OS Structure:
Unix

Emmett Witchel
CS380L

Faux quiz (any 2, 5 min)

UNIX

1.

LB W

What is a “capability”?

What does setuid do? Why is it necessary?

What'’s the difference between a process and an image?
What'’s the difference between soft and hard links? Pros/cons?

Why does Unix FS opt for *strict* hierarchy? What would get harder if
this were relaxed?

List some pros/cons for encapsulating devices with a file abstraction

Re: “Locks are neither necessary nor sufficient in our environment...”:
why did the UNIX authors say this?

What is the relationship between unlink and delete in a UNIX file system?

Unix!

 Minimum functionality and implementation, yet...
* Powerful, and...
* The pieces fit together seamlessly

* Feels obvious doesn’t it?
* This paper outlines most of the basics of modern OSes

Unix across the ages

...demonstrate that a
powerful operating system
for interactive use need not
be expensive either in
equipment or in human
effort: UNIX can run on
hardware costing as little
as $40,000, and less than
two man years were spent
on the main system
software...

|Feature | Unix 1973] Linux 2005] Linux 2016
Min cost system $40,000 $100 $5 (Raspberry Pi Zero)
C compiler C compiler C compiler
assembler assembler assembler
Applications debugger debugger debugger
YACC YACC YACC
form letter generator (7!)

Memory 144KB 2GB 32GB
~1MB for microYocto

= AN/
Memory (min) 50KB 500KB (4MB embedded 32-bit, 1.3MB for 64-bit,

systems, e.g., ttylinux)

[oT

500GB, swap on partition

4TB disk or 128GB SSD,

Disk IMB swap, 2.5MB, 40MB . -)

or files swap on partition or files
File names Up to 14 characters Up to 255 characters Up to 255 characters
mkdir setuid program |user program (mkdir syscall)|user program (mkdir syscall)

File creation

create syscall

0_CREAT flag to open syscall

0_CREAT flag to open syscall

File block size 512B 1KB 4KB
Max file size 1MB 4TB (NTFS is 2TB) 16TB (extd)
Static lines of code 10K 4.2M 20.6M (4.3 2015-11-01)

[12M (Sloccount on 3.16.1)]

Intellectual property

AT&T propietary

Open source

Open source

Person-years

4,528
http://www.dwheeler.com
essays/-
linux-kernel-cost.html

8,000 ($1 Trillion)

UNIX family tree

1969

1971 t0 1973

1974 t0 1975

1978

1979

1981
1982
1983
1984

2001 to 2004
2005

2006 to 2010

UnixTSS
Time Sharing

oo

Linux 0.0.1 BSD NET/Z

Minix
1.x 386BSD

Minix

Minix

3.x

1969

1971 to 1973

1974 to 1975

1978

1979

2001 to 2004
2005
2006 to 2010

Unix: what were the core new ideas?

* New (at the time) file I/O paradigm
 Unification of I/O + FS = everything is a file, unstructured data
* Hierarchy, relative paths, links, mounting special files, inodes
e Setuid, fsck

* Process management
* Fork/exec/wait/exit

* Pipes, filters, STDIO

* Process hierarchy/shell

File 1/0O

Hierarchical name space
— strict hierarchy across directories What are some

alternatives to a
hierarchical FS?

— Disallowing multiple links to directories -
* Easier search
* Easier garbage collection — no cycles

— Engineering “taste”
— give up a tiny bit of generality for a big savings in complexity

— Eventually augmented with soft links:
* soft links don’t increment link count, so dangling is an issue on delete

File |IO+Storage: lots of alternatives!

* Media/interfaces e Abstractions * Implementations
* Disk interfaces e Database e File system:
 Word serial * File system e FAT
« CTL-l, SCSI, Parallel ATA . Flat
. Bitse;i;ll) N - Log-structured
. , Fiber Channel, SATA . KV Get/put ext
* Tape . KV store
e NVM: byte-addressable * Multi-level FS (e.g. GFS)
e All: R/W blocks at offset ¢ .

