were they successful?
— Not all of them ever really worked, all reach EOL at some point
— Most you can hope for: some ideas live on

What to look for:

— Primarily: ideas and approach

— In most cases, not style

— In many cases: no right or wrong answer

Get good at pulling out the useful information.

Operational understanding fundamentals is key.
— Enumerate asserted guarantees, ask/understand how they are achieved
— For example, in a security paper, how does the system provide privacy? integrity? freshness?

Paper Reviews/Critiques

* Sugg ested form on website: nitp:/mww.cs.utexas.edu/~witchel/cs380Lirevireview. htm

Critique !'= Summary

Use it to organize your thoughts
— Perspectives often change during review writing

What to include:

— Enumerate the strengths and weaknesses

— Questions it left you with

— Suggestions for improvement/extension, better evaluation/understanding
— Assess impact from modern perspective

— How does it fit with related work

Website suggests you write a critique/review for each paper
— 1 will enforce this or not depending on how class discussions go

Exams / Project

- Exams: 2 mid-terms
— De-emphasize memorization / regurgitation
— Mix multiple choice, short answer long answer

— Focus on design decisions, comparing systems, understanding of systems and tradeoffs
— Likely on canvas/zoom

- Project
— Work alone or in pairs
— | can suggest topics (see website), but ideally, *you* choose.

— Can be related to your research but if so, should extend your RA work meaningfully
— Deliverables: milestones, written report, end-of-semester presentation

Today’s Readings: Motivation & Professional Development

- Levin & Redell: “How (and How Not) to write a Good Systems Paper”

— Summary:
-+ Rules of thumb for writing good systems papers
- Most papers are limited
- A few researchers consistently publish at top conferences
- Learn from them or risk a second-rate career
- A good framework to use for thinking about the papers we read in this class

- Haldane '28: On being the right size
— Summary: scale and use case are determinants for the fitness of a system

 (Optional) Hamming: “You and Your Research”

— Summary:
- Stay open to people and ideas
- Research is both time-consuming and exciting
- Research inspiration comes from unexpected directions

Levin & Redell

- Categories - Prototype is not enough
- Real system - Why build a system?
— Unimplemented system — “The purpose of (scientific) computing is
— Theoretical topic insight, not numbers.” — Richard Hamming

- Most SOSP/OSDI papers are about prototypes — Adapt old techniques to new technology

— Some differences by field
- E.g. architecture: more simulation (why?)

Effort SOSP Accept SOSP Reject
Real system Used by others Huge Occasional Occasional
Worked once Benchmarks ran Large Common Occasional
by deadline
Simulated Simulations run Large/med Occasional Common

Paper design Sounds good minimal Rare Common

On being the right size

- Why did we read this paper?
- Bold statements that are unusual in scientific literature
- Intellectual pursuits require breadth and depth

- Can you draw out lessons relevant to computer systems?

- Incommensurate scaling: eye size, jumping height
- Hardware constraints influence system design: strength of femur limits height

- Distribution of complexity and even basic assumptions change as a function of scale
— E.g. MapReduce algorithm is a handful of lines of code
— Apache Hadoop: 2,422,127 SLoC (as of 9/5/17)

Questions?

	Slide 1: CS380L: Advanced Operating Systems
	Slide 2: Agenda for Today
	Slide 3
	Slide 4: The public image of OS research
	Slide 5: OS research actually
	Slide 6: How to “structure” a system
	Slide 7: How to “structure” a system
	Slide 8: How to “structure” a system
	Slide 9: How to “structure” a system
	Slide 10: How to “structure” a system
	Slide 11: How to “structure” a system
	Slide 12: How to “structure” a system
	Slide 13: How to “structure” a system
	Slide 14: How to “structure” a system
	Slide 15: How to “structure” a system
	Slide 16: How to “structure” a system
	Slide 17: How to “structure” a system
	Slide 18: How to “structure” a system
	Slide 19: How to “structure” a system
	Slide 20: How to “structure” a system
	Slide 21: How to “structure” a system
	Slide 22: How to “structure” a system
	Slide 23: System Software is Living in the Past
	Slide 24: System Software is Living in the Past
	Slide 25: System Software is Living in the Past
	Slide 26: System Software is Living in the Past
	Slide 27: System Software is Living in the Past
	Slide 28: System Software is Living in the Past
	Slide 29: System Software is Living in the Past
	Slide 30: System Software is Living in the Past
	Slide 31: System Software is Living in the Past
	Slide 32: System Software is Living in the Past
	Slide 33: System Software is Living in the Past
	Slide 34: System Software is Living in the Past
	Slide 35: Modern Stacks: choose an interface and virtualize
	Slide 36: What is virtualization?
	Slide 37: There are many levels. Start with $PATH
	Slide 38: conda: a virtual software environment
	Slide 39: docker: a container
	Slide 40: kvm: a virtual machine
	Slide 41: Course Outline
	Slide 42: Now that you’re motivated: mechanical/administrivia
	Slide 43: Course Structure
	Slide 44: What do we hope to achieve?
	Slide 45: Readings
	Slide 46: Paper Reviews/Critiques
	Slide 47: Exams / Project
	Slide 48: Today’s Readings: Motivation & Professional Development
	Slide 49: Levin & Redell
	Slide 50: On being the right size
	Slide 51: Questions?

