OS Structure:
Exokernel
End-to-End Arguments

Emmett Witchel
CS380L

Faux quiz

answer any two (5 min)

Exokernel

Why would we want to customize or extend a kernel?

What data structure does exokernel use for scheduling?

How should a batch task minimize its execution time on exokernel?
What is a “software TLB?”

What is an Application Specific Handler (ASH) and why is it needed?

What is the difference between a synchronous and asynchronous protected control transfer?

N o U s N Re

What is a “self-authenticating capability”? How does Exokernel use them? How well would the
same techniques apply to a modern CPU micro-architecture?

End-to-End
* SSH encrypts user data in connections: Why is or isn’t this an example of the end-to-end argument?

* How would a proponent of the end-to-end argument likely fix the PC losering problem?

File Transfer: host A =2 host B

* A: read file from disk in blocks «——H\W fault = read incorrectly

* A: transmit in a series of packe uggy buffering/copying

* Network: move packets to B HW faults during buffering/copy

* B: receive packets, unpack Either host can crash

* B: write data on disk in blocks Depending on protocol, packet
loss/reorder/corrupt

What could possibly go wrong?

Conclusion: Only an end-to-end
check would result in a file transfer program
with failure probability proportional to file size

End-to-end: a religion?

Examples: illustration or no? TCP:

Tries to provide reliable in-order

packet delivery over IP with ACK
* TCP Failure of higher-level protocol such
as HTTP is still an app-level concern

Airline reservations:

* Lots of reliability mechanisms in use
* Airline reservations « Still requires compensating

transactions

The end-to-end argument is not an absolute rule, but rather a guideline that helps in
application and protocol design analysis; one must use some care to identify the end
points to which the argument should be applied.”

Saltzer, Reed, & Clark, “End-to-end Arguments in System Design

End-to-end wisdom

* Choosing the proper boundaries between functions is perhaps the
primary activity of the computer system designer.

* Thus the amount of effort to put into reliability measures within the
data communication system is seen to be an engineering tradeoff
based on performance, rather than a requirement for correctness.

* What the application wants to know is whether or not the target host
acted on the massage; all manner of disaster might have struck after
message delivery but before completion of the action requested by
the message.

End-to-end examples

* NetApp’s NFS appliance sometimes recommends UDP (lossy) and
sometimes TCP (reliable)

* Google file system (originally) allowed duplicate data that was filtered
by libraries

* Wireless networking puts more reliability into lower layers

* Application-level file checksumming was popular, now checksums
being put into file systems

Jasn

Background: extensibility

Applications

LIBC/CLR

EINIEY

MH

process

files

pipes

driver driver driver

CPU

/O dev

DISK

NIC

These high level abstractions are very nice and all, but...
 What if my app doesn’t need them?

* What if they don’t do what my app really needs?

* In atraditional OS, the OS feature set is fixed for apps

e Canonical example: ftp or web server serving static content

handle_get(URL url) {
string local path = get local path(url);
FILE * fp = fopen(local _path);
while(!feof(fp)) {
read(buffer, ..);
write(buffer, ..);

}
}

Problem?

Data sourced from file (kernel managed object)

gets sent over the network (using kernel managed objects)
But is copied into user-space through FS API as a side effect
(sendfile() APl is one solution)

Extensibility: how can we customize an OS?

* Microkernels (Hydra, mach)

* Virtual machines (VM370, Disco, VMware, Xen)

* OS per application (Fluke, Unikernels)

e Execute untrusted code in kernel (Spin, Vino, Exokernel)
* Exokernel/libOS (Drawbridge, Bascule, Graphene, JITSU)

* (containers are a close relative)
* (WSL 2 is amazing)

Jasn

Microkernels

server

Applicatio

LIBC/CLR

server

ns

server

MH 32U

IPC VHTREZE] scheduler
memory
CPU |/O dev DISK NIC
Pros/cons?

+ fault isolation

+ better extensibility

- slow (kernel crossings)

- limited extensibility

(see the contradiction?)

Core idea(s):

Minimal OS core to manage hardware
Higher level abstractions in user space
IPC fundamental cross-domain primitive
...Many variants on this theme

Extensibility: VMs

VM VM VM

Different apps need different OSes, so...
figure out how to run more than one OS at a time

Hypervisor

Hardware

Pros/cons?