* foreshadowing: multi-layers
of APIs in a real FS

File |I04+Storage: lots of alternatives!

* Media/interfaces e Abstractions * Implementations
* Disk interfaces e Database e File system:
 Word serial * File system e FAT

e CTL-I, SCSI, Parallel ATA e Flat
. Bitse:[a)ll i I : Log-structured
. , Fiber Channel, SATA . KV: Get/put ext
* Tape . * KV store
e NVM: byte-addressable « Multi-level FS (e.g. GFS)
o All: R/W blocks at offset . .
* Foreshadowing: multi-layers
OfAP/S in a real FS Discussion

Why are there duplicates (e.g. FS)?

How is a DB different from FS?
Unix paper mostly about abstraction, less
about impl

File I/O

* Untyped data (byte oriented)
e “..structure of files controlled by programs which use them, not by the system.”

* Memory also “untyped”:

* “Another important aspect of programming convenience is that there are not “control
blocks” with a complicated structure partially maintained by and depended on by the
file system or other system calls. Generally speaking, the contents of a program’s
address space are the property of the program, and we have tried to avoid placing
restrictions on the data structures within that address space. (p. 374)”

File I/O

* Untyped data (byte oriented)
o “..structure of files controlled by programs which use them, not by the system.”

* Memory also “untyped”:

* “Another important aspect of programming convenience is that there are not “control
blocks” with a complicated structure partially maintained by and depended on by the
file system or other system calls. Generally speaking, the contents of a program’s
address space are the property of the program, and we have tried to avoid placing

restrictions on the data structures within that
Discussion

Early Macs had typed FS data

IBM storage layers have typed data
Memory+FS subsystems tightly coupled
Others...

File creation/typing: IBM system 360

//PDSCRTJ1 JOB SIMOTIME,ACCOUNT,CLASS=1,MSGCLASS=0,NOTIFY=CSIP1,
/7 COND=(0,LT)
/7 ko ok ok sk ok ok ok sk ok ok ok ok ak ok ok s sk ok ok sk sk ok ok ok sk ok ok ok sk ok ok ok sk sk ok ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok sk ok ok ok sk ok kK ok ok ok ok ok ok ok

S/ * This program is provided by: *
S/ * SimoTime Enterprises, LLC *
/* (C) Copyright 1987-2005 All Rights Reserved *
VA Web Site URL: http://www.simotime.com *
S/ * e-mail: helpdesk@simotime.com *

/7 3 sk ok ok sk ok sk sk sk sk ok ok ok sk sk ok sk sk ok

//*
//*% Subject: Define a PDS using the IEFBR14 with a DD Statement

//* Author: SimoTime Enterprises
//* Date: January 1,1998
/S *

//* Technically speaking, IEFBR14 is not a utility program because it
//* does nothing. The name is derived from the fact that it contains
//* two assembler language instruction. The first instruction clears
//* register 15 (which sets the return code to zero) and the second
//* instruction is a BR 14 which performs an immediate return to the
//* operating system.

/r/*

//* IEFBR14’s only purpose is to help meet the requirements that a
//* job must have at least one EXEC statement. The real purpose is to
//* allow the disposition of the DD statement to occur.

//*

//* For example, the following DISP=(NEW,CATLG) will cause the

//* specified DSN (i.e. PDS) to be allocated.

//* Note: a PDS may also be referred to as a library.

