
OS Structure:
Exokernel

End-to-End Arguments
Emmett Witchel

CS380L

Faux quiz
answer any two (5 min)

Exokernel

1. Why would we want to customize or extend a kernel?

2. What data structure does exokernel use for scheduling?

3. How should a batch task minimize its execution time on exokernel?

4. What is a “software TLB?”

5. What is an Application Specific Handler (ASH) and why is it needed?

6. What is the difference between a synchronous and asynchronous protected control transfer?

7. What is a “self-authenticating capability”? How does Exokernel use them? How well would the
same techniques apply to a modern CPU micro-architecture?

End-to-End

• SSH encrypts user data in connections: Why is or isn’t this an example of the end-to-end argument?

• How would a proponent of the end-to-end argument likely fix the PC losering problem?

File Transfer: host A → host B

• A: read file from disk in blocks

• A: transmit in a series of packets

• Network: move packets to B

• B: receive packets, unpack

• B: write data on disk in blocks

What could possibly go wrong?

HW fault → read incorrectly

Buggy buffering/copying

HW faults during buffering/copy

Either host can crash

Depending on protocol, packet
loss/reorder/corrupt

Conclusion: Only an end-to-end
check would result in a file transfer program
with failure probability proportional to file size

End-to-end: a religion?

Examples: illustration or no?

• TCP

• Airline reservations

TCP:
• Tries to provide reliable in-order

packet delivery over IP with ACK
• Failure of higher-level protocol such

as HTTP is still an app-level concern

Airline reservations:
• Lots of reliability mechanisms in use
• Still requires compensating

transactions

End-to-end wisdom

• Choosing the proper boundaries between functions is perhaps the
primary activity of the computer system designer.

• Thus the amount of effort to put into reliability measures within the
data communication system is seen to be an engineering tradeoff
based on performance, rather than a requirement for correctness.

• What the application wants to know is whether or not the target host
acted on the massage; all manner of disaster might have struck after
message delivery but before completion of the action requested by
the message.

End-to-end examples

• NetApp’s NFS appliance sometimes recommends UDP (lossy) and
sometimes TCP (reliable)

• Google file system (originally) allowed duplicate data that was filtered
by libraries

• Wireless networking puts more reliability into lower layers

• Application-level file checksumming was popular, now checksums
being put into file systems

Background: extensibility

driver driver driver

CPU I/O dev DISK NIC

process files pipes

LIBC/CLR

process files pipes

Applications

u
ser

kern
el

H
W

These high level abstractions are very nice and all, but…
• What if my app doesn’t need them?
• What if they don’t do what my app really needs?
• In a traditional OS, the OS feature set is fixed for apps

• Canonical example: ftp or web server serving static content

handle_get(URL url) {
string local_path = get_local_path(url);
FILE * fp = fopen(local_path);
while(!feof(fp)) {

read(buffer, …);
write(buffer, …);

}
}

Problem?

Data sourced from file (kernel managed object)
gets sent over the network (using kernel managed objects)
But is copied into user-space through FS API as a side effect
(sendfile() API is one solution)

Extensibility: how can we customize an OS?

• Microkernels (Hydra, mach)

• Virtual machines (VM370, Disco, VMware, Xen)

• OS per application (Fluke, Unikernels)

• Execute untrusted code in kernel (Spin, Vino, Exokernel)

• Exokernel/libOS (Drawbridge, Bascule, Graphene, JITSU)
• (containers are a close relative)

• (WSL 2 is amazing)

Microkernels

Pros/cons?

+ fault isolation

+ better extensibility

- slow (kernel crossings)

- limited extensibility

(see the contradiction?)

d
ri

ve
r

CPU I/O dev DISK NIC

IPC
Virtual

memory
scheduler

LIBC/CLR

Applications

u
ser

kern
el

H
W

d
ri

ve
r

d
ri

ve
r

Fi
le

se

rv
er

U
N

IX

se
rv

er

p
ag

er
s

P
ro

ce
ss

se

rv
er

… Core idea(s):
• Minimal OS core to manage hardware
• Higher level abstractions in user space
• IPC fundamental cross-domain primitive
• …Many variants on this theme

Extensibility: VMs

Pros/cons?