+ low-level interface (“ideal” according to Engler)

- “emulate” machine v. “export” resources (e.g. need to emulate “privileged” instructions)
- poor IPC (traditionally) — machines isolated

- hide resource management

Extensibility: OS per application

: Core idea:
Libs+runtime Libs+runtime Libs+runtime
* Hypervisor provides resource management and isolation

* Additional guest-OS layers redundant and unnecessary
* Collapse guest OS and application into same domain
* Typically compiles OS and app into the same binary

VM VM VM

Hypervisor

Hardware

What are the pros/cons?
+ Fast! (recent work in this area after long dormancy)
- co-existing apps?

- Disadvantage: kernels are complex, hard to modify and specialize

Josn

Download untrusted code into kernel

Applications

LIBC/CLR

~

EINIE]

MH

=+~ +~]+~
X Xj X X
vj v uj o

driver driver driver

process

files

pipes

CPU

/O dev

DISK

NIC

Core idea:
* OS provides extensibility interfaces
* Apps provide extensions that execute in kernel mode

Pros/cons?
+ extensible
- still working with same OS structure

- Only extensible within limits of
extensibility API

- New thicket of isolation and trust
issues (eBPF is state of art)

Kernel Comparisons

Monolithic Kernel Microkernel "Hybrid kernel"
based Operating System based Operating System based Operating System

VM VM VM

Application Application Application

Application
IPC

Application
IPC

L EIG IVET

Multikernel Exokernel

+
-
I
1
—

| ' Applications Barnes—Hut
1 | OS node OS5 node 0S5 node OS node | 1
Agresment | /]—[\ I
algo[ithms 1 State State State ASYFIG messages State : ___________________
: replica ™ |~ replica || |
]]
Arch-specific :
code ! \ . .
t---t-----fr---F- - == F--- Library operating systems
Heterogeneous 5
*86 x64 ARM een GPU
cores Exokernel Secure bindings
= =
< Interconnect > Hardware |Frame buffer| TLB m Memory Disk

Exokernel: Key |deas

Monolithic OS Bad:

Centralized resource
management

All applications must use
the same abstractions

High-level abstractions
* Overly general

* Provide all features
possible

* Implementation cannot
be modified

* Limited functionality

Information is hidden

A great exercise: identify one instance
of each in exokernel and articulate

Hypotheses:

* Exokernels can be very
efficient

* Low-level, secure
multiplexing of HW
implementable efficiently

* Traditional OS
abstractions can be
implemented efficiently
at application level

* Applications can create
special-purpose
implementations of these
abstractions

why it’s there and how it can be made

to work.

LibOS Good:

Avoid resource management

Allow request of specific
resources

Visible resource revocation
Secure bindings
Downloading code

Abort protocol

Extendable

Applications

Exokernel/libOS

Top-level structure

e 1) small monolithic kernel

low-level, fixed interface.

Ideally HW interface ast] . secure Bindngs Exokermel
-‘ £
MNetwrork Frame Buffer | Memory| TLEB Disk Hardwrare

few and simple abstractions

* extension types

* resource state data — page table entries U ser-s pa ce

* specialized resource mgmt modules

e 2) libraries of untrusted resource mgmt. routines
* VM replacement

* file system
* IPC

* Note: libraries are part of OS exokernel

* historically: OS was set of libraries for math, etc _

* Key difference — trust Hardware

* App can write over library, jump to bad addr, etc.

kernel t trust lib ,
ernel can not trust fibrary What does exokernel share with other approaches?

Exokernel Principles

Separate protection and management
* export resources at lowest level possible with protection
* e.g. disk blocks, TLB entries, etc
e resource mgmt only at level needed for protection — allocation, revocation, sharing, tracking of ownership
» “abstraction (mechanism) is policy”

* The implementation of abstractions in library operating systems can be simpler and more specialized than in-
kernel implementations, because library (Z’oerat/ng systems need not multiplex a resource among competing
applications with widely different demands.

expose allocation — applications allocate resources explicitly
expose names — use physical names (physical memory (cache coloring), disk arm position?)
expose revocation — let apps choose which instances of a resource to give up

expose information — let application map in (read only) internal kernel data structures (e.g.
swTLB, CPU schedule, ...)

