
OS Structure:
Unix

Emmett Witchel

CS380L

Faux quiz (any 2, 5 min)

UNIX

1. What is a “capability”?

2. What does setuid do? Why is it necessary?

3. What’s the difference between a process and an image?

4. What’s the difference between soft and hard links? Pros/cons?

5. Why does Unix FS opt for *strict* hierarchy? What would get harder if
this were relaxed?

6. List some pros/cons for encapsulating devices with a file abstraction

7. Re: “Locks are neither necessary nor sufficient in our environment…”:
why did the UNIX authors say this?

8. What is the relationship between unlink and delete in a UNIX file system?

Unix!

• Minimum functionality and implementation, yet...

• Powerful, and...

• The pieces fit together seamlessly

• Feels obvious doesn’t it?
• This paper outlines most of the basics of modern OSes

Unix across the ages

…demonstrate that a
powerful operating system
for interactive use need not
be expensive either in
equipment or in human
effort: UNIX can run on
hardware costing as little
as $40,000, and less than
two man years were spent
on the main system
software…

UNIX family tree

Unix: what were the core new ideas?

• New (at the time) file I/O paradigm
• Unification of I/O + FS → everything is a file, unstructured data

• Hierarchy, relative paths, links, mounting special files, inodes

• Setuid, fsck

• Process management

• Fork/exec/wait/exit

• Pipes, filters, STDIO

• Process hierarchy/shell

File I/O

Hierarchical name space

– strict hierarchy across directories

– Disallowing multiple links to directories →
∗ Easier search

∗ Easier garbage collection – no cycles

– Engineering “taste”
– give up a tiny bit of generality for a big savings in complexity

– Eventually augmented with soft links:
* soft links don’t increment link count, so dangling is an issue on delete

What are some
alternatives to a
hierarchical FS?

File IO+Storage: lots of alternatives!

• Media/interfaces
• Disk interfaces

• Word serial

• CTL-I, SCSI, Parallel ATA

• Bit serial

• SDI, Fiber Channel, SATA

• Tape

• NVM: byte-addressable

• All: R/W blocks at offset

• Foreshadowing: multi-layers
of APIs in a real FS

• Abstractions
• Database

• File system
• Flat

• Hierarchical

• KV: Get/put

• …

• Implementations
• File system:

• FAT

• Log-structured

• ext

• KV store

• Multi-level FS (e.g. GFS)

• …

File IO+Storage: lots of alternatives!

• Media/interfaces
• Disk interfaces

• Word serial

• CTL-I, SCSI, Parallel ATA

• Bit serial

• SDI, Fiber Channel, SATA

• Tape

• NVM: byte-addressable

• All: R/W blocks at offset

• Foreshadowing: multi-layers
of APIs in a real FS

• Abstractions
• Database

• File system
• Flat

• Hierarchical

• KV: Get/put

• …

• Implementations
• File system:

• FAT

• Log-structured

• ext

• KV store

• Multi-level FS (e.g. GFS)

• …

Discussion
• Why are there duplicates (e.g. FS)?
• How is a DB different from FS?
• Unix paper mostly about abstraction, less

about impl

File I/O

• Untyped data (byte oriented)
• “…structure of files controlled by programs which use them, not by the system.”

• Memory also “untyped”:
• “Another important aspect of programming convenience is that there are not “control

blocks” with a complicated structure partially maintained by and depended on by the
file system or other system calls. Generally speaking, the contents of a program’s
address space are the property of the program, and we have tried to avoid placing
restrictions on the data structures within that address space. (p. 374)”

File I/O

• Untyped data (byte oriented)
• “…structure of files controlled by programs which use them, not by the system.”