+ low-level interface (“ideal” according to Engler)

- “emulate” machine v. “export” resources (e.g. need to emulate “privileged” instructions)

- poor IPC (traditionally) – machines isolated

- hide resource management

VM

APP

OS

VM

APP

OS

VM

APP

OS

Hypervisor

Hardware

Core idea:
Different apps need different OSes, so…
figure out how to run more than one OS at a time

Extensibility: OS per application

What are the pros/cons?

+ Fast! (recent work in this area after long dormancy)

- co-existing apps?

- Disadvantage: kernels are complex, hard to modify and specialize

VM

APP

Libs+runtime

VM VM

Hypervisor

Hardware

APP

Libs+runtime

APP

Libs+runtime
Core idea:
• Hypervisor provides resource management and isolation
• Additional guest-OS layers redundant and unnecessary
• Collapse guest OS and application into same domain

• Typically compiles OS and app into the same binary

Download untrusted code into kernel

Pros/cons?
+ extensible
- still working with same OS structure
- Only extensible within limits of

extensibility API
- New thicket of isolation and trust

issues (eBPF is state of art)

driver driver driver

CPU I/O dev DISK NIC

process files pipes

LIBC/CLR

process files pipes

Applications

u
ser

kern
el

H
W

ex
t

ex
t

ex
t

ex
t

Core idea:
• OS provides extensibility interfaces
• Apps provide extensions that execute in kernel mode

Kernel Comparisons

13

ExokernelMultikernel

VM

APP

OS

VM

APP

OS

VM

APP

OS

Hypervisor

Hardware

Exokernel: Key Ideas

Hypotheses:

• Exokernels can be very
efficient

• Low-level, secure
multiplexing of HW
implementable efficiently

• Traditional OS
abstractions can be
implemented efficiently
at application level

• Applications can create
special-purpose
implementations of these
abstractions

Monolithic OS Bad:

• Centralized resource
management

• All applications must use
the same abstractions

• High-level abstractions
• Overly general

• Provide all features
possible

• Implementation cannot
be modified

• Limited functionality

• Information is hidden

LibOS Good:

• Avoid resource management

• Allow request of specific
resources

• Visible resource revocation

• Secure bindings

• Downloading code

• Abort protocol

• Extendable

A great exercise: identify one instance
of each in exokernel and articulate

why it’s there and how it can be made
to work.

Exokernel/libOS
Top-level structure

• 1) small monolithic kernel

• low-level, fixed interface.

• Ideally HW interface

• few and simple abstractions

• extension types

• resource state data – page table entries

• specialized resource mgmt modules

• 2) libraries of untrusted resource mgmt. routines

• VM replacement

• file system

• IPC

• …

• Note: libraries are part of OS

• historically: OS was set of libraries for math, etc

• Key difference – trust

• App can write over library, jump to bad addr, etc.
kernel can not trust library

What does exokernel share with other approaches?

User-space

APP

libOS

exokernel

Hardware

APP

libOS

APP

libOS

Exokernel Principles

• Separate protection and management
• export resources at lowest level possible with protection
• e.g. disk blocks, TLB entries, etc
• resource mgmt only at level needed for protection – allocation, revocation, sharing, tracking of ownership
• “abstraction (mechanism) is policy”
• The implementation of abstractions in library operating systems can be simpler and more specialized than in-

kernel implementations, because library operating systems need not multiplex a resource among competing
applications with widely different demands.

• expose allocation – applications allocate resources explicitly

• expose names – use physical names (physical memory (cache coloring), disk arm position?)

