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Faux quiz

answer any two (5 min)

Exokernel

Why would we want to customize or extend a kernel?

What data structure does exokernel use for scheduling?

How should a batch task minimize its execution time on exokernel?
What is a “software TLB?”

What is an Application Specific Handler (ASH) and why is it needed?

What is the difference between a synchronous and asynchronous protected control transfer?

N o U s N Re

What is a “self-authenticating capability”? How does Exokernel use them? How well would the
same techniques apply to a modern CPU micro-architecture?

End-to-End
* SSH encrypts user data in connections: Why is or isn’t this an example of the end-to-end argument?

* How would a proponent of the end-to-end argument likely fix the PC losering problem?



File Transfer: host A =2 host B

* A: read file from disk in blocks «——H\W fault = read incorrectly

* A: transmit in a series of packe uggy buffering/copying

* Network: move packets to B HW faults during buffering/copy

* B: receive packets, unpack Either host can crash

* B: write data on disk in blocks Depending on protocol, packet
loss/reorder/corrupt

What could possibly go wrong?

Conclusion: Only an end-to-end
check would result in a file transfer program
with failure probability proportional to file size



End-to-end: a religion?

Examples: illustration or no? TCP:

Tries to provide reliable in-order

packet delivery over IP with ACK
* TCP Failure of higher-level protocol such
as HTTP is still an app-level concern

Airline reservations:

* Lots of reliability mechanisms in use
* Airline reservations « Still requires compensating

transactions

The end-to-end argument is not an absolute rule, but rather a guideline that helps in
application and protocol design analysis; one must use some care to identify the end
points to which the argument should be applied.”

Saltzer, Reed, & Clark, “End-to-end Arguments in System Design



End-to-end wisdom

* Choosing the proper boundaries between functions is perhaps the
primary activity of the computer system designer.

* Thus the amount of effort to put into reliability measures within the
data communication system is seen to be an engineering tradeoff
based on performance, rather than a requirement for correctness.

* What the application wants to know is whether or not the target host
acted on the massage; all manner of disaster might have struck after
message delivery but before completion of the action requested by
the message.



End-to-end examples

* NetApp’s NFS appliance sometimes recommends UDP (lossy) and
sometimes TCP (reliable)

* Google file system (originally) allowed duplicate data that was filtered
by libraries

* Wireless networking puts more reliability into lower layers

* Application-level file checksumming was popular, now checksums
being put into file systems
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Background: extensibility
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These high level abstractions are very nice and all, but...
 What if my app doesn’t need them?

* What if they don’t do what my app really needs?

* In atraditional OS, the OS feature set is fixed for apps

e Canonical example: ftp or web server serving static content

handle_get(URL url) {
string local path = get local path(url);
FILE * fp = fopen(local _path);
while(!feof(fp)) {
read(buffer, .. );
write(buffer, ..);

}
}

Problem?

Data sourced from file (kernel managed object)

gets sent over the network (using kernel managed objects)
But is copied into user-space through FS API as a side effect
(sendfile() APl is one solution)



Extensibility: how can we customize an OS?

* Microkernels (Hydra, mach)

* Virtual machines (VM370, Disco, VMware, Xen)

* OS per application (Fluke, Unikernels)

e Execute untrusted code in kernel (Spin, Vino, Exokernel)
* Exokernel/libOS (Drawbridge, Bascule, Graphene, JITSU)

* (containers are a close relative)
* (WSL 2 is amazing)
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Microkernels
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Pros/cons?

+ fault isolation

+ better extensibility

- slow (kernel crossings)

- limited extensibility

(see the contradiction?)

Core idea(s):

Minimal OS core to manage hardware
Higher level abstractions in user space
IPC fundamental cross-domain primitive
...Many variants on this theme



Extensibility: VMs

VM VM VM

Different apps need different OSes, so...
figure out how to run more than one OS at a time

Hypervisor

Hardware

Pros/cons?

+ low-level interface (“ideal” according to Engler)

- “emulate” machine v. “export” resources (e.g. need to emulate “privileged” instructions)
- poor IPC (traditionally) — machines isolated

- hide resource management



Extensibility: OS per application

: Core idea:
Libs+runtime Libs+runtime Libs+runtime . . . .
* Hypervisor provides resource management and isolation

* Additional guest-OS layers redundant and unnecessary
* Collapse guest OS and application into same domain
* Typically compiles OS and app into the same binary

VM VM VM

Hypervisor

Hardware

What are the pros/cons?
+ Fast! (recent work in this area after long dormancy)
- co-existing apps?