• Memory also “untyped”:
• “Another important aspect of programming convenience is that there are not “control

blocks” with a complicated structure partially maintained by and depended on by the
file system or other system calls. Generally speaking, the contents of a program’s
address space are the property of the program, and we have tried to avoid placing
restrictions on the data structures within that address space. (p. 374)”

Discussion
• Early Macs had typed FS data
• IBM storage layers have typed data
• Memory+FS subsystems tightly coupled
• Others…

File creation/typing: IBM system 360

File creation/typing: IBM system 360

• Top line: scheduling class, how error messages are reported
• EXEC line: program, IEFBR14 is a label
• TEMPLIB1: new dataset to create
• NEW,CATLG: new dataset should persist after the job.
• DSN: dataset name. (OS360→ 3 level “hierarchy.”)
• STORCLAS: symbolic name for unit+disk-vol for

data+metadata (like RECFM, LRECL, SMS).
• SPACE: size of dataset in tracks (blocks, cylinders ok)

• This case: 45 tracks initially, increment by 15 on grow
• Disks in IBM land have 512 byte blocks, a device-

dependent number of sectors per track (17, 35, 75), a
device dependent number of tracks (up to 1024), a
device dependent number of heads, and a cylinder
which contains as many tracks as there are heads.

• DCB: data control block
• RECFM record format. FB is fixed block records
• (variable length, undefined length, other options).
• LRECL: logical record length, here 80 characters
• BLKSIZE: size of the data control block (i.e., “inode”).
∗ DSORG

File creation: Unix

#> echo > /tmp/foo

Pros?
Cons?

File I/O

* Directories are files
–does this really help anything?

File I/O

* Directories are files
–does this really help anything?

∗ What is in an inode?

File I/O

* Directories are files
–does this really help anything?

∗ What is in an inode?

File I/O

* Directories are files
–does this really help anything?

∗ What is in an inode?

∗ What is in a directory?

File I/O

* Directories are files
–does this really help anything?

∗ What is in an inode?

∗ What is in a directory?

File I/O

* Directories are files
–does this really help anything?

∗ What is in an inode?

∗ What is in a directory?

∗ How do I find the inumber for file /foo/bar?

File I/O

* Directories are files
–does this really help anything?

∗ What is in an inode?

∗ What is in a directory?

∗ How do I find the inumber for file /foo/bar?

∗ How do I find the inode for inumber 49824?

File I/O

* Directories are files
–does this really help anything?

∗ What is in an inode?

∗ What is in a directory?

∗ How do I find the inumber for file /foo/bar?

∗ How do I find the inode for inumber 49824?

∗ How do I read the third block of file /foo/bar?

Files in UNIX

• Permissions checks done at open
• Changes to permissions do not affect open files

• In order to be able to list, read or write a file, you need execute
permission on the directories leading to that file (e.g., on a, b, and c
for /a/b/c/execute me.py).

• File owner can always chmod, does not need write or execute
permission in enclosing directory.

• Return value of read/write. Short reads, short writes, EWOULDBLOCK.

• What are sparse files? Why are they needed?

Files in UNIX

• Files exist independently from directories
• Open a file in a process (thereby increasing its link count)

• Unlink file from file system

• Why do this?

• No guarantee on large (>4KB writes) concurrent writes
• Reads can see partial writes to a file, even if done with 1 write system call

Files in UNIX

• Files exist independently from directories
• Open a file in a process (thereby increasing its link count)

• Unlink file from file system

• Why do this?

• Because now when process dies for any reason, file disappears

• NFS maintains this behavior by moving open files to .nfsXXXXXX

• No guarantee on large (>4KB writes) concurrent writes
• Reads can see partial writes to a file, even if done with 1 write system call

Device-independent I/O

Advantages for treating I/O devices as files:

Device-independent I/O

Advantages for treating I/O devices as files:
1) file and device I/O are as similar as possible

2) file and device names have same syntax/meaning

3) special files subject to the same protection mechanisms

Device-independent I/O

Advantages for treating I/O devices as files:
1) file and device I/O are as similar as possible

2) file and device names have same syntax/meaning

3) special files subject to the same protection mechanisms

Do we agree that these advantages are compelling?

Device-independent I/O

Advantages for treating I/O devices as files:
1) file and device I/O are as similar as possible

2) file and device names have same syntax/meaning

3) special files subject to the same protection mechanisms

Do we agree that these advantages are compelling?

• Simple owner/group/other permissions remarkably flexible and useful.

“Pipes are not a completely general mechanism since the pipe must be set up
by a common ancestor of the process.”

• Now, named pipes in the file system.

• Though sockets are more general than pipes.

(udev has replaced devfs, which replaced /dev--a “deep” change that took a while to settle down).