• expose revocation – let apps choose which instances of a resource to give up

• expose information – let application map in (read only) internal kernel data structures (e.g.
swTLB, CPU schedule, …)

• Exterminate all operating system abstractions (end-to-end)

Mechanism: secure bindings

Bind at large granularity; access at small granularity
• Applicable in many systems, not just exokernel

• E.g. malloc vs sbrk & mmap
• Allow kernel to protect resources without understanding them

Core idea: access check at bind time, not access time
Enables decoupling access check from abstraction being checked
Examples:
• Check at TLB entry load time for a page, not at address translation time
• Downloading code: type safe language, sandbox interpreter, validate at install time
• Others?

Mechanism: visible revocation

Using capabilities to protect resources enables
applications to grant access rights to other
applications without kernel intervention.
Applications can also use “well-known”

capabilities to share resources easily

More exokernel key mechanisms

Downloading code into kernel

• Multiplexing the network – packet filter

• idea: load code to examine packet and decide if it is for me.

• Implement by downloading code into kernel
• written in simple, safe language – no loops, check all mem references, etc.

• Problem – what if I lie and say “yes it is for me” when it isn’t?

• Solution – “assume they don’t lie”

• claim – could use a trusted server to load these things or could check

ASHes

Load handlers for application-specific messages into kernel

→ can reply to packet w/o context switch

Advantages of ASH

• direct message vectoring – ASH knows where message should land in
user memory → avoid copies

• dynamic integrated layer processing – e.g. do checksum as data is
copied into NI

• message initiation – fast replies

ASHes

What is going on here?
Does this show that ASHes are
just super awesome?

Evaluation

1) Run benchmarks several times, to warm up cache/TLB

2) Take best run for Ultrix. Exokernel is median of 3 runs

3) Instruction cache conflicts 3x problem for exokernel

• Lots of micro-benchmarks. They never show the full performance picture.

• prototype system offering one-tenth the functionality at ten times the
performance?
• a. Ping-ponging a counter

• b. lrpc uses a single function (e.g., it does not use the RPC number to index into a
table), it does not check permissions, it is single-threaded.

• What do you think?

Aegis

• Scheduling

• Processor events
• Exceptions

• Protected Control Transfers

EECS 582 – W16 24

Time to perform null procedure and system call (µs)

Exception dispatch time (µs)

ExOS: Interprocess Communication (IPC)

EECS 582 – W16 25

IPC time

ExOS: Virtual Memory

EECS 582 – W16 26

Virtual memory operations (µs)

Exokernel concluding observations
• This idea is important, but imperfect

• Thin kernels, fat libraries

• More than one SOSP paper about this system

• Lessons (from second paper)
• Writable shared state was

always a problem
• E.g., a group writable file

system directory

	Slide 1: OS Structure: Exokernel End-to-End Arguments
	Slide 2: Faux quiz answer any two (5 min)
	Slide 3: File Transfer: host A  host B
	Slide 4: End-to-end: a religion?
	Slide 5: End-to-end wisdom
	Slide 6: End-to-end examples
	Slide 7: Background: extensibility
	Slide 8: Extensibility: how can we customize an OS?
	Slide 9: Microkernels
	Slide 10: Extensibility: VMs
	Slide 11: Extensibility: OS per application
	Slide 12: Download untrusted code into kernel
	Slide 13: Kernel Comparisons
	Slide 14: Exokernel: Key Ideas
	Slide 15: Exokernel/libOS
	Slide 16: Exokernel Principles
	Slide 17: Mechanism: secure bindings
	Slide 18: Mechanism: visible revocation
	Slide 19: More exokernel key mechanisms
	Slide 20: Downloading code into kernel
	Slide 21: ASHes
	Slide 22: ASHes
	Slide 23: Evaluation
	Slide 24: Aegis
	Slide 25: ExOS: Interprocess Communication (IPC)
	Slide 26: ExOS: Virtual Memory
	Slide 27: Exokernel concluding observations