/7 3 vk sk sk ok sk sk sk ok sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk ok sk sk sk sk ok ok sk sk ok sk sk sk ok sk sk sk ok ok sk sk ok ok sk sk sk ok ok ok ok ok ok ok koK ok ok
//*

//IEFBR14 EXEC PGM=IEFBR14

//TEMPLIB1 DD DISP=(NEW,CATLG) ,DSN=SIMOTIME.DEMO.TEMPLIB1,

/7 STORCLAS=MFTI,
// SPACE=(TRK, (45, 15,50)),
/7 DCB=(RECFM=FB , LRECL=80, BLKSIZE=800 , DSORG=P0)

/r/*

File creation/typing: IBM system 360

//PDSCRTJ1 JOB SIMOTIME,ACCOUNT,CLASS=1,MSGCLASS=0,NOTIFY=CSIP1,

/7

S/ *
S/ *
VLS
[/ *
[/ *
S *
[/ *
[/ *
//*
[/ *
[/ *
/7 *
S/ *
[/ *
S/ *
S/ *
S/ *
S/ *
S/ *
S/ *
S/ *
S/ *
S/ *
S/ *
S/ *
[/ *

J /e ke sk ke Sk ke ok ek K ok

//*
/L

COND=(0,LT)
sk >k ok s ok ok ok s ok skl s sk ok ok sk sk kol sk ok ok ok i sk sk ko sk sk kol sk ok ko sk sk ok ok sk sk kol i ok sk ko sk sk kot sk sk ok ROk ok ok kok ok ok
This program is provided by:
SimoTime Enterprises, LLC
(C) Copyright 1987-2005 All Rights Reserved
Web Site URL: http://www.simotime.com
e—mail: helpdesk®simotime.com
ke ohe sk e ke ohe sk e e she sk e ke ke b sk e e sk she S e ke sk sk sk ke ke sk sk e ke she sk e ke ke ke sk ke ke ke sk ke ke ke sk Sk ke 2k ke sk ke ke ke sk ke ke ke sk e ke ok ke ok ke ok

¥ ¥ ¥ ¥ ¥

Subject: Define a PDS using the IEFBR14 with a DD Statement
Author: SimoTime Enterprises
Date: January 1,1998

Technically speaking, IEFBR14 is not a utility program because it
does nothing. The name is derived from the fact that it contains
two assembler language instruction. The first instruction clears
register 15 (which sets the return code to zero) and the second
instruction is a BR 14 which performs an immediate return to the
operating system.

IEFBR14’s only purpose is to help meet the requirements that a
job must have at least one EXEC statement. The real purpose is to
allow the disposition of the DD statement to occur.

For example, the following DISP=(NEW,CATLG) will cause the

specified DSN (i.e. PDS) to be allocated.

Note: a PDS may also be referred to as a library.
S ok ok ok Sk ok ok ok ok ke sk sk ok Sk ok e sk e ok e K ok ok ok ok K R

2 2 2K o o o e 2k Sk 2k ok ok ok vk ok ok sk ok

FBR14 EXEC PGM=IEFBR14

/TEMPLIB1 DD DISP=(NEW,CATLG) ,DSN=SIMOTIME.DEMO.TEMPLIB1,

STORCLAS=MFTI,
SPACE=(TRK, (45,15,50)),
DCB=(RECFM=FB , LRECL=80, BLKSIZE=800 , DSORG=P0)

Top line: scheduling class, how error messages are reported
EXEC line: program, IEFBR14 is a label
TEMPLIB1: new dataset to create
NEW,CATLG: new dataset should persist after the job.
DSN: dataset name. (0S360-> 3 level “hierarchy.”)
STORCLAS: symbolic name for unit+disk-vol for
data+metadata (like RECFM, LRECL, SMS).
SPACE: size of dataset in tracks (blocks, cylinders ok)
* This case: 45 tracks initially, increment by 15 on grow
* Disks in IBM land have 512 byte blocks, a device-
dependent number of sectors per track (17, 35, 75), a
device dependent number of tracks (up to 1024), a
device dependent number of heads, and a cylinder
which contains as many tracks as there are heads.
DCB: data control block
RECFM record format. FB is fixed block records
(variable length, undefined length, other options).
LRECL: logical record length, here 80 characters
BLKSIZE: size of the data control block (i.e., “inode”).