- Disadvantage: kernels are complex, hard to modify and specialize
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Download untrusted code into kernel

Applications
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Core idea:
* OS provides extensibility interfaces
* Apps provide extensions that execute in kernel mode

Pros/cons?
+ extensible
- still working with same OS structure

- Only extensible within limits of
extensibility API

- New thicket of isolation and trust
issues (eBPF is state of art)



Kernel Comparisons
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Exokernel: Key |deas

Monolithic OS Bad:

Centralized resource
management

All applications must use
the same abstractions

High-level abstractions
* Overly general

* Provide all features
possible

* Implementation cannot
be modified

* Limited functionality

Information is hidden

A great exercise: identify one instance
of each in exokernel and articulate

Hypotheses:

* Exokernels can be very
efficient

* Low-level, secure
multiplexing of HW
implementable efficiently

* Traditional OS
abstractions can be
implemented efficiently
at application level

* Applications can create
special-purpose
implementations of these
abstractions

why it’s there and how it can be made

to work.

LibOS Good:

Avoid resource management

Allow request of specific
resources

Visible resource revocation
Secure bindings
Downloading code

Abort protocol

Extendable



Applications

Exokernel/libOS

Top-level structure

e 1) small monolithic kernel

low-level, fixed interface.

Ideally HW interface ast] . secure Bindngs Exokermel
-‘ £
MNetwrork Frame Buffer | Memory| TLEB Disk Hardwrare

few and simple abstractions

* extension types

* resource state data — page table entries U ser-s pa ce

* specialized resource mgmt modules

e 2) libraries of untrusted resource mgmt. routines
* VM replacement

* file system
* IPC

* Note: libraries are part of OS exokernel

* historically: OS was set of libraries for math, etc _

* Key difference — trust Hardware

* App can write over library, jump to bad addr, etc.

kernel t trust lib ,
ernel can not trust fibrary What does exokernel share with other approaches?



Exokernel Principles

Separate protection and management
* export resources at lowest level possible with protection
* e.g. disk blocks, TLB entries, etc
e resource mgmt only at level needed for protection — allocation, revocation, sharing, tracking of ownership
» “abstraction (mechanism) is policy”

* The implementation of abstractions in library operating systems can be simpler and more specialized than in-
kernel implementations, because library (Z’oerat/ng systems need not multiplex a resource among competing
applications with widely different demands.

expose allocation — applications allocate resources explicitly
expose names — use physical names (physical memory (cache coloring), disk arm position?)
expose revocation — let apps choose which instances of a resource to give up

expose information — let application map in (read only) internal kernel data structures (e.g.
swTLB, CPU schedule, ...)

Exterminate all operating system abstractions (end-to-end)



Mechanism: secure bindings

Bind at large granularity; access at small granularity
* Applicable in many systems, not just exokernel
* E.g. mallocvs sbrk & mmap
* Allow kernel to protect resources without understanding them

Core idea: access check at bind time, not access time

Enables decoupling access check from abstraction being checked

Examples:

* Check at TLB entry load time for a page, not at address translation time

* Downloading code: type safe language, sandbox interpreter, validate at install time
* Others?



Mechanism: visible revocation

Continuum of resource multiplexing:

Transparent Notify-on-revocation Cooperative
Revocation Revocation
Traditional OS Exokernel — abort protocol; | Exokernel —
repossession vector callbacks
e OS decides how | Scheduler activations
many resources e OS decides how
to give to apps e OS decides how many many resources
e OS chooses resources to give to to give to apps.
what to revoke apps e OS asks
and takes it e OS chooses what to application or
e Needed for revoke, takes it, and 1ibOS to give up Using capabilities to protect resources enables
performant tells application (or a resource; S .
frequent libOS) 1ibOS/app appllFatlc.nns to gra nt access r.|ghts to qther
revocation (e.g., | ® Reposes dirty disk decides which applications without kernel intervention.
ASIDs) block? Store it where? instance to give Applications can also use “well-known”
(3.4) up

capabilities to share resources easily

call application handler when taking away page, CPU, etc
—> application can react
o update data structures (e.g. reduce # threads when CPU goes
away; scheduler activations
¢ decide what page to give up
ASIDs (processor addressing-context identifiers) are identified as a
resource best revoked transparently, because of frequent revocation.



More exokernel key mechanisms

abort protocol
when voluntary revocation fails — kernel tells application what it took
away
reason — library can maintain valid state specification

capabilities — encryption-based tokens to prove right to access
1dea is to make kernel access-rights decision
a) simple
b) generic across resources
¢) hierarchical — child has a subset

wakeup predicates (from later paper)
wakeup process when arbitrary condition becomes true (checked
when scheduler looking for something to run)

buffer cache registry — bind disk blocks to memory pages
—> applications can share cached pages



Downloading code into kernel

* Multiplexing the network — packet filter
* idea: load code to examine packet and decide if it is for me.