Device-independent I/O

Advantages for treating I/O devices as files:
1) file and device I/O are as similar as possible

2) file and device names have same syntax/meaning

3) special files subject to the same protection mechanisms

Do we agree that these advantages are compelling?

• Simple owner/group/other permissions remarkably flexible and useful.

“Pipes are not a completely general mechanism since the pipe must be set up
by a common ancestor of the process.”

• Now, named pipes in the file system.

• Though sockets are more general than pipes.

(udev has replaced devfs, which replaced /dev--a “deep” change that took a while to settle down).

Device-independent I/O

Advantages for treating I/O devices as files:
1) file and device I/O are as similar as possible

2) file and device names have same syntax/meaning

3) special files subject to the same protection mechanisms

Do we agree that these advantages are compelling?

• Simple owner/group/other permissions remarkably flexible and useful.

“Pipes are not a completely general mechanism since the pipe must be set up
by a common ancestor of the process.”

• Now, named pipes in the file system.

• Though sockets are more general than pipes.

(udev has replaced devfs, which replaced /dev--a “deep” change that took a while to settle down).

File descriptors

• Filter programs do not know the name of input or output files.

• capability: “Handle with access rights”
• Wait…what’s a capability?

Access Control Check

• Input: access request, policy

• Output: access control decision based on policy
• allow / deny

Access Control
Check

A Request Allow / Deny

The Policy

Access Control Matrix

Access Control Matrix

• Dynamic data, frequent changes
• Very sparse, repeated entries
• Impractical to store explicitly
• Most common mechanisms:

• Access control list: stores a
column (who can access this)

• Capabilities: store a row (what
this can access)

Capabilities

File descriptors: brilliant

• Filter programs do not know the name of input or output files.

• capability: “Handle with access rights”

• How many file descriptors can you open?

• File descriptors are just integers, why can’t a user program forge one?

setuid: rights amplification

Coarse-grained sharing – “execute a program as someone else”
– v. Multics rings – fine grained sharing – “execute a procedure as someone else”

– Minimalist: Need to have process == principal

– add setuid to that basic mechanism rather than invent orthogonal model

– Limits to how fine-grained we can (correctly/conveniently) divide programs?

Also “Make common case fast. Make uncommon case correct.” Common case is procedure call to
same code base. How much extra mechanism do you want (complexity, cost, speed penalty in
common case) for uncommon case?

setuid: a cautionary tale?

From: http://www.irssi2.org/security/setuid-usenix02.pdf

Each process has three user IDs: the real user ID (real uid, or ruid), the effective user ID (effective uid, or euid), and the saved user ID (saved uid, or suid). The real uid identifies the
owner of the process, the effective uid is used in most access control decisions, and the saved uid stores a previous user ID so that it can be restored later. Similarly, a process has three
group IDs: the real group ID, the effective group ID, and the saved group ID.

Mount

• Removable storage; expand storage;

• Engineering simplification: No cross-volume links allowed

Process management: “primitives not solutions”

• Process is an executing program (or image). Code, heap and stack.

• Building blocks
• Fork, exec, wait
• File I/O structure

• Fork’d child shares parent’s open files
• → pipe, std I/O, redirection, filters
• Coarse grained sharing of programs: cat foo | grep “bar” | sort | tail -10

• Shell, background execution
• Stdin, stdout: enables redirection and pipelines.
• Shell: a good programming language?

• Elegant process structure enables communication
• Signals as another form of inter-process communication.

Process Hierarchy

Fork: Not Without Controversy

Fork: Not Without Controversy

Fork: Not Without Controversy

Why do people like fork?
• Simple: no parameters!

• cf. Win32 CreateProcess
• Elegant: fork is orthogonal to exec
• System calls that a process uses on itself also initialise a child

• e.g. shell modifies FDs prior to exec
• It eased concurrency

• Especially in the days before threads and async I/O

Fork: Not Without Controversy

Why do people like fork?
• Simple: no parameters!

• cf. Win32 CreateProcess
• Elegant: fork is orthogonal to exec
• System calls that a process uses on itself also initialise a child

• e.g. shell modifies FDs prior to exec
• It eased concurrency

• Especially in the days before threads and async I/O

BOOL CreateProcess(

LPCSTR lpApplicationName,

LPSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpProcessAttributes,

LPSECURITY_ATTRIBUTES lpThreadAttributes,

BOOL bInheritHandles,

DWORD dwCreationFlags,

LPVOID lpEnvironment,

LPCSTR lpCurrentDirectory,

LPSTARTUPINFOA lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation

);

Fork: Not Without Controversy

Why do people like fork?
• Simple: no parameters!