* DSORG

File creation: Unix

#> echo > /tmp/foo

Pros?
Cons?

File I/O

* Directories are files
—does this really help anything?

File I/O

* Directories are files
—does this really help anything?

x What is in an inode?

File I/O

* Directories are files
—does this really help anything?

x What is in an inode?

Protection mode

Owner & group

Block count

Length (in bytes)

Timestamps

Link count

Direct
pointers

Single indirect

Double indirect

Signature
pointer

inode

/’.gnatures

data

o l|la
LN] g ;‘_’r L LN LR N]
g S Y

Protection mode

Owner & group

. Block count
F I | e |/O Length (in bytes)

Timestamps

Link count

Direct

* Directories are files pointers
—does this really help anything? Single indirect

Double indirect [

* What is in an inode? —

pointer

inode

* What is in a directory?

File I/O

* Directories are files
—does this really help anything?

x* What is in an inode?
* What is in a directory?

Protection mode

Owner & group

Block count

Length (in bytes)

Timestamps

Link count

Direct
pointers

Single indirect

Double indirect

Signature
pointer

inode

data

data

/’.gnatures

directory entry in /dira

inode

name

12345 namel

inode 12345

e

23587

block 23587

data

o l|la
LN] ;‘_’r ;‘_’r L LN LR N]
g 0

"This &5 the
tex i the

He”

Protection mode

Owner & group

. Block count
F I | e |/O Length (in bytes)

Timestamps

Link count

Direct

* Directories are files pointers
—does this really help anything? Single indirect

Double indirect [

* What is in an inode? —

pointer

inode

* What is in a directory?) ’

. . . directory entry in /dira
* How do | find the inumber for file /foo/bar? ot name

12345 namel

inode 12345

1 block 23567

: / “This & the
' text i the
23567

He”

Protection mode

Owner & group
. Block count
F I | e |/O Length (in bytes)
Timestamps
Link count
sk . . . Direct %
Directories are files polters
—does this really help anything? Single indirect
Double indirect |
* What is in an inode? T
.« . . L inode | '
* What is in a directory> —7 — =

directory entry in /dira

* How do | find the inumber for file /foo/bar? ot name
x* How do | find the inode for inumber 498247

inode 12345

1 block 23567

: / “This & the
' text i the
23567

He”

File I/O

* Directories are files
—does this really help anything?

x* What is in an inode?
* What is in a directory?

Protection mode

Owner & group

Block count

Length (in bytes)

Timestamps

Link count

Direct
pointers

Single indirect

Double indirect [

Signature
pointer

inode

J

* How do | find the inumber for file /foo/bar?
* How do | find the inode for inumber 498247
* How do | read the third block of file /foo/bar?

directory entry in /dira

inode

name

12345

namel

inode 123

45

e

23587

block 23587

"This &5 the
tex i the

He”

Files in UNIX

* Permissions checks done at open
* Changes to permissions do not affect open files

* In order to be able to list, read or write a file, you need execute
permission on the directories leading to that file (e.g., on a, b, and c
for /a/b/c/execute me.py).

* File owner can always chmod, does not need write or execute
permission in enclosing directory.

* Return value of read/write. Short reads, short writes, EWOULDBLOCK.
 What are sparse files? Why are they needed?

Files in UNIX

* Files exist independently from directories
* Open afile in a process (thereby increasing its link count)

* Unlink file from file system
* Why do this?

* No guarantee on large (>4KB writes) concurrent writes
e Reads can see partial writes to a file, even if done with 1 write system call

Files in UNIX

* Files exist independently from directories

* Open afile in a process (thereby increasing its link count)
Unlink file from file system
Why do this?
Because now when process dies for any reason, file disappears
NFS maintains this behavior by moving open files to .nfsXXXXXX

* No guarantee on large (>4KB writes) concurrent writes
e Reads can see partial writes to a file, even if done with 1 write system call

Device-independent |/O

Advantages for treating I/0 devices as files:

Device-independent |/O

Advantages for treating I/0 devices as files:
1) file and device 1/O are as similar as possible
2) file and device names have same syntax/meaning
3) special files subject to the same protection mechanisms

Device-independent |/O

Advantages for treating I/0 devices as files:
1) file and device 1/O are as similar as possible
2) file and device names have same syntax/meaning
3) special files subject to the same protection mechanisms
Do we agree that these advantages are compelling?