* Implement by downloading code into kernel
e written in simple, safe language — no loops, check all mem references, etc.

* Problem — what if | lie and say “yes it is for me” when it isn't?
* Solution — “assume they don’t lie”
* claim — could use a trusted server to load these things or could check



ASHes

Load handlers for application-specific messages into kernel
- can reply to packet w/o context switch
Advantages of ASH

* direct message vectoring — ASH knows where message should land in
user memory —2> avoid copies

* dynamic integrated layer processing — e.g. do checksum as data is
copied into NI

* message initiation — fast replies



ASHes
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Figure 2: Average roundirip latency with increasing number of
active processes on recejver.

What is going on here?
Does this show that ASHes are
just super awesome?

Machine OS | Roundtrip latency
DECS5000/125 | ExOS/ASH 259
DEC5000/125 ExOS 320
DEC5000/125 Ultrix 3400
DEC5000/200 | Ultrix/FRPC 340




Evaluation

1) Run benchmarks several times, to warm up cache/TLB
2) Take best run for Ultrix. Exokernel is median of 3 runs

3) Instruction cache conflicts 3x problem for exokernel
* Lots of micro-benchmarks. They never show the full performance picture.

e prototype system offering one-tenth the functionality at ten times the

performance?

* a. Ping-ponging a counter
* b. Irpc uses a single function (e.g., it does not use the RPC number to index into a
table), it does not check permissions, it is single-threaded.

* What do you think?



Aegis

* Scheduling

* Processor events
* Exceptions

* Protected Control Transfers

Machine OS | Procedure call | Syscall (getpid)
DEC2100 | Ultrix 0.57 32.2
DEC2100 | Aegis 0.56 3.2/4.7

" DEC3100 | Ultrix 0.42 33.7 |
DEC3100 | Aegis 0.42 29/35
DEC5000 | Ultrix 0.28 21.3
DECS5000 | Aegis 0.28 1.6/23

Time to perform null procedure and system call (us)

Machine OS | unalign | overflow | coproc | prot
DEC2100 | Ultrix n/a 208.0 n/a | 238.0
DEC2100 | Aegis 2.8 2.8 2.8 3.0
DEC3100 | Ultrix n/a 151.0 n/a | 177.0
DEC3100 | Aegis 2.1 2.1 2.1 23
DEC5000 | Ultrix n/a 130.0 n/a | 154.0
DECS5000 | Aegis 1.5 1.5 1.5 1.5

Exception dispatch time (ps)



ExOS: Interprocess Communication (IPC)

Machine OS pipe | pipe’ shm | Irpe
DEC2100 | Ultrix | 326.0 n/a | 187.0 [ n/a
DEC2100 | ExOS | 309 | 248 | 124 | 139

" DEC3100 | Ultrix | 243.0 n/a | 139.0 | n/a
DEC3100 | ExOS | 226 | 186 93 | 104
DEC5000 | Ultrix | 199.0 n/a | 1180 [ n/a
DEC5000 | ExOS | 142 | 10.7 57| 63

IPC time




ExOS: Virtual Memory

Machine | OS dirty | protl | protl00 | unprotl00 | trap | appell | appel2
DEC2100 | Ultrix n/a 51.6 175.0 175.0 | 240.0 383.0 335.0
DEC2100 | ExOS 17.5 32.5 213.0 275.0 13.9 74.4 45.9

" DEC3100 | Ultrix | n/a [ 39.0 133.0 133.0 [ 185.0 [ 302.0 [ 267.0 |
DEC3100 | ExOS 13.1 244 156.0 206.0 10.1 55.0 34.0
DECS5000 | Ultrix n/a 32.0 102.0 102.0 | 161.0 262.0 232.0
DECS5000 | ExOS 0.8 16.9 109.0 143.0 4.8 34.0 22.0

Virtual memory operations (us)




Exokernel concluding observations

* This idea is important, but imperfect
* Thin kernels, fat libraries

* More than one SOSP paper about this system
 Lessons (from second paper)

e Provide space for application data in kernel data structures o Writa b I es h a red state was
e Fast applications do not require good microbenchmark | bl
performance d WayS d p ropliem

e “The main benefit of an exokernel 1s not that it makes . .
primitive operations efficient, but that it gives applications ’ Eg’ a group writable file
control over expensive operations such as I/0” system directo ry

Inexpensive critical sections are useful for LibOS’s
User-level page tables are complex

Downloading interrupt handlers are of questionable utility
Downloaded code is powerful

e “Advantage is not execution speed but rather trust and
consequently power”
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