• cf. Win32 CreateProcess
• Elegant: fork is orthogonal to exec
• System calls that a process uses on itself also initialise a child

• e.g. shell modifies FDs prior to exec
• It eased concurrency

• Especially in the days before threads and async I/O

Fork: Not Without Controversy

Why do people like fork?
• Simple: no parameters!

• cf. Win32 CreateProcess
• Elegant: fork is orthogonal to exec
• System calls that a process uses on itself also initialise a child

• e.g. shell modifies FDs prior to exec
• It eased concurrency

• Especially in the days before threads and async I/O

Fork: actual motivation:
• For implementation expedience [Ritchie, 1979]
• fork was 27 lines of PDP-7 assembly
• One process resident at a time
• Copy parent’s memory out to swap
• Continue running child
• exec didn’t exist – it was part of the shell
• Would have been more work to combine them
Fork was a hack!
• Fork is not an inspired design, but an accident of history
• Only Unix implemented it this way
• We may be stuck with fork for a long time to come
• But, let’s not pretend that it’s still a good idea today!

Fork: Not Without Controversy

Why do people like fork?
• Simple: no parameters!

• cf. Win32 CreateProcess
• Elegant: fork is orthogonal to exec
• System calls that a process uses on itself also initialise a child

• e.g. shell modifies FDs prior to exec
• It eased concurrency

• Especially in the days before threads and async I/O

Fork: actual motivation:
• For implementation expedience [Ritchie, 1979]
• fork was 27 lines of PDP-7 assembly
• One process resident at a time
• Copy parent’s memory out to swap
• Continue running child
• exec didn’t exist – it was part of the shell
• Would have been more work to combine them
Fork was a hack!
• Fork is not an inspired design, but an accident of history
• Only Unix implemented it this way
• We may be stuck with fork for a long time to come
• But, let’s not pretend that it’s still a good idea today!

Thanks to Andrew Baumann et al. “a fork() in the road ‘19”

	Default Section
	Slide 1: OS Structure: Unix
	Slide 2: Faux quiz (any 2, 5 min)
	Slide 3: Unix!
	Slide 4: Unix across the ages
	Slide 5: UNIX family tree
	Slide 6: Unix: what were the core new ideas?
	Slide 7: File I/O
	Slide 8: File IO+Storage: lots of alternatives!
	Slide 9: File IO+Storage: lots of alternatives!
	Slide 10: File I/O
	Slide 11: File I/O
	Slide 12: File creation/typing: IBM system 360
	Slide 13: File creation/typing: IBM system 360
	Slide 14: File creation: Unix
	Slide 15: File I/O
	Slide 16: File I/O
	Slide 17: File I/O
	Slide 18: File I/O
	Slide 19: File I/O
	Slide 20: File I/O
	Slide 21: File I/O
	Slide 22: File I/O
	Slide 23: Files in UNIX
	Slide 24: Files in UNIX
	Slide 25: Files in UNIX
	Slide 26: Device-independent I/O
	Slide 27: Device-independent I/O
	Slide 28: Device-independent I/O
	Slide 29: Device-independent I/O
	Slide 30: Device-independent I/O
	Slide 31: Device-independent I/O
	Slide 32: File descriptors
	Slide 33: Access Control Check
	Slide 34: Access Control Matrix
	Slide 35: Access Control Matrix
	Slide 38: Capabilities
	Slide 39: File descriptors: brilliant
	Slide 40: setuid: rights amplification
	Slide 41: setuid: a cautionary tale?
	Slide 42: Mount
	Slide 43: Process management: “primitives not solutions”
	Slide 44: Process Hierarchy
	Slide 45: Fork: Not Without Controversy
	Slide 46: Fork: Not Without Controversy
	Slide 47: Fork: Not Without Controversy
	Slide 48: Fork: Not Without Controversy
	Slide 49: Fork: Not Without Controversy
	Slide 50: Fork: Not Without Controversy
	Slide 51: Fork: Not Without Controversy