Device-independent |/O

Advantages for treating I/0 devices as files:
1) file and device 1/O are as similar as possible
2) file and device names have same syntax/meaning
3) special files subject to the same protection mechanisms
Do we agree that these advantages are compelling?
* Simple owner/group/other permissions remarkably flexible and useful.

“Pipes are not a completely general mechanism since the pipe must be set up
by a common ancestor of the process.”

 Now, named pipes in the file system.

* Though sockets are more general than pipes.

(udev has replaced devfs, which replaced /dev--a “deep” change that took a while to settle down).

Device-independent |/O

Advantages for treating I/0 devices as files:
1) file and device 1/O are as similar as possible
2) file and device names have same syntax/meaning
3) special files subject to the same protection mechanisms
Do we agree that these advantages are compelling?
* Simple owner/group/other permissions remarkably flexible and useful.

“Pipes are not a completely general mechanism since the pipe must be set up
by a common ancestor of the process.”

 Now, named pipes in the file system.

* Though sockets are more general than pipes.

(udev has replaced devfs, which replaced /dev--a “deep” change that took a while to settle down).

Device-independent |/O

Advantages for treating I/0 devices as files:
1) file and device 1/O are as similar as possible
2) file and device names have same syntax/meaning
3) special files subject to the same protection mechanisms
Do we agree that these advantages are compelling?
* Simple owner/group/other permissions remarkably flexible and useful.

“Pipes are not a completely general mechanism since the pipe must be set up
by a common ancestor of the process.”

 Now, named pipes in the file system.

* Though sockets are more general than pipes.

(udev has replaced devfs, which replaced /dev--a “deep” change that took a while to settle down).

File descriptors

* Filter programs do not know the name of input or output files.

e capability: “Handle with access rights”
* Wait...what’s a capability?

Access Control Check

* Input: access reguest, policy

« Output: access control decision based on policy
- allow / deny

A Request Acceé; Cok”tro' Allow / Deny
ec

The Policy

Access Control Matrix

* Representation/definition of permissible operations in a

system
| Objexs
Subjects user, user, user, file, file,
user, Send msg RW R
user, Send msg RW
user, Set passwd Set passwd Set passwd R

* Subjects: users, processes, groups, etc.
* Objects: other users/processes, files, memory objects, etc.

* Privileges/rights: depends on object
— for file: read, write, execute, etc.

Access Control Matrix

* Representation/definition of permissible operations in a

system
o Objects
Subjects user, user, users file, file,
user, Send msg RW R
user, Send msg * Dynamic data, frequent changes
user, Set passwd Setpasswd Set passwd * Very sparse, repeated entries
* Impractical to store explicitly
* Subjects: users, processes, groups, etc. * Most common mechanisms:
. . * Access control list: stores a
* Objects: other users/processes, files, memory o .
-) . column (who can access this)
* Privileges/rights: depends on object * Capabilities: store a row (what

— for file: read, write, execute, etc. this can access)

Capabilities

* Main advantage of capabilities is fine-grained access control
—> Easy to provide access to specific subjects
—> Easy to delegate permissions to others

* A cap presents prima facie evidence of right to access
— Think of it as a key
— Any representation must protect capabilities against forgery
* Consists of object identifier and a set of access rights
— Implies object naming

A\

Solves the “confused deputy” problem

File descriptors: brilliant

* Filter programs do not know the name of input or output files.

e capability: “Handle with access rights”

* How many file descriptors can you open?