Exterminate all operating system abstractions (end-to-end)

Mechanism: secure bindings

Bind at large granularity; access at small granularity
* Applicable in many systems, not just exokernel
* E.g. mallocvs sbrk & mmap
* Allow kernel to protect resources without understanding them

Core idea: access check at bind time, not access time

Enables decoupling access check from abstraction being checked

Examples:

* Check at TLB entry load time for a page, not at address translation time

* Downloading code: type safe language, sandbox interpreter, validate at install time
* Others?

Mechanism: visible revocation

Continuum of resource multiplexing:

Transparent Notify-on-revocation Cooperative
Revocation Revocation
Traditional OS Exokernel — abort protocol; | Exokernel —
repossession vector callbacks
e OS decides how | Scheduler activations
many resources e OS decides how
to give to apps e OS decides how many many resources
e OS chooses resources to give to to give to apps.
what to revoke apps e OS asks
and takes it e OS chooses what to application or
e Needed for revoke, takes it, and 1ibOS to give up Using capabilities to protect resources enables
performant tells application (or a resource; S .
frequent libOS) 1ibOS/app appllFatlc.nns to gra nt access r.|ghts to qther
revocation (e.g., | ® Reposes dirty disk decides which applications without kernel intervention.
ASIDs) block? Store it where? instance to give Applications can also use “well-known”
(3.4) up

capabilities to share resources easily

call application handler when taking away page, CPU, etc
—> application can react
o update data structures (e.g. reduce # threads when CPU goes
away; scheduler activations
¢ decide what page to give up
ASIDs (processor addressing-context identifiers) are identified as a
resource best revoked transparently, because of frequent revocation.

More exokernel key mechanisms

abort protocol
when voluntary revocation fails — kernel tells application what it took
away
reason — library can maintain valid state specification

capabilities — encryption-based tokens to prove right to access
1dea is to make kernel access-rights decision
a) simple
b) generic across resources
¢) hierarchical — child has a subset

wakeup predicates (from later paper)
wakeup process when arbitrary condition becomes true (checked
when scheduler looking for something to run)

buffer cache registry — bind disk blocks to memory pages
—> applications can share cached pages

Downloading code into kernel

* Multiplexing the network — packet filter
* idea: load code to examine packet and decide if it is for me.

* Implement by downloading code into kernel
e written in simple, safe language — no loops, check all mem references, etc.

* Problem — what if | lie and say “yes it is for me” when it isn't?
* Solution — “assume they don’t lie”
* claim — could use a trusted server to load these things or could check

ASHes

Load handlers for application-specific messages into kernel
- can reply to packet w/o context switch
Advantages of ASH

* direct message vectoring — ASH knows where message should land in
user memory —2> avoid copies

* dynamic integrated layer processing — e.g. do checksum as data is
copied into NI

* message initiation — fast replies

ASHes

140 —
25} -
ELLLINE

Roundtrip Latency (microseconds)

e Ex {25 with ASH
e B0 without ASH

X 3 4 i 4 1 B 9 i

Number of Processes

Figure 2: Average roundirip latency with increasing number of
active processes on recejver.

What is going on here?
Does this show that ASHes are
just super awesome?

Machine OS | Roundtrip latency
DECS5000/125 | ExOS/ASH 259
DEC5000/125 ExOS 320
DEC5000/125 Ultrix 3400
DEC5000/200 | Ultrix/FRPC 340

Evaluation

1) Run benchmarks several times, to warm up cache/TLB
2) Take best run for Ultrix. Exokernel is median of 3 runs

3) Instruction cache conflicts 3x problem for exokernel
* Lots of micro-benchmarks. They never show the full performance picture.

e prototype system offering one-tenth the functionality at ten times the

performance?

* a. Ping-ponging a counter
* b. Irpc uses a single function (e.g., it does not use the RPC number to index into a
table), it does not check permissions, it is single-threaded.

* What do you think?