* File descriptors are just integers, why can’t a user program forge one?

setuid: rights amplification

Coarse-grained sharing — “execute a program as someone else”
— V. Multics rings — fine grained sharing — “execute a procedure as someone else”
— Minimalist: Need to have process == principal
— add setuid to that basic mechanism rather than invent orthogonal model
— Limits to how fine-grained we can (correctly/conveniently) divide programs?

Also “Make common case fast. Make uncommon case correct.” Common case is procedure call to
same code base. How much extra mechanism do you want (complexity, cost, speed penalty in
common case) for uncommon case?

setuid: a cautionary tale?

Each process has three user IDs: the real user ID (real uid, or ruid), the effective user ID (effective uid, or euid), and the saved user ID (saved uid, or suid). The real uid identifies the
owner of the process, the effective uid is used in most access control decisions, and the saved uid stores a previous user ID so that it can be restored later. Similarly, a process has three
group IDs: the real group ID, the effective group ID, and the saved group ID.

seluidly)

i i safuid(d) sefua)
ReyEelSey) (ReE=08=x) (ReyEe0S=0) (ReDE=yS=0T sehuidie]) semuidly) (R, EmnS=0 T sehicly) (RenE=08y) (RewEe0Sex) (ReyE=0S=x) (RexE=080

mmcm seht) (scis E’&"m ===

R-U.E-ﬂﬁrﬂsmm et | sehidy) | sehacly) \ sehids) | sehidy
—_— e

— — 3
F—- = _—"__ — s i -
n_l'_'.-‘l_"'-'__,—l.# — = ——_‘:,_—T—*__ @'ﬁ

s uidx] sefuid(x)

i EIIIEW setudly)

(a) An FSA describing setuid in Linux 2.4.18

From: http://www.irssi2.org/security/setuid-usenix02.pdf

Mount

* Removable storage; expand storage;
* Engineering simplification: No cross-volume links allowed

Process management: “primitives not solutions”

* Process is an executing program (or image). Code, heap and stack.
* Building blocks

* Fork, exec, wait

File 1/O structure
* Fork’d child shares parent’s open files
* - pipe, std I/0O, redirection, filters
* Coarse grained sharing of programs: cat foo | grep “bar” | sort | tail -10
Shell, background execution
Stdin, stdout: enables redirection and pipelines.
Shell: a good programming language?
* Elegant process structure enables communication
e Signals as another form of inter-process communication.

Process Hierarchy

shell () {
while(got = read(STDIN, buffer, ...)){
command, args, redirection, bg = parse(buffer);
if (pid = fork()){
/* I am the child */
if (redirection){
close stdin and/or stdout and open specified files
}
exec(command, args);
/* Only reached if error on exec */
exit(-1);
}
/* I am the parent */
if ('bg && donePid != pid){
donePid = wait();
}

Fork: Not Without Controversy

Fork: Not Without Controversy

Operating
Systems

Remzi Arpaci-Dusseau
Andrea Arpaci-Dusseau

54

latavhiida: Deannna A DI

Why? Motivating The API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork () and exec() is
essential in building a UNIX shell, because it lets the shell run code after
the call to fork () but before the call to exec () ; this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.

T1P: GETTING IT RIGHT (LAMPSON’S LAW)

As Lampson states in his well-regarded “Hints for Computer Systems
Design” [L83], “Get it right. Neither abstraction nor simplicity is a sub-
stitute for getting it right.” Sometimes, you just have to do the right thing,
and when you do, it is way better than the alternatives. There are lots
of ways to design APls for process creation; however, the combination
of fork () and exec () are simple and immensely powerful. Here, the
UNIX designers simply got it right. And because Lampson so often “got
it right”, we name the law in his honor.

Fork: Not Without Controversy

’Operatlng
Systems

Why do people like fork?
e Simple: no parameters!

e cf. Win32 CreateProcess

54

latavhiida: Deannna A DI

Why? Motivating The API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork () and exec() i
essential in building a UNIX shell, because it lets the shell run code ufh'r
the call to fork () but before the call to exec () ; this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.

T1P: GETTING IT RIGHT (LAMPSON’S LAW)
As Lampson states in his well-regarded “Hints for Computer Systems
Design” [L83], “Get it right. Neither abstraction nor simplicity is a sub-
stitute for getting it right.” Sometimes, you just have to do the right thing,
and when vou do. it is wav better than the alternatives. There are lots
n; however, the combination
imensely powerful. Here, the
ecause Lampson so often “got

e Elegant: fork is orthogonal to exec
e System calls that a process uses on itself also initialise a child
e e.g. shell modifies FDs prior to exec

e |t eased concurrency

e Especially in the days before threads and async I/O

Fork: Not Without Controversy

lntavhiida: Deaaa~n~r ADI
O eratl N 54 Why? Motivating The API
p g Of course, one big question you might have: why would we build
S Stems such an odd interface to what should be the simple act of creating a new
y process? Well, as it turns out, the separation of fork () and exec() is
essential in building a UNIX shell, because it lets the shell run cndv after
the call to fork () but before the call to exec (); this code can alter the

environment of the ab«
of interesting features | BOOL CreateProcess (
LPCSTR lpApplicationName,
TIP: GE LPSTR lpCommandLine,
As Lampson states in

Design” [L83], “Get it LPSECURITY ATTRIBUTES lpProcessAttributes,
stitute for getting itrig 7 pSEFCURITY ATTRIBUTES lpThreadAttributes,

and when vou do. it

ee Easy Ple

Why do people like fork? BOOL bInheritHandles,
e Simple: no parameters! DWORD dwCreationFlags,
e cf. Win32 CreateProcess LPVOID lpEnvironment,
e Elegant: fork is orthogonal to exec LPCSTR lpCurrentDirectory,
e System calls that a process uses on itself also initi ~ LPSTARTUPINFOA lpStartupInfo,
e e.g. shell modifies FDs prior to exec LPPROCESS INFORMATION lpProcessInformation
e It eased concurrency ¥

e Especially in the days before threads and async I/O

Fork: Not Without Controversy

’Operatlng
Systems

Why do people like fork?
e Simple: no parameters!

e cf. Win32 CreateProcess

54

latavhiida: Deannna A DI

Why? Motivating The API

Of course, one big question you might have: why would we build
such an odd interface to what should be the simple act of creating a new
process? Well, as it turns out, the separation of fork () and exec() i
essential in building a UNIX shell, because it lets the shell run code ufh'r
the call to fork () but before the call to exec () ; this code can alter the
environment of the about-to-be-run program, and thus enables a variety
of interesting features to be readily built.

T1P: GETTING IT RIGHT (LAMPSON’S LAW)
As Lampson states in his well-regarded “Hints for Computer Systems
Design” [L83], “Get it right. Neither abstraction nor simplicity is a sub-
stitute for getting it right.” Sometimes, you just have to do the right thing,
and when vou do. it is wav better than the alternatives. There are lots
n; however, the combination
imensely powerful. Here, the
ecause Lampson so often “got

e Elegant: fork is orthogonal to exec
e System calls that a process uses on itself also initialise a child
e e.g. shell modifies FDs prior to exec

e |t eased concurrency

e Especially in the days before threads and async I/O

Fork: Not WithoU%e mumimsmation ™"

[}
54 Why? Motiva .