Aegis

* Scheduling

* Processor events
* Exceptions

* Protected Control Transfers

Machine OS | Procedure call | Syscall (getpid)
DEC2100 | Ultrix 0.57 32.2
DEC2100 | Aegis 0.56 3.2/4.7

" DEC3100 | Ultrix 0.42 33.7 |
DEC3100 | Aegis 0.42 29/35
DEC5000 | Ultrix 0.28 21.3
DECS5000 | Aegis 0.28 1.6/23

Time to perform null procedure and system call (us)

Machine OS | unalign | overflow | coproc | prot
DEC2100 | Ultrix n/a 208.0 n/a | 238.0
DEC2100 | Aegis 2.8 2.8 2.8 3.0
DEC3100 | Ultrix n/a 151.0 n/a | 177.0
DEC3100 | Aegis 2.1 2.1 2.1 23
DEC5000 | Ultrix n/a 130.0 n/a | 154.0
DECS5000 | Aegis 1.5 1.5 1.5 1.5

Exception dispatch time (ps)

ExOS: Interprocess Communication (IPC)

Machine OS pipe | pipe’ shm | Irpe
DEC2100 | Ultrix | 326.0 n/a | 187.0 [n/a
DEC2100 | ExOS | 309 | 248 | 124 | 139

" DEC3100 | Ultrix | 243.0 n/a | 139.0 | n/a
DEC3100 | ExOS | 226 | 186 93 | 104
DEC5000 | Ultrix | 199.0 n/a | 1180 [n/a
DEC5000 | ExOS | 142 | 10.7 57| 63

IPC time

ExOS: Virtual Memory

Machine | OS dirty | protl | protl00 | unprotl00 | trap | appell | appel2
DEC2100 | Ultrix n/a 51.6 175.0 175.0 | 240.0 383.0 335.0
DEC2100 | ExOS 17.5 32.5 213.0 275.0 13.9 74.4 45.9

" DEC3100 | Ultrix | n/a [39.0 133.0 133.0 [185.0 [302.0 [267.0 |
DEC3100 | ExOS 13.1 244 156.0 206.0 10.1 55.0 34.0
DECS5000 | Ultrix n/a 32.0 102.0 102.0 | 161.0 262.0 232.0
DECS5000 | ExOS 0.8 16.9 109.0 143.0 4.8 34.0 22.0

Virtual memory operations (us)

Exokernel concluding observations

* This idea is important, but imperfect
* Thin kernels, fat libraries

* More than one SOSP paper about this system
 Lessons (from second paper)

e Provide space for application data in kernel data structures o Writa b I es h a red state was
e Fast applications do not require good microbenchmark | bl
performance d WayS d p ropliem

e “The main benefit of an exokernel 1s not that it makes . .
primitive operations efficient, but that it gives applications ’ Eg’ a group writable file
control over expensive operations such as I/0” system directo ry

Inexpensive critical sections are useful for LibOS’s
User-level page tables are complex

Downloading interrupt handlers are of questionable utility
Downloaded code is powerful

e “Advantage is not execution speed but rather trust and
consequently power”

	Slide 1: OS Structure: Exokernel End-to-End Arguments
	Slide 2: Faux quiz answer any two (5 min)
	Slide 3: File Transfer: host A  host B
	Slide 4: End-to-end: a religion?
	Slide 5: End-to-end wisdom
	Slide 6: End-to-end examples
	Slide 7: Background: extensibility
	Slide 8: Extensibility: how can we customize an OS?
	Slide 9: Microkernels
	Slide 10: Extensibility: VMs
	Slide 11: Extensibility: OS per application
	Slide 12: Download untrusted code into kernel
	Slide 13: Kernel Comparisons
	Slide 14: Exokernel: Key Ideas
	Slide 15: Exokernel/libOS
	Slide 16: Exokernel Principles
	Slide 17: Mechanism: secure bindings
	Slide 18: Mechanism: visible revocation
	Slide 19: More exokernel key mechanisms
	Slide 20: Downloading code into kernel
	Slide 21: ASHes
	Slide 22: ASHes
	Slide 23: Evaluation
	Slide 24: Aegis
	Slide 25: ExOS: Interprocess Communication (IPC)
	Slide 26: ExOS: Virtual Memory
	Slide 27: Exokernel concluding observations