. z ‘ 2 ?
Operating o
' | g (I)I u)u;.siv{ (t)l .
Such ¢ mn
Systems T

essential in builc
the call to fork

environment of
of interesting fe: ®

Threeé Easy Pleces

As Lampson st

stitute for gettin

For implementation expedience [Ritchie, 1979]
fork was 27 lines of PDP-7 assembly

One process resident at a time

Copy parent’s memory out to swap

Continue running child

exec didn’t exist — it was part of the shell
Would have been more work to combine them

Fork was a hack!
T e Fork is not an inspired design, but an accident of history
Design” [L83],© ® Only Unix implemented it this way
nd whenvou ® We may be stuck with fork for a long time to come

Why do people like fork? e But, let’s not pretend that it’s still a good idea today!

e Simple: no parameters!
e cf. Win32 CreateProcess
e Elegant: fork is orthogonal to exec

ecause Lampson so often “got

e System calls that a process uses on itself also initialise a child

e e.g. shell modifies FDs prior to exec
e |t eased concurrency

e Especially in the days before threads and async I/O

Fork: Not WithoU%e mumimsmation ™"

[}
54 Why? Motiva .

: z ‘ 5 ?
Operating o
‘ | g (I)I (()UT;‘{ (t)l .
S "N & mn
Systems e’ Wl

essential in builc
the call to fork

environment of
of interesting fe: ®

Three Easy Pleces

As Lampson st

stitute for gettin

For implementation expedience [Ritchie, 1979]
fork was 27 lines of PDP-7 assembly

One process resident at a time

Copy parent’s memory out to swap

Continue running child

exec didn’t exist — it was part of the shell
Would have been more work to combine them

Fork was a hack!
T e Fork is not an inspired design, but an accident of history
Design” [L83],© ® Only Unix implemented it this way
nd whenvou ® We may be stuck with fork for a long time to come

Why do people like fork? e But, let’s not pretend that it’s still a good idea today!

e Simple: no parameters!
e cf. Win32 CreateProcess
e Elegant: fork is orthogonal to exec

ecause Lampson so often “got

e System calls that a process uses on itself also initialise a child

e e.g. shell modifies FDs prior to exec
e |t eased concurrency

e Especially in the days before threads and async I/O

Thanks to Andrew Baumann et al. “a fork() in the road ‘19”

	Default Section
	Slide 1: OS Structure: Unix
	Slide 2: Faux quiz (any 2, 5 min)
	Slide 3: Unix!
	Slide 4: Unix across the ages
	Slide 5: UNIX family tree
	Slide 6: Unix: what were the core new ideas?
	Slide 7: File I/O
	Slide 8: File IO+Storage: lots of alternatives!
	Slide 9: File IO+Storage: lots of alternatives!
	Slide 10: File I/O
	Slide 11: File I/O
	Slide 12: File creation/typing: IBM system 360
	Slide 13: File creation/typing: IBM system 360
	Slide 14: File creation: Unix
	Slide 15: File I/O
	Slide 16: File I/O
	Slide 17: File I/O
	Slide 18: File I/O
	Slide 19: File I/O
	Slide 20: File I/O
	Slide 21: File I/O
	Slide 22: File I/O
	Slide 23: Files in UNIX
	Slide 24: Files in UNIX
	Slide 25: Files in UNIX
	Slide 26: Device-independent I/O
	Slide 27: Device-independent I/O
	Slide 28: Device-independent I/O
	Slide 29: Device-independent I/O
	Slide 30: Device-independent I/O
	Slide 31: Device-independent I/O
	Slide 32: File descriptors
	Slide 33: Access Control Check
	Slide 34: Access Control Matrix
	Slide 35: Access Control Matrix
	Slide 38: Capabilities
	Slide 39: File descriptors: brilliant
	Slide 40: setuid: rights amplification
	Slide 41: setuid: a cautionary tale?
	Slide 42: Mount
	Slide 43: Process management: “primitives not solutions”
	Slide 44: Process Hierarchy
	Slide 45: Fork: Not Without Controversy
	Slide 46: Fork: Not Without Controversy
	Slide 47: Fork: Not Without Controversy
	Slide 48: Fork: Not Without Controversy
	Slide 49: Fork: Not Without Controversy
	Slide 50: Fork: Not Without Controversy
	Slide 51: Fork: Not Without Controversy

